Publicaciones de Santos Bravo Yuste/Publications by Santos Bravo Yuste
(orden
cronológico /chronological order)
Publicaciones por tópicos/Publications by topic
Libros y
capítulos de libros/ Books and books chapters |
Difusión.
Camino aleatorio/ Diffusion. Random walks |
Líquidos/ Liquids |
Oscilaciones
no lineales/ Nonlinear oscillations |
Solución
numérica de ecuaciones fraccionales/ Numerical solution of fractional equations |
Educativos/ Educational |
Otros/ Others |
Libros y capítulos de libros/Books and book chapters
E. Abad, C. Escudero, F. Le Vot, S. B. Yuste, First-Passage Processes and Encounter-Controlled Reactions in Growing Domains, in Chemical Kinetics: Beyond the Textbook, edited by K. Lindenberg, R. Metzler and G. Oshanin
(World Scientific, New Jersey, 2019). ISBN: 978-1786347008.
E. Abad, S. B. Yuste, K. Lindenberg, Fractional Reaction-Transport Equations Arising from Evanescent Continuous Time Random Walks in Fractional Calculus: Theory, Roy Abi Zeid Daou and Xavier Moreau (Eds.) (Nova Science Publishers, 2014) pp.183-202, chapter 8. ISBN: 978-1-63463-002-3 [pdf]
S. B. Yuste, E. Abad, and K. Lindenberg, Arrival Statistics and Explorations Properties of Mortal Walkers in First-Passage Phenomena and their Applications, R. Metzler, G. Oshanin, and S. Redner (Eds.) (World Scientific, 2014). pp. 1-20, chapter 1, ISBN: 9789814590280 [pdf]
S. B. Yuste, E. Abad, K. Lindenberg, Reactions in Subdiffusive Media and Associated Fractional Equations, in Fractional Dynamics. Recent Advances, J. Klafter, S. C. Lim, and R. Metzler (Eds.) (World Scientific, 2011). ISBN: 978-981-4340-58-8. [pdf]
M. López de Haro, S. B. Yuste, and A. Santos, Alternative Approaches to the Equilibrium Properties of Hard-Sphere Liquids, in Theory and Simulation of Hard-Sphere Fluids and Related Systems, A. Mulero (Ed.) Lect. Notes Phys. 753, 183-245 (2008)_DOI 10.1007/978-3-540-78767-9_ 6 (Springer, Berlin, 2008) [pdf]
S. B. Yuste, K. Lindenberg, J. J. Ruiz-Lorenzo, Subdiffusion-Limited Reactions, in Anomalous Transport: Foundations and Applications, R. Klages, G. Radons, and I. M. Sokolov (Eds.) (Wiley-VCH, Weinheim, 2008). ISBN: 978-3527407224. [preprint]
Santos
Bravo Yuste, Métodos
matemáticos avanzados para científicos e ingenieros,
Manual 48 UEx (Servicio de Publicaciones de la UEx, Cáceres,
2006). Este libro puede consultarse y
descargarse libre y gratuitamente
desde el Repositorio
Institucional de la UEx, Dehesa, o bien pinchando directamente aquí,
en formato pdf. En la página web (http://www.unex.es/eweb/fisteor/santos/mma/)
se proporciona material complementario.
Difusión. Camino aleatorio/Diffusion. Random walks
E. Abad, S. B. Yuste, V. Garzó.
On the mean square displacement of intruders in freely cooling granular gases. Granular Matter, 24:111, pp. 1-19 (2022).
DOI:10.1007/s10035-022-01256-0 [pdf]
F. Le Vot, S. B. Yuste, E. Abad, D. Grebenkov.
First-encounter time of two diffusing particles in two- and three-dimensional confinement. Phy. Rev. E 105, 044119, pp. 1-20 (2022).
DOI:10.1103/PhysRevE.105.044119 [pdf]
F. Le Vot, S. B. Yuste, E. Abad, D. Grebenkov.
First-encounter time of two diffusing particles in confinement. Phy. Rev. E 102, 032118, pp. 1-16 (2020) .
DOI:10.1103/PhysRevE.102.032118 [pdf]
E. Abad, C. N. Angstmann, B. I. Henry, A. V. McGann, F. Le Vot, S. B. Yuste.
Reaction-diffusion and reaction-subdiffusion equations on arbitrarily evolving domains. Phys. Rev. E 102, 032111, pp. 1-20 (2020) .
DOI:10.1103/PhysRevE.102.032111 [pdf]
F. Le Vot, E. Abad, R. Metzler, S. B. Yuste.
Continuous time random walk in a velocity field: role of domain growth,
Galilei-invariant advection-diffusion, and kinetics of particle mixing. New Journal of Physics 22, 073048, pp. 1-26 (2020) .
DOI:10.1088/1367-2630/ab9ae2 [pdf]
F. Le Vot, S. B. Yuste, E. Abad. Standard and fractional Ornstein-Uhlenbeck process on a growing domain. Phys. Rev. E 100, 012142, pp. 1-17 (2019) . DOI:10.1103/PhysRevE.100.012142 [pdf]
F. Le Vot, S. B. Yuste. Continuous-time random walks and Fokker-Planck equation in expanding media. Phys. Rev. E 98, 042117, pp. 1-12 (2018). DOI:10.1103/PhysRevE.98.042117 [pdf]
F. Le Vot, C. Escudero, E. Abad, S. B. Yuste. Encounter-controlled coalescence and annihilation on a one-dimensional growing domain. Phys. Rev. E 98, 032137, pp. 1-15 (2018). DOI:10.1103/PhysRevE.98.032137 [pdf]
Felipe Le Vot, Enrique Abad, Santos B. Yuste. Continuous-time random-walk model for anomalous diffusion in expanding media. Phys. Rev. E 96, 062603, pp. 1-11 (2017). DOI:10.1103/PhysRevE.98.032118 [pdf]
Santos Bravo Yuste, Enrique Abad, Carlos Escudero. Diffusion in an expanding medium: Fokker-Planck equation, Green’s function, and first-passage properties. Phys. Rev. E 94 032118 pp. 1-13 (2016). DOI:10.1103/PhysRevE.94.032118 [pdf]
S. B. Yuste, E. Abad and K. Baumgaertner. Anomalous diffusion and dynamics of fluorescence recovery after photobleaching in the random-comb model. Phys. Rev. E 94, 012118 pp. 1-15 (2016). DOI: 10.1103/PhysRevE.94.012118 [pdf]
D. Campos, E. Abad, V. Mendez, S. B. Yuste, K. Lindenberg. Optimal search strategies of space-time coupled random walkers with finite lifetimes. Physical Review E 91, 052115 (2015). DOI: 10.1103/PhysRevE.91.052115 [pdf]
S. B. Yuste, E. Abad and K. Lindenberg. A reaction-subdiffusion model of fluorescence recovery after photobleaching (FRAP). Journal of Statistical Mechanics: Theory and Experiment P11014 (2014). DOI: 10.1088/1742-5468/2014/11/P11014 [pdf]
Enrique Abad, S. B. Yuste, Katja Lindenberg. Evanescent continuous-time random walks. Phys. Rev. E 88, 062110 (2013). DOI:10.1103/PhysRevE.88.062110 [pdf]
S. B. Yuste, E. Abad and K. Lindenberg. Exploration and Trapping of Mortal Random Walkers. Phys. Rev. Lett. 110, 220603 (2013). DOI: 10.1103/PhysRevLett.110.220603.
Enrique Abad, Santos B. Yuste, Katja Lindenberg. Elucidating the Role of Subdiffusion and Evanescence in the Target Problem: Some Recent Results. Mathematical Modelling of Natural Phenomena 8, 100 (2013). DOI: 10.1051/mmnp/20138207.
Enrique Abad, Santos Bravo Yuste, Katja Lindenberg. Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: A fractional equation approach. Phys. Rev. E 86, 061120 (2012). DOI: 10.1103/PhysRevE.86.061120 .
S. B. Yuste, E. Abad and K. Lindenberg. Fractional calculus and morphogen gradient formation. AIP Conference Proceedings, vol. 1504 (1) pages 1323-1326 (2012). DOI: 10.1063/1.4772174. http://link.aip.org/link/?APC/1504/1323/1 .
S. I. Denisov, S. B. Yuste, Yu. S. Bystrik, H. Kantz, K. Lindenberg. Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions. Phys. Rev. E 84, 061143 (2011). DOI: 10.1103/PhysRevE.84.061143.
S. B. Yuste, Enrique Abad. On a novel iterative method to compute polynomial approximations to Bessel functions of the first kind and its connection to the solution of fractional diffusion/diffusion-wave problems. J. Phys. A: Math. Theor. 44 075203 (2011) DOI: 10.1088/1751-8113/44/7/075203. arXiv:1101.2335v1 [math-ph]. (In this link you can find a web page with some additional information on these "Badajoz" polynomials/Polinomios de Badajoz).
Santos Bravo Yuste, Enrique Abad, Katja Lindenberg. A reaction-subdiffusion model of morphogen gradient formation. Phys. Rev. E 82, 061123 (2010) DOI: 10.1103/PhysRevE.82.061123 (You can find here a talk on this topic).
S. B. Yuste, Katja Lindenberg, Enrique Abad. Application of Fractional Calculus to Reaction-Subdiffusion Processes and Morphogen Gradient Formation. Article no. FDA10-062. Proceedings of FDA’10. The 4th IFAC Workshop Fractional Differentiation and its Applications. Badajoz, Spain, October 18-20, 2010 (Eds: I. Podlubny, B. M. Vinagre Jara, YQ. Chen, V. Feliu Batlle, I. Tejado Balsera). ISBN 9788055304878.
E. Abad, S. B. Yuste, K. Lindenberg. Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks. Phys. Rev. E 81, 031115 (2010). DOI: 10.1103/PhysRevE.81.031115.
S. B.
Yuste, R. Borrego, E. Abad, Divergent series and memory of the
initial condition in the long-time solution of some anomalous
diffusion problems. Phys.
Rev. E 81, 021105 (2010). DOI: 10.1103/PhysRevE.81.021105.
R. Borrego, E. Abad, S. B. Yuste. Survival probability of a subdiffusive particle in a d-dimensional sea of mobile traps. Phys. Rev. E 80, 061121 (2009). DOI: 10.1103/PhysRevE.80.061121.
S. B. Yuste, J. J. Ruiz-Lorenzo, K. Lindenberg. Coagulation reactions in low dimensions: Revisiting subdiffusive A+A reactions in one dimension. Phys. Rev. E 80, 051114 (2009). DOI: 10.1103/PhysRevE.80.051114.
I. M. Sokolov, S. B. Yuste, J. J. Ruiz-Lorenzo, K. Lindenberg. Mean field model of coagulation and annihilation reactions in a medium of quenched traps: Subdiffusion. Phys. Rev. E 79, 051113 (2009).
S. B. Yuste, G. Oshanin, K. Lindenberg, O. Bénichou, and J. Klafter,Survival probability of a particle in a sea of mobile traps: A tale of tails. Phys. Rev. E 78, 021105 (2008) [arXiv:0805.2920].
S. B. Yuste, J. Klafter, K. Lindenberg, Number of distinct sites visited by a subdiffusive random walker. Phys. Rev. E 77, 032101 (2008), [arXiv:0711.1422v2].
S. B. YusteYuste, K. Lindenberg, and J. J. Ruiz-Lorenzo , Subdiffusion-Limited Reactions, in Anomalous Transport: Foundations and Applications, R. Klages, G. Radons, and I. M. Sokolov (Eds.) (Wiley-VCH, Weinheim, 2008) [preprint]
S. B. Yuste, K. Lindenberg, Subdiffusive target problem: Survival probability. Phys. Rev. E 76, 051114 (2007), [arXiv:0709.3055v3]. This article was selected for the November 15, 2007 issue of Virtual Journal of Biological Physics Research. [Their editors describe this journal in this way: The Virtual Journal, which is published by the American Physical Society and the American Institute of Physics in cooperation with numerous other societies and publishers, is an edited compilation of links to articles from participating publishers, covering a focused area of frontier research. You can access the Virtual Journal at http://www.vjbio.org. The November 15, 2007 issue cand be found at http://scitation.aip.org/dbt/dbt.jsp?KEY=VIRT02&Volume=14&Issue=10. The article appears in the Statistical and Nonlinear Physics section.]
J.J. Ruiz-Lorenzo, S. B. Yuste, K. Lindenberg, Simulations for trapping reactions with subdiffusive traps and subdiffusive particles, J. Phys.: Condens. Matter 19 065120 (2007) [cond-mat/0611050].
S. B. Yuste Yuste, J.J. Ruiz-Lorenzo, K. Lindenberg, Target problem with evanescent subdiffusive traps, Phys. Rev. E 74, 046119 (2006) (7 pages) [cond-mat/0607655].
S. B. Yuste, K. Lindenberg, Trapping reactions with subdiffusive traps and particles characterized by different anomalous diffusion exponents, Phys. Rev. E 72, 061103 (2005) [cond-mat/0510561] (Erratum: Trapping reactions with subdiffusive traps and particles characterized by different anomalous diffusion exponents [Phys. Rev. E 72, 061103 (2005)], Phys. Rev. E 73, 039909 (2006)).
S. B. Yuste Yuste, Katja Lindenberg, Trapping reactions with subdiffusive traps and particles, Proceedings of SPIE 5845, 27 (2005), [cond-mat/0604408].
K. Lindenberg, S. B. Yuste, Properties of the reaction front in a reaction-subdiffusion process, Proceedings of SPIE 5471, 20 (2004), [cond-mat/0604439].
S. B. Yuste, L. Acedo, Average shape of fluctuations for subdiffusive walks, Phys. Rev. E 69, 031104 (2004), [cond-mat/0310491].
S. B. Yuste, K. Lindenberg, Comment on "Mean First Passage Time for Anomalous Diffusion", Phys. Rev. E 69, 033101 (2004), DOI:10.1103/PhysRevE.81.031115, [cond-mat/0401072].
S. B. Yuste, L. Acedo, K. Lindenberg, Reaction Front in an A+B -> C Reaction-Subdiffusion Process, Phys. Rev. E 69, 036126 (2004), DOI:10.1103/PhysRevE.69.036126, [cond-mat/0401071].
S. B. Yuste, L. Acedo, Some exact results for the trapping of subdiffusive particles in one dimension, Physica A 336, 334 (2004), [cond-mat/0311207].
Santos Bravo Yuste, Luis Acedo, Order statistics of Rosenstock's trapping problem in disordered media, Phys. Rev. E 68, 036134 (2003), [cond-mat/0309673].
L. Acedo, S. B. Yuste, Multiparticle random walks, Recent Research Developments in Statistical Physics, Volume 2, Pages 83-106 (Transworld Research Network, Trivandrum, India, 2002), [cond-mat/0310121].
L. Acedo, S. B. Yuste, Survival probability and order statistics of diffusion on disordered media, Phys. Rev. E 66, 011110-1/8 (2002), [cond-mat/0203089].
S. B. Yuste, K. Lindenberg, Subdiffusion-limited reactions, Chem. Phys. 284, 169-180 (2002), [cond-mat/0111261].
S. B. Yuste, L. Acedo, K. Lindenberg, Order statistics for d-dimensional diffusion processes, Phys. Rev. E 64, 052102-1/4 (2001), [cond-mat/0105358].
S. B. Yuste, L. Acedo, Order statistics of the trapping problem, Phys. Rev. E 64, 061107-1/7 (2001), DOI:10.1103/PhysRevE.64.061107 [pdf] [ cond-mat/0110172].
S. B. Yuste, K. Lindenberg, Subdiffusion limited A+A reactions, Phys. Rev. Lett. 87, 118301-1/4 (2001), [cond-mat/0105338].
Santos Bravo Yuste, L. Acedo, Multiparticle trapping problem in the half-line, Physica A 297, 321-336 (2001), [cond-mat/0105375].
L. Acedo, S. B. Yuste, Territory covered by N random walkers on fractal media: The Sierpinski gasket and the percolation aggregate, Phys. Rev. E 63, 011105-1/12 (2001), DOI:10.1103/PhysRevE.63.011105 [pdf] [cond-mat/0003445], [cond-mat/0003446].
L. Acedo, S. B. Yuste, II. Territory covered by N random walkers on stochastic fractals. The percolation aggregate, [cond-mat/0003446].
L. Acedo, S. B. Yuste, I. Territory covered by N random walkers on deterministic fractals. The Sierpinski gasket, [cond-mat/0003445].
S. B. Yuste, L. Acedo, Number of distinct sites visited by N random walkers on a Euclidean lattice, Phys. Rev. E 61, 2340-2347 (2000), [cond-mat/0002362].
S. B. Yuste, L. Acedo, Diffusion of a set of random walkers in Euclidean media. First passage times, J. Phys. A 33, 507-512 (2000) .
S. B. Yuste, L. Acedo, Territory covered by N random walkers, Phys. Rev. E 60, R3459-R3462 (1999).
J. M. Porrà, S. B. Yuste, Demostration of a conjecture for random walks in d -dimensional Sierpinski fractals, J. Phys. A 31, 6589-6593 (1998).
S. B. Yuste, Order statistics of diffusion on fractals, Phys. Rev. E 57, 6327-6333 (1998).
L. Acedo, S. B. Yuste, Short time regime propagator in fractals, Phys. Rev. E 57, 5160-5166 (1998).
S. B. Yuste, L. Acedo Number of distinct sites visited by N random walkers, Proceedings of the VIII Spanish Meeting on Statistical Physics FisEs'97, J. A. Cuesta and Sánchez A., editors. Anales de Física Monografías num. 4, 171-172. Editorial CIEMAT, Madrid (1998).
S. B. Yuste, L. Acedo The propagator in a Sierpinski gasket, Proceedings of the VIII Spanish Meeting on Statistical Physics FisEs'97, J. A. Cuesta and Sánchez A., editors. Anales de Física Monografías num. 4, 155-156. Editorial CIEMAT, Madrid (1998).
Santos B. Yuste, Escape times of N random walkers from a fractal labyrinth, Phys. Rev. Lett. 79, 3565-3568 (1997). DOI:10.1103/PhysRevLett.79.3565 [pdf]
S. B. Yuste, K. Lindenberg, Order Statistics for first passage times in one-dimensional diffusion processes, J. Stat. Phys. 85, 501-512 (1996). DOI:10.1007/BF02174217 [pdf]
S. B. Yuste, First Passage time, survival probability and propagator on deterministic fractals, J. Phys. A 28, 7027-7038 (1995). DOI:10.1088/0305-4470/28/24/004 [pdf]
S. B. Yuste, A. Santos, M. López de Haro.
Structural and thermodynamic properties of fluids whose molecules interact via one-, two-, and three-step potentials. J. Mol. Phys. 364, 119890, pp. 1-10 (2022).
DOI:10.1016/j.molliq.2022.119890 [pdf]
S. Pieprzyk, S. B. Yuste, A. Santos, M. López de Haro, A. C. Brańka.
Structural properties of additive binary hard-sphere mixtures. III. Direct correlation functions. Phys. Rev. E 104, 054142, pp. 1-10 (2021).
DOI:10.1103/PhysRevE.104.054142 [pdf]
S. Pieprzyk, S. B. Yuste, A. Santos, M. López de Haro, A. C. Brańka.
Structural properties of additive binary hard-sphere mixtures. II. Asymptotic behavior and structural crossovers. Phys. Rev. E 104, 024128, pp. 1-14 (2021).
DOI:10.1103/PhysRevE.104.024128 [pdf]
M. A. López-Castaño, J. F. González-Saavedra, A. Rodríguez-Rivas, E. Abad, S. B. Yuste, F. Vega Reyes.
Pseudo-two-dimensional dynamics in a system of macroscopic rolling spheres . Phys. Rev. E 103, 042903, pp. 1-13 (2021).
DOI:10.1103/PhysRevE.103.042903 [pdf]
A. Santos, S. B. Yuste, M. López de Haro.
Structural and thermodynamic properties of hard-sphere fluids. J. Chem. Phys. 153, 120901, pp. 1-30 (2020).
DOI:10.1063/5.0023903 [pdf]
M. López de Haro, A. Santos, S. B. Yuste.
Equation of State of Four- and Five-Dimensional Hard-Hypersphere Mixtures. Entropy 22, 469, pp. 1-18 (2020) .
DOI:10.3390/e22040469 [pdf]
S. Pieprzyk, A. C. Brańka, S. B. Yuste, A. Santos, M. López de Haro.
Structural properties of additive binary hard-sphere mixtures. Phys. Rev. E 101, 012117, pp. 1-10 (2020) .
DOI:10.1103/PhysRevE.101.012117 [pdf]
M. López de Haro, A. Rodríguez-Rivas, S. B. Yuste, A. Santos. Structural properties of the Jagla fluid. Phys. Rev. E 98, 012138, pp. 1-11 (2018). DOI:10.1103/PhysRevE.98.012138 [pdf]
A. Santos, S. B. Yuste, M. López de Haro, V. Ogarko. Equation of state of polydisperse hard-disk mixtures in the high-density regime. Phys. Rev. E 96, 062603 (2017). DOI:10.1103/PhysRevE.96.062603 [pdf]
Giacomo
Fiumara, Franz Saija, Giuseppe Pellicane, Mariano López de Haro,
Andrés Santos, Santos B. Yuste. Virial coefficients,
equation of state, and demixing of binary asymmetric nonadditive
hard-disk mixtures.
J. Chem. Phys. 147, 164502, pp. 1-11 (2017).
DOI:10.1063/1.4990614 [pdf]
M. López de Haro, C. F. Tejero, A. Santos, S. B. Yuste, G. Fiumara, F. Saija. Virial coefficients and demixing in the Asakura-Oosawa model. J. Chem. Phys. 142, 014902, pp. 1-8 (2015). [pdf ]; Erratum, 143, 029902 (2015) [pdf]
A. Santos, S. B. Yuste, M. López de Haro, G. Odriozola, V. Ogarko. A simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres. Phys. Rev. E 89, 040302(R) (2014). DOI:10.1103/PhysRevE.89.040302 [pdf]
A. Santos, S. B. Yuste , M. López de Haro, M. Bárcenas, P. Orea. Structural properties of fluids interacting via piece-wise constant potentials with a hard core. J. Chem. Phys. 139, 074505 (2013). DOI: 10.1063/1.4818601. Copyright (2013) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article may be found at http://link.aip.org/link/?jcp/139/074505 .
A. Santos, S. B. Yuste , M. López de Haro. Rational-function approximation for fluids interacting via piece-wise constant potentials. Condensed Matter Physics. 5, 23602 (2012). DOI: 10.5488/CMP.15.23602
F. Saija, A. Santos, S. B. Yuste, and M. López de Haro, Fourth virial coefficients of asymmetric nonadditive hard-disc mixtures, J. Chem. Phys. 136, 184505,pp. 1-8 (2012) [arXiv:1201.1808].
A. Santos, Santos B. Yuste, M. López de Haro, Communication: Inferring the equation of state of a metastable hard-sphere fluid from the equation of state of a hard-sphere mixture at high densities. J. Chem Phys.135, 181102 (2011). DOI:10.1063/1.3663206.
S. B. Yuste, A. Santos, M. López de Haro. Structure of the square-shoulder fluid. Mol. Phys. 109, 987-995 (2011).
A. Santos, M. López de Haro, Santos B. Yuste. Virial coefficients, thermodynamic properties, and fluid-fluid transition of nonadditive hard-sphere mixtures. J. Chem Phys.132, 204506 (2010). DOI:10.1063/1.3429600
A. Santos, S. B. Yuste, M. López de Haro, M. Alawnehb and D. Henderson. Contact values for disparate-size hard-sphere mixtures. Mol. Phys. 107, 685–691 (2009).
M. López de Haro, A. Santos, Santos B. Yuste. Simple equation of state for hard disks on the hyperbolic plane. J. Chem Phys.129, 116101 (2008).
M. López de Haro, S. B. Yuste, A. Santos, Alternative Approaches to the Equilibrium Properties of Hard-Sphere Liquids , in Theory and Simulation of Hard-Sphere Fluids and Related Systems, A. Mulero (Ed.) Lect. Notes Phys. 753, 183-245 (2008)_DOI 10.1007/978-3-540-78767-9_ 6. (Springer, Berlin, 2008)
Santos Bravo Yuste, Andrés Santos, Mariano López de Haro. Depletion potential in the infinite dilution limit. J. Chem. Phys. 128,134507 (2008) [arXiv:0705.1069] ::: Erratum: “Depletion potential in the infinite dilution limit” [J. Chem. Phys.128, 134507 (2008)], DOI: 10.1063/1.4874639 [pdf]
Alexandr Malijevský, Santos Bravo Yuste, Andrés Santos, Low-temperature and high-temperature approximations for penetrable-sphere fluids: Comparison with Monte Carlo simulations and integral equation theories, Phys. Rev. E 76, 021504-1-13 (2007) [arXiv:0705.1069].
Alexandr Malijevsky, Santos B. Yuste, A. Santos, M. López de Haro, Multicomponent fluid of hard spheres near a wall, Phys. Rev. E 75, 061201 (2007), [arXiv:0705.1069v1].
M. López de Haro, S. B. Yuste, A. Santos, Test of a universality ansatz for the contact values of the radial distribution functions of hard-sphere mixtures near a hard wall. Mol. Phys. 104 3461–3467 (2006) [cond-mat/0607826].
Alexandr Malijevsky, Santos B. Yuste, Andrés Santos, How `sticky' are short-range square-well fluids? , J. Chem Phys 125, 074507 (2006) [DOI:10.1063/1.2244549] [cond-mat/0605347].
M. López de Haro, A. Santos, Santos B. Yuste, On the radial distribution function of a hard-sphere fluid, J. Chem Phys 124, 236102 (2006) [DOI: 10.1063/1.220169], [cond-mat/0602125] .
A. Santos, S. B. Yuste, M. López de Haro, Contact values of the particle-particle and wall-particle correlation functions in a hard-sphere polydisperse fluid, J. Chem Phys 123, 234512 (2005) [cond-mat/0510102].
J. Largo, J. R. Solana, S. B. Yuste, A. Santos, Pair correlation function of short-ranged square-well fluids, J. Chem. Phys. 122, 084510 (2005) [cond-mat/0410702].
A. Santos, M. López de Haro, S. B. Yuste, Equation of state of non-additive d-dimensional hard-sphere mixtures, J. Chem. Phys.122, 024514 (2005) [cond-mat/0409430].
Alexander Malijevský, Anatol Malijevský, S. B. Yuste, A. Santos, M. López de Haro, Structure of ternary additive hard-sphere fluid mixtures, Phys. Rev. E 66, 061203 (2002), [cond-mat/0205552].
M. López de Haro, S. B. Yuste, A. Santos, Equation of state of additive hard-disk fluid mixtures: A critical analysis of two recent proposal, Phys. Rev. E 66, 031202 (2002), [cond-mat/0207284].
A. Santos, S. B. Yuste, M. López de Haro, Contact values of the radial distribution functions of additive hard-sphere mixtures in d dimensions: A new proposal, J. Chem. Phys. 117, 5785-5793 (2002), [cond-mat/0204246].
A. Santos, S. B. Yuste, M. López de Haro, Virial coefficients and equations of state for mixtures of hard discs, hard spheres and hard hyperspheres, Mol. Phys. 99, 1959-1972 (2001) [cond-mat/0101098].
M. López de Haro, S. B. Yuste, A. Santos, Comment on``Theory and computer simulation for the equation of state of additive hard-disk fluid mixtures'' ,[cond-mat/0104584].
S. B. Yuste, A. Santos, M. López de Haro, Direct correlation functions and bridge functions in additive hard-sphere mixtures, Mol. Phys. 98, 439-446 (2000), [cond-mat/0003401].
S. B. Yuste, A. Santos, M. López de Haro, Demixing in binary mixtures of hard hyperspheres, EuroPhys. Lett. 52, 158-164 (2000), [cond-mat/0002354].
A. Santos, Santos Bravo Yuste, M. López de Haro, Equation of state of a multicomponent d -dimensional hard-sphere fluid, Mol. Phys. 96, 1-5 (1999), [cond-mat/0204246].
A. Santos, S. B. Yuste, M. López de Haro, Radial distribution functions for a multicomponent system of sticky hard spheres, J. Chem. Phys. 109, 6814-6819 (1998).
M. Robles, M. López de Haro, A. Santos, S. B. Yuste, Is there a glass transition for dense hard-sphere systems?, J. Chem. Phys. 108, 1290-1291 (1998).
S. B. Yuste, A. Santos, M. López de Haro, Radial distribution functions in hard-shpere mixtures, Proceedings of the VIII Spanish Meeting on Statistical Physics FisEs'97, J. A. Cuesta and Sánchez A., editors. Anales de Física Monografías num. 4, 169-170. Editorial CIEMAT, Madrid (1998)
M. López de Haro, A. Santos, S. B. Yuste, A student-oriented derivation of reliable equation of state for a hard-disc fluid, Eur. J. Phys. 19, 281-6 (1998).
S. B. Yuste, A. Santos, M. López de Haro, Structure of multi-component hard-sphere mixtures, J. Chem. Phys. 108, 3683-3693 (1998).
M. López de Haro, A. Santos y S. B. Yuste, Una ecuación de estado simple para un fluido de discos duros, in "La visión molecular de la materia", J. Recamier Angelini and A. Ramírez Solís, eds. (Universidad Autónoma del Estado de Morelos, Mexico, 1997), pp. 104-111 [in Spanish]
S. B. Yuste, A. Santos, M. López de Haro, Structure of hard-sphere metastable fluids, Phys. Rev. E 53, 4820-4826 (1996) .
A. Santos, M. López de Haro, S. B. Yuste, An accurate and simple equation of state for hard disks, J. Chem. Phys. 103 , 4622-4625 (1995).
S. B. Yuste, A. Santos, A model for the structure of square-well fluids, J. Chem. Phys. 101, 2355-2364 (1994).
S. B. Yuste, A. Santos, Sticky hard spheres beyond the Percus-Yevick approximation, Phys. Rev. E 48, 4599-4604 (1993).
S. B. Yuste, A. Santos, Radial distribution function for sticky hard-core fluids, J. Stat. Phys. 72, 703-720 (1993).
S. B. Yuste, A. Santos, A heuristic radial distribution function for hard disks, J. Chem. Phys. 99, 2020-2023 (1993).
S. B. Yuste, A. Santos, Radial distribution function for hard spheres, Phys. Rev. A 43(10), 5418-23 (1991).
Oscilaciones no lineales/Nonlinear oscillations
S. B. Yuste, On a new criterion for evaluating the stability of the limit cycles of perturbed Duffing oscillators, Dyn. Stab. Systems 7, 189-197 (1992).
Santos B. Yuste, Quasi-pure-cubic oscillators studied with a Krylov Bogoliubov method, J. Sound Vib. 158, 267-275 (1992).
S. B. Yuste, Cubication of nonlinear oscillators using the principle of harmonic balance, Int. J. Non-Linear Mech. 27, 347-356 (1992).
Santos B. Yuste, On Duffing oscillators with slowly varying parameters, Int. J. Non-Linear Mech. 26, 671-77 (1991).
S. B. Yuste, Comments on the method of harmonic balance in which Jacobi elliptic functions are used, J. Sound Vib. 145, 381-390 (1991).
S. B. Yuste, J. Díaz Bejarano, Improvement of a Krylov-Bogoliubov method that uses Jacobi elliptic functions, J. Sound Vib. 139 , 151-63 (1990).
S. B. Yuste, A. Martin Sanchez, A weighted mean-square method of ``cubication'' for non-linear oscillators, J. Sound Vib. 134 ,423-33 (1989).
Santos B. Yuste, The Rayleigh method with Jacobi elliptic functions, J. Sound Vib. 133, 180-4 (1989).
S. B. Yuste, A generalized Galerkin method for cubic oscillators, J. Sound Vib. 130, 332-6 (1989).
S. B. Yuste, J. Díaz Bejarano, Extension and Improvement to the Krylov-Bogoliubov methods using elliptic functions, Int. J. Control 49, 1127-41 (1989).
J. García-Margallo Guillén, J. Díaz Bejarano, S. B. Yuste, Generalized Fourier series for the study of limit cycles, J. Sound Vib. 125, 13-21 (1988).
S. B. Yuste, J. Díaz Bejarano, Amplitude decay of damped non-linear oscillator studied with Jacobian Elliptic Functions, J. Sound Vib. 114, 33-44 (1987).
S. B. Yuste, J. Díaz Bejarano, Construction of aproximate analytical solutions to a new class of nonlinear oscillator equation, J. Sound Vib. 110, 347-50 (1986).
Solución numérica de ecuaciones fraccionales/Numerical solution of fractional equations
You can be find here some Mathematica notebooks for solving Fractional Diffusion Equations (FDEs) by means of finite difference methods
Santos B. Yuste, J. Quintana-Murillo. Fast, Accurate and Robust Adaptive Finite Difference Methods for Fractional Diffusion Equations. Numerical Algorithms, 71 (1) pp 207-228 (2016). DOI:110.1007/s11075-015-9998-1. [pdf ] Mathematica codes employed in this paper can be found here.
J. Quintana-Murillo, Santos B. Yuste. A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations. The European Physical Journal Special Topics, Volume 222, No. 8, September 2013, Pages 1987-1998. DOI:10.1140/epjst/e2013-01979-7. [ pdf ]
Santos B. Yuste, J. Quintana-Murillo. A Finite Difference Method with Non-uniform Timesteps for Fractional Diffusion Equations. Computer Physics Communications, Volume 183, Issue 12, December 2012, Pages 2594-2600, ISSN 0010-4655. DOI:10.1016/j.cpc.2012.07.01. [ pdf ] arXiv:1109.6622v3 [math.NA] ::: Corrigendum to “A finite difference method with non-uniform timesteps for fractional diffusion equations” [Comput. Phys. Comm. 183 (12) (2012) 2594–2600] DOI: 10.1016/j.cpc.2013.11.002 [ pdf ]
J. Quintana-Murillo, Santos B. Yuste. An explicit numerical method for the fractional cable equation. International Journal of Differential Equations, vol. 2011, Article ID 231920, 12 pages, 2011. doi:10.1155/2011/231920.
J. Quintana, Santos B. Yuste. An explicit difference scheme for the fractional cable equation. Article no. FDA10-120. Proceedings of FDA’10. The 4th IFAC Workshop Fractional Differentiation and its Applications. Badajoz, Spain, October 18-20, 2010 (Eds: I. Podlubny, B. M. Vinagre Jara, YQ. Chen, V. Feliu Batlle, I. Tejado Balsera). ISBN 9788055304878. (You can find here the slides of the talk).
J. Quintana, Santos B. Yuste. An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form, Journal of Computational and Nonlinear Dynamics 6, 021014 (2011). DOI:10.1115/1.4002687
J. Quintana, S. B. Yuste. On three explicit difference schemes for fractional diffusion and diffusion-wave equations, Phys. Scr. T136 (2009) 014025.
S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations, Journal of Computational Physics 216 (2006) 264-274 [DOI: 10.1016/j.jcp.2005.12.006]. (You can be find here a Mathematica notebook that uses this method for solving Fractional Diffusion Equations. Choosing the weight factor =1/2 one gets a fractional version of the Crank-Nicolson method)
S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations, Proceedings of the 1ST IFAC WORKSHOP ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATION (A. Le Mehaute, J. A. Tenreiro Machado, J. C. Trigeassou and J. Sabatier Eds.) ENSEIRB, BORDEAUX, pp. 335-340 (19-21 JULY 2004). Also as preprint in arXiv:cs/0408053v1 [cs.NA] (2004). (You can be find here a Mathematica notebook that uses this method for solving Fractional Diffusion Equations. See also Numerical method à la Crank-Nicolson for fractional diffusion equations.)
S. B. Yuste, L. Acedo, An explicit finite difference method and a new von Neumann-type stability analyis for fractional diffusion equations, SIAM Journal of Numerical Analysis, 42, 1862-74 (2005). DOI: 10.1137/030602666. Also an earlier version as preprint in arXiv:cs/0311011v1 [cs.NA] (2003) with the title On an explicit finite difference method for fractional diffusion equations. (You can be find here a Mathematica notebook that uses this method for solving Fractional Diffusion Equations. See also Numerical method à la Crank-Nicolson for fractional diffusion equations.)
Santos Bravo Yuste, Eigenvalues and Eigenfunctions for the Harmonic Oscillator with Quartic, Sextic and Octic Perturbations, http://demonstrations.wolfram.com/EigenvaluesAndEigenfunctionsForTheHarmonicOscillatorWithQuar/, Wolfram Demonstrations Project, published: April 19 2019.
Santos Bravo Yuste, Sensitivity to Initial Conditions for the Logistic Map, http://demonstrations.wolfram.com/SensitivityToInitialConditionsForTheLogisticMap/, Wolfram Demonstrations Project, published: February 9 2018.
Santos Bravo Yuste, Sensitivity to Initial Conditions for the Logistic Map, http://demonstrations.wolfram.com/SensitivityToInitialConditionsForTheLogisticMap/, Wolfram Demonstrations Project, published: January 29 2018.
Felipe Le Vot, Juan J. Meléndez, Santos B. Yuste, Numerical matrix method for quantum periodic potentials, American Journal of Physics, vol 84 (2016) 426-433. DOI:10.1119/1.4944706. arXiv:1606.00211v1 [quant-ph] [pdf] Mathematica codes employed in this paper can be found here.
Santos Bravo Yuste, Phase Portrait and Field Directions of Two-Dimensional Linear Systems of ODEs, http://demonstrations.wolfram.com/PhasePortraitAndFieldDirectionsOfTwoDimensionalLinearSystems/, Wolfram Demonstrations Project, published: March 7 2011.
Santos Bravo Yuste, H. Sánchez-Pajares, Una función random nada aleatoria, Revista Española de Física 16, n. 2, 60-62 (2002) [in Spanish].
Santos Bravo Yuste, Reduccionismo: supongamos que la gallina es un objeto esférico..., Cátedra Nova, número 9, 319-327 (junio 1999) [in Spanish].
S. B. Yuste, A. Martín Sánchez, Energy levels of the quartic double well using a phase-integral method, Phys. Rev. A 48, 3478-3485 (1993).
S. B. Yuste, Generalized Bohr-Sommerfeld rule for quartic oscillators, Phys. Rev. A 46, 5367-5374 (1992).