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We construct and solve fractional equations for the description of reactions in
subdiffusive media starting from a mesoscopic continuous time random walk
model. Our goal is to understand the spatial and temporal evolution of the
reactant concentrations. Our discussion is presented in two parts. In the first
part, the reactions occur at fixed locations such as immobile traps or hyper-
surfaces enclosing a volume. Here the reactions appear as boundary conditions.
Since the boundary conditions are identical for diffusive and subdiffusive reac-
tants, there is a close connection between the solutions in both environments.
In the second part we deal with the more complex problem of reactions that
occur at random locations, either because all reactants are mobile or because
the reaction is a degradation process that may occur anywhere in space. Now
in general the reaction has to be built into the equations themselves, and each
situation demands a particular derivation. In one case in this class it is possi-
ble to find asymptotic solutions using a bounding procedure that requires only
the solution of boundary value problems, but this fortuitous solution is appli-
cable only to this particular case. More generally, this chapter serves to point
to the difficulties inherent in the reaction-subdiffusion problem.
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1. Introduction

Diffusive motion of particles in dense media is usually understood to be
random motion characterized by a mean square displacement that grows
linearly with time, 〈r2〉 ∼ Dt (D is the diffusion coefficient). Reactions
among particles that undergo diffusive motion are traditionally described
by well-established reaction-diffusion equations in which a diffusion equation
for the concentrations is simply augmented by a local reaction term typically
constructed as a local version of the laws of mass action [1, 2]. However, in
recent years it has become clear that motion in complex environments [3],
especially in biological environments [4], is often hindered by the presence
of traps or obstacles or other impediments, leading to subdiffusive motion,
that is, motion characterized by a mean square displacement that grows
sublinearly with time, 〈r2〉 ∼ Dγt

γ with 0 < γ < 1 (Dγ is a generalized
subdiffusion coefficient). The equations describing the spatio-temporal evo-
lution of reactions among subdiffusive species are considerably more compli-
cated than the familiar reaction-diffusion equations. Approaches based on
heuristic macroscopic equations are often insufficient and can lead to incor-
rect conclusions. The derivation of these equations requires the formulation
of a microscopic or mesoscopic model as a starting point. In this chapter
we start from a particular mesoscopic point of view, namely, a continuous
time random walk (CTRW) description of the motion in which the waiting
time distributions between successive steps have a long or heavy tail. Start-
ing from such a model, in Sec. 2 we discuss the derivation of a well-known
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generic fractional subdiffusion equation for the concentrations of a subdif-
fusive species as it evolves in space and time. The resulting equation has to
be appropriately modified when the species in question can undergo reac-
tions. There is no universal way to do this, contrary to the case of ordinary
diffusion where reaction terms are simply added. In subsequent sections we
deal with this problem in a variety of scenarios.

Next we discuss a variety of ways to include reactive processes for our
subdiffusive particles. We separate our discussion into two parts, one pre-
sented in Sec. 3 and the other in Sec. 4. First, in Sec. 3 we focus on systems
in which reactions occur at fixed locations. Starting from a CTRW model,
we arrive at a pure fractional diffusion equation in which the reactions are
manifest as spatially fixed boundary conditions (we do not consider systems
subject to external potentials). These systems adhere to a description par-
allel to that of the corresponding normally diffusive system except for the
fact that the time evolution for long times is slower. Typically many of the
results for the subdiffusive system can be found from those associated with
the diffusive system if in the results for the latter we make the substitution
t→ αtγ , where α is a parameter that depends on γ and on Dγ (see pp. 375
in Ref. 3). In Sec. 3.1 we focus on the survival probability of a fixed target
that reacts with a subdiffusive particle. Section 3.2 extends the calculation
of the target survival probability to the case where the target is surrounded
by a sea of subdiffusive particles rather than by a single particle. In Sec. 3.3
we present the survival probability of particles that subdiffuse in a finite
region surrounded by a boundary with which the particles can react and
consequently vanish.

The second part of our discussion, in Sec. 4, deals with reactions that
occur at random locations either because all reactants are mobile, or because
the reaction is a degradation process that may occur anywhere in space. The
reactions can thus no longer be handled as boundary value problems but
are instead far more complex many-body problems. The results for subdif-
fusive particles are in general very different from those found for particles
that undergo normal diffusion. Furthermore, the solution of these problems
is typically far more complicated than the corresponding solution for the
diffusive problem. In Sec. 4.1 we deal with a generalization of the prob-
lem of Sec. 3.2 in which all reactants are mobile. The reaction is of the
form A + B → B, where a particle (A) survives only if it does not touch
any traps (B). The calculation of the survival probability of a particle even
when both particle and traps move according to the normal laws of diffusion
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is complicated and has only been solved asymptotically relatively recently.
The generalization to the situation where one or the other or both species
are subdiffusive presents interesting challenges, especially when the particle
is diffusive and the traps are subdiffusive. In Sec. 4.2 we discuss some of the
difficulties that are encountered when the fractional subdiffusion equation
is to be modified by reactive contributions. It is now no longer possible to
generalize reaction-diffusion equations in any simple manner. In particular,
it is in general no longer appropriate to simply add a reaction term to the
subdiffusion equation, and it is no longer possible to devise a general scheme
to include the effects of reactions. We derive a reaction-subdiffusion equa-
tion for a class of problems that serves to illustrate the complicated nature
of the task. In Sec. 4.3 we use this equation to find the survival probability
of a particle in the presence of a fixed target surrounded by a “reactivity
field.” In Sec. 4.4 we again solve this equation, but now for a scenario that
may be appropriate in the context of the formation of morphogen gradients
in an embryonic environment.

We conclude this chapter with a few final remarks in Sec. 5.

2. Subdiffusion and Fractional Calculus

A well-known model of anomalous diffusion is based on a CTRW in which
the particles are described as random walkers whose step lengths r and
waiting times t are characterized by probability distributions w(r) and ψ(t),
respectively. Let ŵ(q) be the Fourier transform of w(r) and ψ̃(u) the Laplace
transform of ψ(t). We assume a (symmetric) walk with

ŵ(q) ∼ 1 − (σq)µ (1)

for small q ≡ |q|, and

ψ̃(u) ∼ 1 − (τu)γ , 0 < α ≤ 1 (2)

for small u. The parameters σµ and τγ appear in combined form in the
generalized diffusion coefficient Dγ = σµ/τγ . If µ = 2, then σ2 is half the
variance of the jump length. If additionally γ < 1, then the mean square dis-
placement of the walkers grows sublinearly with time, 〈r2〉 ∼ 2dDγt

γ/Γ(1+
γ) [5], where d denotes dimensionality. The limit of long time scales and
large displacement scales yields the fractional diffusion equation [6, 7]

∂c(r, t)
∂t

= Dγ 0D1−γ
t ∇µc(r, t), 0 < α < 1 (3)
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where c(r, t) is the concentration of walkers, 0D1−γ
t is the operator whose

Laplace transform L is

L 0D1−γ
t f(t) = u1−γ f̃(u), (4)

and ∇µ is the operator whose Fourier transform F is

F∇µg(r) = −qµĝ(q) (5)

for sufficiently smooth functions f and g [8, 9]. Equation (3) is a partic-
ular case of the reaction-subdiffusion equation derived later in Sec. 4.2.
The operator 0D1−γ

t is the Grünwald–Letnikov fractional derivative [8].
When operating on well-behaved functions [functions f(t) for which
limt→0

∫ t

0 dτ(t−τ)γ−1f(τ) = 0], this operator is equivalent to the Riemann–
Liouville fractional derivative [8],

0D
1−γ
t f(t) =

1
Γ(γ)

∂

∂t

∫ t

0

dt′
f(t′)

(t− t′)1−γ
. (6)

The fractional spatial derivative ∇µ is the negative of the Riesz fractional
derivative of order µ [9]. For µ = 2 this operator is simply the Laplacian
operator ∇2 and Eq. (3) becomes the fractional subdiffusion equation

∂c(r, t)
∂t

= Dγ 0D1−γ
t ∇2c(r, t), 0 < α < 1. (7)

From here on we focus on this case.

3. Reactions Occurring at Spatially Fixed Locations

If a reaction occurs when a moving particle reaches a fixed target, the prob-
lem can be formulated as a boundary value problem. The boundary value
formulation is essentially the same whether the moving particle undergoes
normal diffusion or subdiffusion: the (sub)diffusion equation describes the
motion of the particle in a region Ω in a region Ω external to the tar-
get, and this equation is augmented by the reactive boundary condition
F [c(r, t),∇c(r, t)] = 0 at the reactive boundary r ∈ ∂Ω. Two types of
boundary conditions are often considered in diffusion problems. One is the
totally absorbing (or perfectly reactive) boundary, for which

c(r, t) = 0, r ∈ ∂Ω, (8)
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indicating immediate reaction (death) upon encounter with the boundary.
The other is the radiation (or Robin, or partially absorbing) boundary
condition

c(r, t) = −Λ
∂

∂n
c(r, t), r ∈ ∂Ω. (9)

Here ∂c/∂n is the component of the gradient of c perpendicular to the
boundary and pointing away from the region Ω, and Λ is a reaction rate
parameter. This latter condition describes partially reactive boundaries,
that is, situations where it is possible for a particle to come in contact with
the boundary and yet not react. That this is in fact the correct mathemat-
ical description of a partially reactive boundary is not immediately obvious
[10–12].

Our starting point is the Laplace transform of Eq. (7),

uc̃(r, u) − c(r, 0) = u1−γDγ∇2c̃(r, u). (10)

The Laplace transformed equation makes it clear that the subdiffusion equa-
tion can formally be obtained from the normal diffusion equation if in the
latter we implement the change D → u1−γDγ . Since the boundary condi-
tions (8) and (9) are the same for the diffusion and subdiffusion problem,
it would seem reasonable to expect that the solution for the subdiffusive
problem can be obtained from that of the diffusive problem with the simple
replacement D → u1−γDγ . However, this must be implemented with care
because there are exceptions to this assumption, as we will see in Sec. 3.3.

3.1. Single-particle target problem

In this section we consider a specific application of the boundary value prob-
lem described by Eq. (7) with (8) or (9), namely, the computation of the
survival probability of a fixed target in the presence of a subdiffusive ran-
dom walker (hereafter called the “particle”) in an unbounded d-dimensional
domain. When the particle reaches the boundary ∂Ω of the target, reaction
takes place with a given probability, as a result of which the target disap-
pears. Since the ultimate fate of the particle after the reaction is irrelevant
for the computation of the survival probability of the target, we can assume
without loss of generality that both the targets and the particle vanish upon
reaction. The survival probability of the target and the survival probability
of the particle thus become the same. The latter can then be computed from
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Eq. (7) complemented by the boundary condition (8) in the fully absorbing
case (reaction with unit probability upon encounter) or Eq. (9) in the par-
tially absorbing case (reaction with probability < 1 upon encounter). The
fully absorbing boundary condition described by Eq. (8) (formally obtained
from (9) in the limit Λ → 0) corresponds to a so-called first passage problem
since in this case the probability of first arrival of the particle at the target
is precisely the probability of the target being absorbed by the particle.
First passage statistics for the subdiffusive case are comprehensively dealt
with in Sec. 5.1 of [13].

The target problem is relevant in a number of fields, including the
optimization of target search strategies [14, 15], recombination kinetics
[16], scavenging reactions [17], and photoluminescence quenching of excited
states [18]. It is also the starting point for the case of many (sub)diffusing
particles (see next subsection) and may be used as a reference to assess the
effect of finite sized domains or confining boundaries [19, 20].

We begin by defining the survival probability Q1(r, t) as the probabil-
ity that the target and a particle that initially started at location r have
not reacted up to time t. The survival probability of the target (or of the
particle) can be written as

Q1(r, t) =
∫

Ω

dr′c(r′, t; r), (11)

where c(r′, t; r) is now interpreted as the probability density that the par-
ticle that initially started at r is found at r′ at time t, that is, it is the
solution of the boundary value problem (7) with (9) or with (8), with the
initial condition c(r′, 0; r) = δ(r′ − r) [21]. The survival probability Q1(r, t)
of a hyperspherical target of radius R centered at the origin is especially
simple to deal with. The calculation for the case of a subdiffusive particle
can be straightforwardly derived from the corresponding calculation for a
diffusive particle [17, 21, 22]. In the Laplace representation the boundary
value problem becomes

uQ̃1(r, u) − 1 = u1−γDγ∇2Q̃1(r, u), (12)

Q̃1(R, u) = −Λ
∂

∂n
Q̃1(r, u)|r=R, (13)

lim
r→∞ Q̃1(r, u) =

1
u
. (14)
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The equations for the subdiffusive case are obtained from the normal
diffusive case with the replacement D → u1−γDγ . The subdiffusive solu-
tion can thus be found by performing the same replacement in the normal
diffusion solution [21–23]. The result is

uQ̃1(r, u) = 1 −
( r
R

)1−d/2 Kd/2−1 (rz)
Kd/2−1 (Rz) + ΛzKd/2 (Rz)

, (15)

where we have set z = (uγ/Dγ)1/2. In the above equation the K’s stand for
modified spherical Bessel functions of the third kind [24]. In Laplace space,
the solution for d = 1 and d = 3 in the fully absorbing case Λ = 0 takes a
rather simple form, namely,

Q̃1(r, u) =
1
u
−

(
R

r

)α
e(R−r)

√
uγ/Dγ

u
. (16)

Here α = 0 for d = 1 and α = 1 for d = 3. Its inverse Laplace transform
can be expressed in terms of Fox’s H function as [6, 25]

Q1(r, t) = 1 −
(
R

r

)α

H10
11

[
r −R√
Dγtγ

∣∣∣∣∣ (1, γ/2)

(0, 1)

]
. (17)

The Fox function reduces to a complementary error function when γ = 1,
and in this limit we recover the correct result for classical diffusion, see, for
example, [22].

The asymptotic long-time behavior of the survival probability depends
strongly on dimension. In d = 1, one has a power-law decay, Q1(r, t) ∼
(r−R)/tγ/2; in d = 2, one has a slower inverse logarithmic decay, Q1(r, t) ∼
ln(r/R)/ ln(Dγt

γ). For d = 3, the target has a finite survival probability,
Q1(r, t → ∞) ∼ 1 − R/r. Asymptotically, the subdiffusive character of the
particle is thus relevant only in the one-dimensional case and has only a
marginal effect in d = 2.

As an aside, we note that the result (17) can also be obtained from
the analogous result for normal diffusion via the relation Q̃1(u|γ) = uγ−1

Q̃1(uγ |γ = 1) between the Laplace transform of the survival probability
Q1(t|γ) of the target when the particle is subdiffusive and of the corre-
sponding quantity Q1(t|γ = 1) when it is diffusive [5, 13, 21]. This is
a consequence of the integral transformation relating the propagators for
fractional and normal diffusion [5, 6, 13, 26–28].
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3.2. Many-particle target problem

The generalization of the one-particle problem treated in the previous sub-
section to the many-body case is of special interest in the framework of
Smoluchowski’s theory of diffusion-controlled reactions [1]. This theory has
been applied to numerous problems such as electron trapping and recom-
bination [29], free radical and ion-scavenging [17], geminate recombina-
tion [30], luminescence quenching [31], exciton trapping [32–34], and site
location in DNA [35]. The theory deals with two-species binary reactions
A+B → products, where both species may undergo classical diffusion with
different diffusion coefficients DA and DB until they meet and react at a
rate which increases monotonically with increasing reaction rate parame-
ter Λ. The theory allows one to compute the survival probability of the
A particles as well as the associated decay of the concentration of A under
the assumptions that the B species is in vast excess with respect to the
A species, and that each A particle is surrounded by a sea of uncorre-
lated B particles. The Smoluchowski approach becomes exact in the limit
DA → 0, a situation in which each A particle may be regarded as an immo-
bile target immersed in a sea of diffusing B particles. This case is usually
called the “target problem” in the literature. While extensive results for
the survival probability and other related quantities (e.g., the distribution
of reaction times) are available for the normal diffusive case, the subdiffu-
sive version of the problem has remained unexplored until recently. Here we
briefly outline the method and main findings for this problem in continuous
space. Our results for Λ = 0 are the continuous counterparts to those of
Section 13.3.1 of [3] for the case of anomalous diffusion on a discrete spatial
support.

Our starting point is a setting similar to that of the previous subsec-
tion, the difference being that instead of a target and a single subdiffusive
particle, we now consider a target surrounded by N independent subdiffu-
sive point particles. The target is a hypersphere of radius R. Of interest
here is the survival probability Q(t) of the target. This survival probability
is simply the probability that none of the N particles has been absorbed
upon contact with the surface of the sphere. Under the assumption that the
independently moving particles are randomly distributed in the volume V
of Ω, one obtains the factorized form

Q(t) =
[

1
V

∫
r>R

drQ1(r, t)
]N

. (18)
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Equation (18) provides the connection between the solution for the many-
body case and the one-particle problem treated in the previous subsection.
In the thermodynamic limit N → ∞, V → ∞ at fixed density ρ = N/V ,
one finds

Q(t) = exp{−ρRdf(t)}, (19)

with

f(t) =
1
Rd

∫
r>R

dr [1 −Q1(r, t)]. (20)

The problem is readily solved in Laplace space. From Eq. (15), one obtains

f̃(u) =
Sd

Ruz

Kd/2−1 (Rz)
Kd/2−1 (Rz) + ΛzKd/2 (Rz)

, (21)

where Sd = 2πd/2/Γ(d/2) is the surface of a sphere of unit radius. The large-
and small-u behavior of the above expression respectively provide the short
and long time behaviors of f(t) and the associated survival probability via
the pertinent Tauberian theorems. In the special cases d = 1 and d = 3 the
quantity f̃(u) can be inverted exactly to obtain results valid for arbitrary t.
For example, the one-dimensional case yields [23]

f(t) =
ω1/2

Γ(1 + α/2)
− 2

Λ
R

[1 − Eγ/2(−ω1/2R/Λ)], (22)

where ω = 4Dγt
γ/R2, and

Eγ(z) =
∞∑

n=0

zn

Γ(1 + nγ)
(23)

stands for the Mittag-Leffler function [36, 37]. It is interesting to note that
for long times t the partially reflecting nature of the surface is not rele-
vant for d ≤ 2 as f(t) ∼ ω1/2/Γ(1 + γ/2) for d = 1 and f(t) ∼ πω/

[Γ(1 + γ) ln(ω)] for d = 2, both independent of Λ. However, for d = 3,
the value of Λ appears explicitly in the characteristic decay function, i.e.
f(t) ∼ πω/[Γ(1 + γ)(1 + Λ/R)]. For later comparison, it is useful to exhibit
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these asymptotic survival probability results explicitly [21, 23]:

Q(t) ∼



exp
[
− 2ρ

Γ(1 + γ/2)
(Dγt

γ)1/2

]
, d = 1,

exp
[
− 4πρ

Γ(1 + γ)
Dγt

γ

ln (4Dγtγ/R2) + 2Λ/R

]
, d = 2,

exp
[
− 2(d− 2)πd/2ρRd−2

Γ(d/2)Γ(1 + γ)(1 + (d− 2)Λ/R)
Dγt

γ

]
, d ≥ 3.

(24)

The above results show that the behavior of the survival probability changes
drastically with respect to the one-particle case. Focusing on the fully
absorbing case Λ = 0, one sees that the asymptotic long-time survival
probability is given by a stretched negative exponential whose argument
f(t) grows more rapidly with time with increasing dimension d (the typi-
cal inverse logarithmic correction appears for d = 2). This implies that Q(t)
decays more rapidly with increasing dimension d, as opposed to the increase
observed for Q1(r, t) with increasing d.

3.3. Escape problems

Escape problems are relevant for the study of processes that are triggered
when a critical threshold value is attained. Numerous examples are found
in physics, chemistry, biology, economics and social sciences [38]. One of the
main goals in escape problems is to compute the distributions of the times
(and the moments of these distributions) needed by one or more particles
to irreversibly escape a given domain Ω. Familiar questions include those
associated with first passage processes [38, 39], where one asks how long it
takes the jth particle to reach an absorbing boundary ∂Ω (order statistics
problems) [40–44]. Conversely, one can enquire about the number of parti-
cles that have escaped a domain Ω up to time t and the associated decay
of the probability that a given particle has not escaped (survival probabil-
ity) [6, 38, 39, 45].

In order to find the survival probability for this latter problem, Eq. (7)
must be solved subject to the condition c(r, t) = 0 at the boundary. In our
route to the solution, we use the method of separation of variables [6, 13, 46]
by making the superposition ansatz c(r, t) =

∑∞
j=1 aj Tj(t)ψj(r). We hence-

forth assume that the domain Ω that initially contains all the particles is a
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hypersphere of radius R. Our ansatz leads to

T ′
j(t)

Dγ 0D1−γ
t T (t)

=
ψ′′

j (r) + (d− 1)ψ′
j(r)/r

ψj(r)
= λj , (25)

where λj is the jth eigenvalue. The temporal part of the solution satisfies
the equation T ′

j(t) = λDγ 0D1−γ
t Tj(t) [6, 36], i.e. Tj(t) = Eγ(λjDγt

γ). This
Mittag-Leffler function becomes equal to an exponential when γ = 1 (nor-
mal diffusion case), but displays rather different properties for any γ < 1.
In contrast, the eigenfunctions ψj(r) describing the spatial part of the solu-
tion and the set of acceptable eigenvalues λj which satisfy the equation
ψ′′

j (r)+ (d− 1)ψ′
j(r)/r = λjψj(r) are independent of γ and are thus exactly

the same for the subdiffusion and normal diffusion problems [47–49]. The
full solution has the form

c(r, t) =
∞∑

j=1

ajψj(r)Eγ (−λjt
γ) , (26)

where the coefficients aj are determined from the initial condition c(r, 0)
via the orthogonality properties of the eigenfunctions ψj(r). The so-called
propagator solution c(r, t) ≡ G(r, t; r0) corresponding to the initial condi-
tion c(r, 0) = δ(r − r0) (representing a single particle initially located at
r0) has a special relevance, since it can be used to construct other types of
more complex solutions involving, for example, localized particle sources.
Recently, Grebenkov [39] has studied subdiffusive propagator solutions for
other confining domains and boundary conditions.

The behavior of (26) at long times may be very different from that
describing normal diffusion. For instance, if one takes a homogeneous ini-
tial concentration c0 in the above example of a d-dimensional absorbing
hyperspherical surface, one gets

c(r, t)/c0 = 2(r/R)1−d/2
∞∑

j=1

Jd/2−1(zjr/R)
zjJd/2(zj)

Eγ [−(zj/R)2Dγt
γ ], (27)

where zj denotes the jth zero of the Bessel function Jd/2. For long times,
one can use the asymptotic expansion

Eγ(z) ≈
∞∑

m=1

(−z)m+1

Γ(1 −mγ)
z−m, z → ∞ (28)
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and one can rearrange terms to get

c(r, t)/c0 =
∞∑

m=1

(−1)m+1

Γ(1 −mγ)

(
R2

Dγtγ

)m

Ψm(r/R). (29)

It can be proved that the Ψm(x)’s are polynomials of degree 2m with a
zero at x = 1 [50, 51]. Neglecting subdominant terms with m > 1 in the
above long-time solution, one finds c(r, t)/ϕ(t) ∝ Ψ1(r/R) where ϕ(t) = 1/
(Dγt

γ/R2) and Ψ1(r/R) ∝ 1− r2/R2. In contrast, a similar analysis for the
normal diffusion case not only leads to a faster (exponential) time decay
ϕ(t) = exp(−z1Dγt

γ/R2), but also to a different radial concentration pro-
file at late times. One finds c(r, t)/ϕ(t) ∝ (r/R)1−d/2Jd/2−1(z1r/R), which
depends on dimensionality. In the subdiffusive case, the spatial dependence
is universal in the sense that it depends neither on the dimension d nor on
the anomalous diffusion exponent γ or the diffusion coefficient Dγ .

In conclusion, a minute amount of subdiffusivity in the particle motion
is seen to destroy the form (r/R)1−d/2Jd/2−1(z1r/R) of the long-time nor-
mal diffusion mode and leads to the subdiffusive form 1−r2/R2 which holds
for any γ < 1. The aforementioned singular long-time behavior of the solu-
tion with respect to γ is not an exclusive feature of the escape problem.
A similar singular behavior is seen in the survival probability of a diffusing
particle in a sea of subdiffusive traps, treated later in Sec. 4.1.

4. Reactions Occurring at Random Locations

In this section we address reactions that occur at random locations as well as
random times. When all the reactants in a subdiffusive medium are mobile,
the problem of describing any quantity used as an indicator of the progres-
sion of the kinetics is much more complex than it is in a diffusive medium,
and also much more complex than it is if one of the reactants is immobile.
These indicators include the quantities that we have introduced already:
survival probabilities, escape probabilities, and local concentrations.

Reactions may occur at random locations for two reasons: either
reactants that are all mobile must meet for a reaction to take place, or
the reaction is a degradation process that is not restricted to a fixed bound-
ary as in the previous section. Such reactions can in general no longer be
treated as boundary value problems but instead become much more com-
plicated many-body problems that require the introduction of new ideas.
Furthermore, the subdiffusive character of the reactant motion leads to
memory effects that introduce yet another level of complexity.
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In Sec. 4.1 we deal with a problem similar to that of Sec. 3.2, but
substantially complicated by the fact that the previously immobile target
is now also mobile (diffusive or subdiffusive). As we did there, we focus
on the survival probability of the target. Then, in Sec. 4.2 we derive a
reaction-subdiffusion equation starting from a CTRW model. We subse-
quently use this equation in Sec. 4.3 to study the reaction between a set of
mobile particles and a fixed target surrounded by a “reactivity field” k(r).
This reactivity field allows the reaction to take place at random distances
between a mobile particle and the target with a probability determined by
the field. Finally, in Sec. 4.4 we use the reaction-subdiffusion equation to
study the reaction of a constant flux of particles that emerge from a given
location (source), move subdiffusively, and disappear with a probability that
in general depends on their location. This scenario is particularly interesting
for the study of the timely problem of morphogen gradients. In these last
two sections our indicator of the reaction is the concentration of surviving
reactant.

4.1. Mobile particles and traps

We begin by considering the survival probability of a mobile particle in a
sea of mobile traps. The characteristic exponent for the particle is µ. The
exponent for the traps is γ. In earlier sections we called the exponent γ in all
cases because only one of the species was mobile, but here it is important to
differentiate between them and so we introduce a distinct notation for them.
This problem has in fact not been solved for any of the indicators listed
above. However, it has been possible to establish the asymptotic behavior
of the survival probability of the particle in most if not all situations, as we
will now see. Note that these results do not include an estimate of how long
it takes the system to arrive at asymptotia (a numerical study of this can
be found in Ref. [53]).

We suppose that a particle A moves diffusively (µ = 1) or subdiffu-
sively (0 < µ < 1) in a sea of traps B that move diffusively (γ = 1) or
subdiffusively (0 < γ < 1), with γ and µ not necessarily equal. One can
imagine, for instance, a large difference in the sizes or in the interactions
of As and Bs with the surrounding medium that may lead to large differ-
ences in the way they move. In chemical kinetics parlance we are looking
at the reaction A+B → B when all components are mobile. Our goal is to
calculate the survival probability Q(t) of the A particle.
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At the end of Sec. 3.3 we mentioned the fact that it makes a major dif-
ference in the asymptotic behavior of the survival probability of A whether
it moves diffusively or subdiffusively. In addition, it makes an essential dif-
ference whether either of the species move at all or do not. The collection
of results is thus somewhat confusing and perhaps best captured by writing
the asymptotic survival probability in the form

Q(t) ∼
{

exp(−θtz), d �= 2,

exp(−θtz/ ln t), d = 2,
(30)

where the constants θ and z depend on the nature of the motion of the
particles of each species. Until quite recently, results (some exact, some
approximate) were only available for situations where mobility necessarily
implied diffusion. The entry of subdiffusion into the discussion is a rather
modern event [53–56].

First, we differentiate the cases of mobile and immobile B particles
(traps). When the traps are immobile, the survival probability of a diffusive
particle A is given by the stretched exponential form [57]

Q(t) ∼ exp
(
−kdρ

2/(d+2)(DAt)d/(d+2)
)
, (31)

where ρ is the mean density of traps, DA is the particle diffusion coefficient,
and kd is the d-dependent constant

kd =
(
d+ 2
2d

)
(dvd)

2/(d+2) (
2ν2

d

)d/(d+2)
. (32)

Here νd is the first zero of the Bessel function J(d−2)/2(z) and vd =
2πd/2/[dΓ(d/2)] denotes the volume of a d-dimensional sphere of unit
radius. Note that there is no logarithmic correction for d = 2 in (31). The
constants θ and z can immediately be read from these equations; specifically,
z = d/(d+ 2).

On the other hand, when all the reactants move diffusively, we imme-
diately enter more complex territory. Standard chemical kinetics based on
a reaction-diffusion equation leads to [58]

Q(t) ∼


exp[−ρ(4Dt/π)1/2], d = 1,

exp[−4πρDt/ ln(Dt/(a+ b)2)], d = 2,

exp(−d(d− 2)vd(a+ b)d−2ρDt), d ≥ 3,

(33)
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where D is the sum of the diffusion coefficients of the particle and the
traps, and a and b are the radii of the A and B particles, respectively. This
is a two-body approximation to a many-body problem and is in general not
exact. The result is in fact exact only in the limit of an immobile A particle.
Note that these decays are entirely different from the stretched exponential
of Eq. (31).

It was only many years after there results were established that Bramson
and Lebowitz [59] were able to show that the time dependences (z = 1/2
when d = 1, z = 1 for d ≥ 2) in Eq. (33) are in fact asymptotically
correct even when A does move, but with different constant prefactors
than given above. They were not able to determine these prefactors. Here
the field stood for many years, until Bray and Blythe [60, 61] managed
to determine the prefactors for d = 1 and 2. Their methodology con-
sisted in constructing upper and lower bounds to the survival probabil-
ity that meet asymptotically. These bounds could be calculated exactly
because they only involve boundary value problems. The great insight
of their solution was this: the prefactors were found to be independent
of the diffusion coefficient DA of the particle! This immediately points
to a startling conclusion: the asymptotic survival probability of the dif-
fusing A is the same as it would be if the A remained immobile. In
other words, the many-body problem is reduced to the boundary value
problem discussed in Sec. 3.2, with the asymptotic results of Eq. (24)
with γ = 1.

Of interest here is what happens when the particle and/or the traps
move subdiffusively. If both move subdiffusively, then a fairly straightfor-
ward extension of the diffusive approach is possible and one finds once
again that the survival probability of the subdiffusive A is the same as that
of an immobile A particle in a sea of subdifussive traps [52], that is, as given
in (24). We immediately see that the exponent z can be read off of those
earlier results: z = γ/2 in one dimension and z = γ in two and three dimen-
sions and above. The prefactors θ can also be read off of the earlier results.
In summary so far, we see that if A is subdiffusive, no matter how the Bs
move, the asymptotic survival probability of A is the same as it would be
if A stood still.

The case that presents the most serious difficulties occurs when the
traps move subdiffusively and the A particle is diffusive. To solve this prob-
lem, the upper and lower bound approach can again be invoked, but it
turns out that additional bounds to those used in the earlier Bray–Blythe
construction are needed because these earlier bounds do not always meet.
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A lower bound is constructed as originally devised for diffusive particles and
traps and later extended to the case of (sub)diffusive particles and traps.
This bound involves only boundary value problems. An upper bound is
also constructed as originally devised for the diffusive case, based on the
(proven) assertion that the A particle lives at least as long as it does in the
original problem if the A stands still. This bound has been called the “Pas-
cal principle” [56, 62]. However, this upper bound is not always the tightest
bound, and another upper bound was devised on the (proven) basis that
the worst possible strategy for traps in their search for a target is to remain
immobile. The associated survival probability is again the solution to a
boundary value problem and is precisely as given in Eq. (31). This bound
has been called the “anti-Pascal principle” [56]. The interesting point is
that depending on the value of the subdiffusive exponent γ of the traps,
one or the other of these bounds is tighter. In other words, depending on
how fast the traps move in the face of a diffusive A, the better upper bound
is provided by the problem where the A stands still or by the problem where
the Bs stand still. Fortunately, in most cases (albeit not in all, see below)
the tighter upper bound asymptotically approaches the lower bound, thus
providing a solution to our problem. The outcome depends on γ and also on
dimensionality.

Table 1 collects the results for the exponents z in Eq. (30) for the
survival probability. A number of points are of special note. First, when
the particle is diffusive (µ = 1), there is a singular change in behavior of
the exponent z as the exponent γ of the traps sweeps the range from immo-
bile to diffusive. When the traps move very slowly, the survival probability
of the particle is the same as it would be if the traps simply stood still,

Table 1. Collected results for the asymptotic survival probability exponent z.

Dimension Trap exponent Particle exponent Survival probability exponent z

d = 1 0 ≤ γ ≤ 2/3 µ = 1 1/3
2/3 ≤ γ ≤ 1 µ = 1 γ/2
0 < γ ≤ 1 0 ≤ µ < 1 γ/2

d = 2 0 ≤ γ ≤ 1/2 µ = 1 1/2
1/2 < γ ≤ 1 µ = 1 γ
0 < γ ≤ 1 0 ≤ µ < 1 γ

d = 3 0 ≤ γ ≤ 2/5 µ = 1 3/5
2/5 ≤ γ ≤ 3/5 µ = 1 3/5 ≤ z ≤ 1/3 + 2γ/3
3/5 ≤ γ ≤ 1 µ = 1 γ ≤ z ≤ 1/3 + 2γ/3
0 < γ ≤ 1 0 ≤ µ < 1 γ
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that is, z = d/(d+ 2) as in the Donsker–Varadhan formula (31). If, on the
other hand, the traps move sufficiently quickly, the survival probability in
d = 1 and d = 2 is that of the Bramson–Lebowitz–Bray–Blythe prob-
lem associated with an immobile particle, that is, z = dγ/2. In three or
more dimensions we also see the Donsker–Varadhan behavior if the traps
move sufficiently slowly, but we are not able to determine the exponent z if
the traps move too quickly. In this case we can only determine that there
is, again, a singular change in behavior and we can also determine a range
for the value of the exponent, but the precise determination is still an open
problem. Second, when the particle is subdiffusive (0 ≤ µ < 1), then z = γ/2
for d = 1 and z = γ for d ≥ 2. These results are all given in the table. The
values of the prefactor θ are also available for most of these cases [52, 56]
but have not been collected here.

4.2. Fractional diffusion-reaction equations

When normal diffusive particles react, the standard reaction-diffusion equa-
tion that describes the spacetime evolution of their concentrations c(r, t) is
given by the normal diffusion equation plus a reaction term, say F (c), that
takes into account the rate of change of c(r, t) due to reactions,

∂

∂t
c(r, t) = D∇2c(r, t) + F (c). (34)

However, when particles that diffuse anomalously react, the deduction of
the corresponding subdiffusion-reaction equation for c(r, t) is more elusive
[10, 16, 63–69]. An extensive and recent discussion of this topic can be found
in [70]. Here we focus on the deduction of the subdiffusion-reaction equation
starting from the CTRW model for the case in which the loss of particles
at location r due exclusively to reactions is given by

∂

∂t
c(r, t)

∣∣∣∣
reaction

= −k(r, t)c(r, t), (35)

where k(r, t) is the reaction rate coefficient (also hereafter called the reac-
tivity). Integrating this equation leads to c(r, t′)/c(r, t) = A(r, t, t′), with

A(r, t, t′) = exp
(
−

∫ t

t′
k(r, t′′)dt′′

)
, (36)

which describes the time evolution of the ratio of the concentration of the
particles at r at time t and the concentration at r at the initial time t′ when
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the number of particles at r changes due exclusively to reactions, that is,
when the changes in concentration at r caused by particle jumps into or out
of a small volume element centered at r are not considered.

Next we introduce j(r, t) and i(r, t), the incoming and outgoing fluxes
of particles at location r at time t, which are related by the equation

j(r, t) =
∫
i(r − r′, t)w(r′)dr′, (37)

where w(r) is the probability distribution introduced just before Eq. (1).
The above equation simply states that the incoming flux at r at time t

arises from outgoing fluxes at all other locations r−r′ at that time. Including
all of the contributions to the change in the concentration then yields

∂

∂t
c(r, t) = j(r, t) − i(r, t) − k(r, t)c(r, t) (38)

because the changes in the concentration at r are due to the incoming and
outgoing fluxes and to the reaction process at that location. An additional
relation connecting the fluxes and concentration is

i(r, t) = ψ(t)A(r, t, 0)c(r, 0) +
∫ t

0

ψ(t− τ)A(r, t, τ)j(r, τ)dτ, (39)

which states that the outgoing flux from r at time t arises from two sources.
One is the contribution of the particles that started out at r at time t = 0,
did not react or move anywhere up to time t, and then took a step away
from r at time t. The other is from those particles that arrived at r at some
earlier time τ , waited there up to time t without degradation, and then
stepped away.

Defining c∗(r, t) ≡ c(r, t)A(r, 0, t), we can write Eq. (38) as

A(r, t, 0)
∂

∂t
c∗(r, t) = j(r, t) − i(r, t). (40)

Equivalently, from Eq. (37),

A(r, t, 0)
∂

∂t
c∗(r, t) = F−1

{
[ŵ(q) − 1] î(q, t)

}
(41)

or, equivalently, from Eq. (5),

A(r, t, 0)
∂

∂t
c∗(r, t) = σµ∇µi(r, t). (42)
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Upon Laplace transforming Eq. (39) with respect to time one gets

L [A(r, 0, t)i(r, t)] = ψ̃(u)c∗(r, 0) + ψ̃(u)L [A(r, 0, t)j(r, t)]. (43)

Taking into account that, from Eq. (38),

L [A(r, 0, t)j(r, t)] = L
[
dc∗

dt

]
+ L [A(r, 0, t)i(r, t)], (44)

Eq. (43) can be rewritten as

i(r, t) = A(r, t, 0)L−1

{
uψ̃(u)

1 − ψ̃(u)
c̃∗(r, u)

}
. (45)

Using the Laplace transform expression (4) of the fractional derivative oper-
ator along with the explicit form Eq. (2), this expression can be rewritten as

i(r, t) = A(r, t, 0)τ−γ
0D1−γ

t c∗(r, t). (46)

Finally, inserting Eq. (46) into Eq. (42) and expanding the abbreviated
notation, we arrive at the general reaction-subdiffusion equation that is the
starting point of our analysis in the next two sections:

∂

∂t
c(r, t) = Dγ∇µ

{
e−

R
t
0 k(r,t′)dt′

0D1−γ
t

[
e

R
t
0 k(r,t′)dt′c(r, t)

]}
− k(r, t)c(r, t). (47)

Note that in the absence of reactions, k(r, t) = 0, Eq. (3) is recovered.
More specifically, we focus on the case µ = 2 so that the spatial operator
is the Laplacian, as mentioned earlier, and we also do not consider a time-
dependent reactivity here. Our starting equation therefore is

∂

∂t
c(r, t) = Dγ∇2

{
e−k(r)t

0D1−γ
t

[
ek(r)tc(r, t)

]}
− k(r)c(r, t). (48)

In order to solve (48), it is convenient to work with a new function
v(r, t):

ṽ(r, u) = [u+ k(r)]1−γ c̃(r, u). (49)

Taking into account that

L
[
e−k(r)t

0D1−γ
t

(
ek(r)tc(r, t)

)]
= [u+ k(r)]1−γ c̃(r, u), (50)

Eq. (48) becomes

uc̃(r, u) − c(r, 0) = Dγ∇2
{
[u+ k(r)]1−γ c̃(r, u)

} − k(r)c̃(r, u) (51)
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or, equivalently,

[u+ k(r)]γ ṽ(r, u) − c(r, 0) = Dγ∇2ṽ(r, u). (52)

This is then a variant of our starting equation (48).
One final remark is in order. It should be noted that Eq. (35) does not

necessarily imply a first-order reaction, since the reaction rate k(r, t) is quite
arbitrary and might itself depend on c(r, t) or on the concentration of some
other species. For example, suppose that we have two species with concen-
trations c1(r, t) and c2(r, t) that disappear due to bimolecular reactions at
the rate ċ1 = ċ2 = −k0c1c2. The fractional diffusion equation for the species
i is then Eq. (47) with a reaction rate given by k(r, t) = k0cj(r, t).

4.3. Single-particle target problem with a reactivity field

The problem we consider here is that of Sec. 3.1, i.e. the single-particle target
problem, but now when the reaction between the target and the particle
does not necessarily take place only at one fixed distance R between them.
Specifically, we now assume that the probability that a reaction can take
place at the distance r is determined by an isotropic and time-independent
reactivity k(r), that is, k(r, t) = k(r). In this case, with c(r, 0) = δ(r− r0),
the equation for r �= r0 is

[u+ k(r)]γ ṽ(r, u) = Dγ∇2ṽ(r, u). (53)

This problem has been studied by Seki et al. in [63] in their analysis
of the kinetics of geminate reactions in three-dimensional systems. They
considered three different spatial dependences for k(r) (square box or
step function, exponential, and inverse power), paying special attention
to the escape probability Q1(r0, t → ∞). For the Heaviside step func-
tion reactivity k(r) = k0Θ(R − r), the reaction occurs with rate coeffi-
cient k0 at any distance between particle and target centers that is smaller
than R. This problem can be solved exactly. For r0<R, the survival
probability is

Q1(r, u) =
1

u+ k0

[
1 +

k0

u

(1 +Rq) sinh(r0p)
r0p cosh(Rp) + r0q sinh(Rp)

]
, (54)

with q =
√
uγ/Dγ and p =

√
(u+ k0)γ/Dγ . No exact solutions are known

for the exponential and inverse power reactivity cases. For these unsolved
cases one can try to apply the approximate method, proposed by Seki
et al. [63], in which the term [u+k(r)]γ in Eq. (53) is replaced by uγ +kγ(x).
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Note that the equation resulting from this replacement can also be obtained
from the corresponding normal diffusion equation (the equation with γ = 1)
by the replacements D → u1−γDγ and k(r) → u1−γk(r), so that one can
then arrive at the approximate solution from the solution of the normal dif-
fusion problem. Since the approximation [u+ k(r)]γ → uγ + k(r)γ improves
as u � k(r) and u � k(r), it is in fact quite accurate for short and long
times [63].

4.4. Reaction-subdiffusion equations and morphogen

gradient formation

In Sec. 4.3, Eq. (48) was taken as a starting point to study the escape prob-
lem of a single subdiffusive particle subject to a degradation process. Beyond
this specific application, there are many other classical reaction-transport
problems of interest whose solution can be extended to the anomalous dif-
fusion case via Eq. (48). In certain cases the interplay between the reac-
tion kinetics and memory effects associated with anomalous diffusion may
drastically change the phenomenology of the system at hand. One such case
concerns a problem of utmost importance in developmental biology, namely,
the formation of morphogen gradients leading to patterning in embryonic
tissues [72].

The location, differentiation and fate of many embryonic cells is gov-
erned by the spatial distribution of special signaling molecules called
morphogens. These molecules are secreted at localized sites of the embryo
at a fairly constant rate. The secreted morphogens then undergo degrada-
tion as they disseminate through the tissue, and a concentration gradient
forms as a result of the balance between the secretion and degradation
processes. Different target genes in embryonic cells are activated when the
morphogen gradient exceeds appropriate concentration thresholds, implying
that the cell response to the local environment depends on the local concen-
tration. As a result of this differential response, cells are able to interpret the
morphogen gradient and translate it into specific “code” for their further
development via the expression of relevant genes.

Traditional models of morphogen gradient formation are based on clas-
sical diffusion equations with an added linear degradation term. The typical
decay profile of the gradient is modulated by both the value of the diffusion
constant and the degradation rate [72]. Recently there has been a recog-
nition that subdiffusive rather than diffusive transport might more appro-
priately describe temporary morphogen trapping upon binding to proteins.
Such trapping events may be mimicked in the framework of a CTRW model
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by considering the morphogens as random walkers subject to a long-tailed
waiting time distribution [73]. Degradation may occur either as a death
process caused by enzymes inside the cell, or as irreversible escape from the
surface of the cell.

Neglecting finite size effects, the concentration profile for the morphogen
problem may be obtained by solving Eq. (48) in a one-dimensional infinite
domain (a one-dimensional description is typically appropriate because the
secretion geometry renders the problem effectively one-dimensional) subject
to a radiation-type boundary condition (constant morphogen influx j0 at
the origin x = 0) [7]. Proceeding as in Sec. 4.3, we arrive at a particular
case of Eq. (52), namely,

[u+ k(x)]γ ṽ(x, u) − δ(x) = Dγ∇2ṽ(x, u). (55)

4.4.1. Constant reactivity

Let us first address the case of homogeneous reactivity, i.e., k(x) = k. The
solution in Laplace space is

c̃(x, u) =
j0
2

(u+ k)γ/2−1

u
√
Dγ

exp
[
−|x|(u + k)γ/2/

√
Dγ

]
. (56)

The stationary solution is obtained from the final value theorem for the
Laplace transform:

cs(x) = lim
u→0

uc̃(x, u) =
j0
2
kγ/2−1√
Dγ

exp
[
−|x|kγ/2/

√
Dγ

]
. (57)

4.4.2. Piecewise constant reactivity

Here we assume that the reactivity is given by a superposition of Heaviside
functions, i.e., k(x) = k0H(R − |x|) + k1H(|x| − R). This profile provides
a simple way to model a change in the degradation mechanism across an
interface or beyond a certain distance from the source. In region 0 (0 ≤
|x| < R) one has k(x) = k0 > 0, whereas in region 1 (|x| ≥ R) one has
k(x) = k1 ≥ 0. Let us respectively denote by ṽ0(x, u) and ṽ1(x, u) the
solutions of Eq. (55) in the regions 0 and 1. These functions and their
spatial derivatives must fulfill the continuity conditions

ṽ0(R, u) = ṽ1(R, u) (58)
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Fig. 1. Simulation results over 1000 realizations (symbols) for c(x, t) with k = 1/1000,
γ = 1/2, and j0 = 1 for (from bottom to top) t = 1, 10, 50, 200, 103, 104, 2 × 104. The
particles are simulated by means of the CTRW model where the waiting time distribution
is a Pareto law, ψ(t) = γ/(1 + t)1+γ , and the jumps {−1, 0, 1} are equiprobable. These
parameters lead to the Dγ-value 1/

√
9π. The thin lines are the profiles obtained from the

inverse numerical transformation of Eq. (56). The thick line is the theoretical prediction
for the steady-state profile, Eq. (56). There are no adjustable parameters.

and

∂ṽ0(x, u)
∂x

∣∣∣∣
|x|=R

=
∂ṽ1(x, u)

∂x

∣∣∣∣
|x|=R

. (59)

In contrast, an integration of Eq. (55) across the origin shows that the
solution must be discontinuous there,

∂ṽ0(x, u)
∂x

∣∣∣∣
x=0+

− ∂ṽ0(x, u)
∂x

∣∣∣∣
x=0−

= − 1
Dγ

. (60)

Using Eqs. (58)–(60) one gets for |x| < R the stationary biexponential
solution

cs(x) = j0 k
γ−1
0 ṽ0(x, u = 0) (61)

with

ṽ0(x, u) = A0(u)e−α0x +B0(u)eα0x, α2
0 =

(u+ k0)γ

Dγ
. (62)

The characteristic coefficients A0(u) and B0(u) are determined from the
conditions imposed on ṽ(x, u) at |x| = 0 and |x| = R. For |x| > R, we shall
distinguish two subcases with different physical behavior. For k1 > 0, one
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asymptotically gets the exponential decay law

cs(x) = c(x, t → ∞) ∝ e−k
γ/2
1 (x−R)/

√
Dγ . (63)

The behavior is radically different for k1 = 0. For normal diffusion the
profile becomes constant for large |x|, i.e.,

cs(x) ∝ j0, k1 = 0, γ = 1, |x| ≥ R. (64)

However, when the diffusion is anomalous, degradation is globally too slow
and one has

c(x, t→ ∞) ∝ j0 t
1−γ , k1 = 0, γ < 1, |x| ≥ R, (65)

i.e., the profile at x = |R| becomes discontinuous and there is no steady
state. This behavior is confirmed by numerical CTRW simulations (see
Fig. 2), indicating that secreted morphogens which escape region 0 are not
as efficiently dispersed back into the reactive region as they are in the case
of normal diffusion, and they thus accumulate in region 1.

4.4.3. Exponentially decaying reactivity

Here, we assume the decay law k(x) = k0 e
−β|x| (β > 0). While in this case

Eq. (55) does not appear exactly solvable for finite u, in the limit u→ 0 it is

Fig. 2. Simulation results (symbols) of c(x, t) for a step reactivity [k(x) = k0H(R− x)]
with k0 = 1/1000 and R = 5.5 for γ = 1/2 and (from bottom to top) t = 100, 103, 2 ×
103, 5×103, 104, 5×104, 105 (only values for x > 0 are shown). The particles are simulated
as in Fig. 1. The solid line corresponds to the theoretical prediction for the steady-state
profile when x < R. For x > R no stationary profile develops. The convergence of the
simulation results to the stationary profile for x < R is very slow for values of x close to
the discontinuity at x = R. No adjustable parameters were used.
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possible to find an exact expression for the steady state profile by techniques
similar to those used above. The final result is

cs(x) = j0
k

γ/2−1
0

2D1/2
γ

I0
(
αk

γ/2
0 e−βγ|x|/2

)
I1

(
αk

γ/2
0

) e−(γ−1)β|x|, (66)

where the In’s are modified Bessel functions and α = 2/(βγ
√
Dγ). As in

the previous case of piecewise reactivity with k1 = 0, the right-hand side of
Eq. (66) displays different qualitative behaviors for normal and anomalous
diffusion. In the normal diffusion case (γ = 1) one gets a monotonically
decreasing profile from the concentration value at the origin to the limiting
value cs(x → ±∞) = j0/

[√
4k0DγI1

(
αk

1/2
0

)]
. Instead, for γ < 1 the

concentration first decreases as one moves away from the source until it
reaches a minimum and then it increases as exp[(1−γ)β |x|, a vestige of the
divergence found for piecewise constant reactivity with k1 = 0. This result
is again confirmed by CTRW simulations (cf. Fig. 3). The nonmonotonicity
of the profile may have interesting biological consequences: the combined
action of subdiffusive transport and a rapid spatial decrease of the reactivity
may induce complex tissue patterning where spatially distant cells follow a
similar developmental pathway.

Fig. 3. Convergence of CTRW simulation results for (from bottom to top) t = 20, 100,
103, 104, 105, 106 (symbols) to the stationary profile predicted by the formula (66) for
j0 = 1, γ = 0.5, the corresponding value Dγ = 1/

√
9π and exponentially decaying

reactivity k(x) = k0 exp(−β|x|) with k0 = 1/200 and β = 0.6 (solid line). The particles
are simulated as in Fig. 1. The simulation results clearly tend to the stationary solution
as time increases, although the convergence is slow for large x.
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5. Final Remarks

Anomalous diffusion such as the subdiffusive processes that we have dis-
cussed in this chapter is found everywhere in nature. It is perhaps not
surprising that anomalous diffusion in the form of subdiffusion is actually
a normal state of affairs in biological environments [4]. Although a great
deal of effort has been invested in understanding how reactant and product
concentrations evolve in space and time in subdiffusive media [70, 71, 74],
the subject is still in its infancy. One of the great difficulties is that a broad
macroscopic phenomenology such as the one we are used to in the case of
normal diffusion (in the form of reaction-diffusion equations) is simply not
applicable in the presence of subdiffusion. This seems to signify that every
mesoscopic model needs to be dealt with separately, and that the associated
macroscopic reaction-subdiffusion models are neither particularly intuitive
nor broadly applicable to many mesoscopic models.

In this chapter we have chosen a particular mesoscopic starting point,
namely, a continuous time random walk, and have derived and solved the
associated fractional reaction-subdiffusion equations. These equations have
been obtained for a few very specific models and cannot be translated to
even other CTRW models without going back to the proverbial drawing
board. Parenthetically, we might note that it is not yet known how to
include reactions in other mesoscopic subdiffusion models, e.g., the frac-
tional Brownian motion model.

More specifically, in this chapter we have constructed and solved a num-
ber of reaction-subdiffusion equations using the tools of fractional calculus.
We have separated our discussion into two parts. In one, we have studied
reactions that take place at spatially fixed locations such as the surface of
an immobile particle (trap) or the hypersurface of a volume that encloses
the particle whose fate we are following. In these problems the equation
to be dealt with is a pure fractional subdiffusion equation, and the reac-
tions are entirely built into boundary conditions. In the second part we have
dealt with reactions that take place at random locations. Now in general
the reaction has to be built into the fractional equation. We have applied
the resultant equation to two examples for which we have obtained explicit
solutions. In this section we have also studied a third problem, the classic
A+B → B problem where the particle A and the traps B are all mobile and
thus reactions occur at random locations. For this problem we have not con-
structed a reaction-subdiffusion equation. Instead, we have discussed a way
to obtain asymptotic results using bounds that involve only pure fractional
subdiffusion equations plus boundary conditions. These three examples, in
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addition to their inherent interest, serve to make the point that in the
world of subdiffusion every single scenario seems to require an analysis that
is suitable only for that particular scenario. Every reaction in a subdiffusive
medium requires its own full analysis starting from a mesoscopic descrip-
tion. Whether it will always be this way, or whether some future insight will
help pull together many mesoscopic cases into a macroscopic description as
broad and useful as a reaction-diffusion equation in the case of normal dif-
fusion, remains to be seen.

Acknowledgments

K. L. gratefully acknowledges the NSF under Grant No. PHY-0855471.
S. B. Y. and E. A. gratefully acknowledge the Ministerio de Educación y
Ciencia under Grant No. FIS2010-16587 (partially financed with FEDER
funds) and the Junta de Extremadura under Grant No. GRU10158.

References

1. S. A. Rice, Diffusion-limited Reactions (Elsevier, 1985).
2. E. Kotomin and V. Kuzovkov, Modern Aspects of Diffusion-Controlled Reac-

tions (Elsevier, 1996).
3. Eds. R. Klages, G. Radons and I. M. Sokolov, Anomalous Transport (Wiley-

VCH, 2008).
4. J. A. Dix and A. S. Verkman, Ann. Rev. Biophys. 37, 247 (2008).
5. E. Barkai, Phys. Rev. E 63, 046118 (2001).
6. R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
7. S. B. Yuste, E. Abad and K. Lindenberg, Phys. Rev. E 82, 061123 (2010).
8. I. Podlubny, Fractional Differential Equations (Academic Press, 1999).
9. A. A. Kilbas H. M. Srivastava and J. J. Trujillo, Theory and Applications of

Fractional Differential Equations (Elsevier, 2006).
10. K. Seki, M. Wojcik and M. Tachiya, J. Chem. Phys. 119, 2165 (2003).
11. J. D. Eaves and D. R. Reichman, J. Phys. Chem. B 112, 4283 (2008).
12. M. A. Lomholt, I. M. Zaid and R. Metzler, Phys. Rev. Lett. 98, 200603

(2007).
13. R. Metzler and J. Klafter, J. Phys. A: Math. Gen. 37, R161 (2004).
14. O. Bénichou, C. Loverdo, M. Moreau and R. Voituriez, Phys. Rev. E 74,

020102 (2006).
15. J. Rojo, J. Revelli, C. E. Budde, H. S. Wio, G. Oshanin and K. Lindenberg,

J. Phys. A: Math. Theor. 43, 345001 (2010).
16. K. Seki, M. Wojcik and M. Tachiya, J. Chem. Phys. 119, 7525 (2003).
17. H. Sano and M. Tachiya, J. Chem. Phys. 71, 1276 (1979).
18. A. V. Barzykin and M. Tachiya, Phys. Rev. Lett. 73, 3479 (2004).

 

REACTIONS IN SUBDIFFUSIVE MEDIA AND ASSOCIATED FRACTIONAL EQUATIONS
© World Scientific Publishing Co. Pte. Ltd.   http://www.worldscibooks.com/physics/8087.html



August 12, 2011 10:22 Fractional Dynamics 9in x 6in b1192-ch04

Reactions in Subdiffusive Media and Associated Fractional Equations 105

19. S. Condamin, O. Benichou, V. Tejedor, R. Voituriez and J. Klafter, Nature
450, 77 (2007).

20. S. Condamin, O. Benichou and J. Klafter, Phys. Rev. Lett. 98, 250602 (2007).
21. S. B. Yuste and K. Lindenberg, Phys. Rev. E 76, 051114 (2007).
22. A. V. Barzykin and M. Tachiya, J. Chem. Phys. 99, 9591 (1993).
23. D. S. Grebenkov, J. Chem. Phys. 132, 034104 (2010).
24. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions

(Dover, 1965).
25. A. M. Mathai and R. K. Saxena, The H-function with Applications in Statis-

tics and Other Disciplines (Wiley, 1978).
26. I. M. Sokolov, Phys. Rev. E 63, 056111 (2001).
27. A. I. Saichev and G. M. Zalavsky, Chaos 7, 753 (1997).
28. E. Barkai and R. Silbey, J. Phys. Chem. B 104, 3866 (2000).
29. G. V. Buxton, F. C. R. Cattell and F. S. Dainton, J. Chem. Soc., Faraday

Trans. 1 71, 115 (1975).
30. P. Clifford and N. J. B. Green, in Contemporary Problems in Statistical

Physics, ed. G. Weiss (SIAM, 1994).
31. M. Tachiya, Chem. Phys. Lett. 69, 605 (1980).
32. R. Kopelman, J. Hoshen, J. S. Newhouse and P. Argyrakis, J. Stat. Phys. 30,

335 (1983).
33. P. Argyrakis, D. Hooper and R. Kopelman, J. Phys. Chem. 87, 1467 (1983).
34. S. T. Gentry and R. Kopelman, J. Chem. Phys. 81, 3014 (1984).
35. P. H. von Hippel and O. G. Berg, J. Biol. Chem. 264, 675 (1989).
36. F. Mainardi, Chaos Soliton. Fract. 7, 1461 (1996).
37. F. Mainardi and R. Gorenflo, J. Comput. Appl. Math. 118, 283 (2000).
38. S. Redner, A Guide to First-Passage Processes. (Cambridge Univ. Press,

2001).
39. D. S. Grebenkov, Phys. Rev. E 81, 021128 (2010).
40. S. B. Yuste and L. Acedo, Phys. Rev. E 68, 036134 (2003).
41. L. Acedo and S. B. Yuste, Phys. Rev. E 66, 011110 (2002).
42. S. B. Yuste, L. Acedo and K. Lindenberg, Phys. Rev. E 64, 052102 (2001).
43. S. B. Yuste and L. Acedo, Phys. Rev. E 64, 061107 (2001).
44. S. B. Yuste and L. Acedo, Physica A 297, 321 (2001).
45. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn.

(Elsevier, 2007).
46. R. Metzler, E. Barkai and J. Klafter, Phys. Rev. Lett. 82, 3563 (1999).
47. J. Crank, The Mathematics of Diffusion, 2nd edn. reprinted (Oxford Univ.

Press, 2004).
48. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd Edn.

(Oxford Univ. Press, 1959).
49. G. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic

Press, 2005).
50. S. B. Yuste, R. Borrego and E. Abad, Phys. Rev. E 81, 021105 (2010).
51. S. B. Yuste and E. Abad, J. Phys. A: Math. Theor. 44, 075203 (2011).
52. R. Borrego, E. Abad and S. B. Yuste, Phys. Rev. E 80, 61121 (2009).

 

REACTIONS IN SUBDIFFUSIVE MEDIA AND ASSOCIATED FRACTIONAL EQUATIONS
© World Scientific Publishing Co. Pte. Ltd.   http://www.worldscibooks.com/physics/8087.html



August 12, 2011 10:22 Fractional Dynamics 9in x 6in b1192-ch04

106 S. B. Yuste, E. Abad and K. Lindenberg

53. J. J. Ruiz-Lorenzo, S. B. Yuste and K. Lindenberg, J. Phys.: Condens. Matter.
19, 065120 (2007).

54. G. Oshanin, O. Bénichou, M. Coppey and M. Moreau, Phys. Rev. E 66,
060101R (2002).

55. S. B. Yuste and K. Lindenberg, Phys. Rev. E 72, 061103 (2005).
56. S. B. Yuste, G. Oshanin, K. Lindenberg, O. Bénichou and J. Klafter, Phys.

Rev. E 78, 021105 (2008).
57. D. V. Donsker and S. R. S. Varadhan, Commun. Pure Appl. Math. 28, 525

(1975).
58. A. M. Berezhkovskii, Yu. A. Makhnovskii and R. A. Suris, Chem. Phys. 137

061103 (1989); A. M. Berezhkovskii, V. Zaloj and Yu. A. Makhnovskii, Philos.
Mag. B 77, 1277 (1998).

59. M. Bramson and J. L. Lebowitz, Phys. Rev. Lett. 61, 2397, (1988); J. Stat.
Phys. 62, 297 (1991).

60. A. J. Bray and R. A. Blythe, Phys. Rev. Lett. 89, 150601 (2002).
61. R. A. Blythe and A. J. Bray, Phys. Rev. E 67, 041101 (2003).
62. M. Moreau, G. Oshanin. O. Bénichou and M. Coppey, Phys. Rev. E 67,

045104R (2003).
63. K. Seki, A. I. Shushin, M. Wojcik and M. Tachiya, J. Phys.: Condens. Matter.

19, 065117 (2007).
64. D. Froemberg and I. M. Sokolov, Phys. Rev. Lett. 100, 108304 (2008).
65. B. I. Henry, T. A. M. Langlands and S. L. Wearne, Phys. Rev. E 74, 031116

(2006).
66. I. M. Sokolov, M. G. W. Schmidt and F. Sagués, Phys. Rev. E 73, 031102

(2006).
67. M. O. Vlad and J. Ross, Phys. Rev. E 66, 061908 (2002).
68. A. Yadav and W. Horsthemke, Phys. Rev. E 74, 066118 (2006).
69. T. A. M. Langlands, B. I. Henry and S. L. Wearne, Phys. Rev. E 77, 021111

(2008).
70. V. Méndez, S. Fedotov and W. Horsthemke, Reaction-Transport Systems:

Mesoscopic Foundations, Fronts, and Spatial Instabilities (Springer-Verlag,
2010).

71. A. Blumen, J. Klafter and G. Zumofen, in Optical Spectroscopy of Glasses,
ed. I. Zschokke (Reidel, 1986).
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