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Extension and improvement to the Krylov—Bogolinbov methods using
elliptic functions

S. BRAVO YUSTEY and J. DIAZ BEJARANO?

It is shown that the Krylov-Bogoliubov methods that give the approximate
oscillatory solution of the equation ¥ +e,x+c;x> +¢flx, %, 1) =0 in terms of
Jacobi elliptic functions are applicable not only when ¢, > 0 and ¢, > 0, but alse
when ¢, > 0 and ¢; < 0 or when ¢, <0 and ¢; > 0, In particular, the most precise of
these methods, the Christopher-- Brockiehurst method, is discussed in detail. Its
accuracy has been improved by wilizing the transformation properties of elliptic
functions with respect to their parameters.

1. Introduction

The Krylov-Bogoliubov (KB) method is a well-known method of obtaining
approximate solutions to the class of quasi-linear differential equations

X+ e x +ef(x, % 1) =0 (n

where ¢ is a small constant coefficient.
Because the solution of { 1} with ¢ == 0-—the generating equation-—is given in terms
of circular functions, it is assumed in this method that (1) has the solution

X{(t) = A{t} cos (awt — ${e)) (2)

and where A(1} and ¢(¢) arc determined with the obvious condition that expression {(2)
is the solution of (1). This method was extended and justified mathematically by
Bogoliubov and Mitropoisky (K BM).

In a series of papers, Barkham and Soudack {1969, 1970} and Soudack and Barkham
{1970, 1971) extended these methods to the class of quasi-cubic differential equations

e x+eyxd +efix, %, =0 {3
giving the approximate solution in terms of Yacobi elliptic functions
x = A(1) en (W(t), ) {4

with ¥(t) = wt — @t} —the Barkham-Soudack {BS) method. The functions 4{¢) and
@1} are to be determined in such a way that (4) satisfies {3).

Christopher and Brocklehurst (1974) developed a method (the CB method), also of
the Krylov—Bogoliubov type, where expression {4) is taken to be the solution of (3}, but
now using the amplitude A, parameter u?, frequency o, and phase ¢ time-dependent,
That is

x{(t) = A(1) en (¥(e), g (1)) (9
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with
i
¥() = J. ) de — ¢l1)
&

The authors of these previously mentioned methods consider them applicable to
{3} only when the oscillator is hard, i.e. when ¢, > 0 and ¢, > O (oscillator 1). However,
there is nothing in the methods that prevents their application to hard-soft cubic
oscillators—e, >0, ¢; <€ (oscilator 2)—or to the soft-hard cubic ones-—
¢y <8, ¢y > 0 (oscillator 3).

One can understand that the methods are not believed valid for soft-hard
oscillators when 4% < —¢, /¢, or for hard—soft ones, since u? is then either larger than
one or negative, and it is not usual to work with elliptic functions having parameters
in this range. However, more suprising is that the aforementioned authors do not
apply their methods to the soft—hard oscillator when 4% > —¢, /e;, since then 1/2
< u? < 1, In fact, for this case, gvery relation obtained by the aforementioned authors
using the methods mentioned above is obviously valid.

In this paper the following are carried out.

{1} We show how to apply the BS and CB methods 10 each oscillator type, and how
the most accurate of them, the CB method, can be made even more accurate by utilizing
the transformation properties of the elliptic functions.

(i) As an example to check the methods, (3) is used with gf(x, X) = bX, ie.

4o x+oeyxd+bi=0 {6)

because this is an important exampie used in all the papers cited {Barkham and
Soudack 1969, 1970, Christopher and Brockichurst 1974, Soudack and Barkham 1970,
1971}, and its simplicity altows one to see clearly how the methods work and the validity
of the approximations used.

{iify The determination of A(r} is fundamental in these methods, since the
amplitude gives the oscillator’s energy, frequency, period {ie. u®) and, as in the
references, x(r). The accuracy of each techmique of solution is tested by simply
comparing the oscillation amplitude that it gives with that numerically evaluated.

Before discussing the BS and CB methods, we review some properties of elliptic
functions.

2. Properties of elliptic functions
As is well kriown, the solution to (3} with £ = { (generating equation) is given by

x(1) = A cn {wt — p, 4°) {7)
with
a?=cy 4oy A? 8
2
= S )

= Aey +¢3A4%)

where A and ¢ are constants determined by the initial conditions x(f = 0) = x, and
Xt = 0} = xy. In particular, when Xy =0 then A = x, (and ¢ =),
The oscillator’s energy is defined by E = x? 4 V(x) with ¥(x) = ¢, x* 4 ¢c3x%/2.
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Sometimes it is useful ¢to have {8) and (9) in terms of the non-linearity factor
vy A%c,, L.

wr=c(1+W)

For osciflator 1, v> 0, i.e. 0 < u? < 1/2. For oscillator 2, — 1 <v <0, ie. p? <O
Finally, for oscillator 3, v < — L if =2 <v< —1(ie. E< Q) then u? > l,and if v < ~2
(E > 0) then 1/2 < p* < 1, One problem is that tables do not give the vaiues of elliptic
functions when the parameter u? is outside the interval [0, 1]. However, this is easy to
solve by means of parameter transformations. If 4* <0, by the negative parameter
transformation (Abramowitz and Stegun 1972}

en (¥, p?) = ed (Wy, 07) (10}
with
2
r.. K
at == e (11)
¥
= (12

and ¢, = (1 —0%)'2 From (11) it is obvious that ¢? lies between G and 1 if u? < 0, as
we require. Also, for the first and second complete elliptic integrals:

K(y?) molma“}} 3

E(y*) = E(6*)/o,

If u?>1, from the reciprocal parameter transformation or the jacobian real
transformation {see¢ Abramowitz and Stegun 1972)

cn (P, y?) = dn (Wg, 77) (14)
sn (¥, u?) = nsn{¥g, n%) (15
with
1
L1 16
" u {16}
and
Y
¥ (17

Of course from (16) 2 is between 0 and | when u? > 1. Also (see Erdélyi 1981)
K{p*) = n{K + iK) (18)
E—niK+HE — K’

E(u?) = 19
(1) . ” (19
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where #? = 1 — 5%, E = E(n?), K = K(#?), and where K’ = K'(n?) and E' = E'(4} are
the first and second complementary complete elliptic integrals, respectively.

Finally, by means of the Gauss transformation or the descending Landen
transformation (see Abramowitz and Stegun 1972) we can decrease the p* parameter
when 0 <y < 1, Then

2y . ondn
on (¥, u }_(i + Esn?)
with en=cn (¥g, £%), dn=dn (¢, %) and sn = sa (¥, &%), and where
1=y
= e L 20
¢ T4, (20)
b d

Yo=117 (21

Of course p? =1~ p? Also
K(p?)y = (1 + HK(E?)

2E(E%) {22)
2y — — EVK 2
E(?) [~—-—H§ (1~ HK(EY
3. Barkbam and Soudack method
in this method, which is analogous to the KBM method, we take
x{t) = a(t) on (W2}, pg) = acn {23

as the solution of (3} with W(t} = wf + (), & = ¢, + c3a% ud = c;a3/[Ac; +c;ad)l,
ag = al(), and where the amplitude a{f} and the phase ¢{f) satisfy

G PAD £ BEAD 4
d=pFBY 4 BB 4 .,

with # smail. The functions 4%, B are to be chosen in such a way that (23} is a
solution of (3). In the first approximation 4 and B" are determined by

fix, %, 1) = sndn{aB® + 24¢, + c;a®)? + T, ]

e AM oy + 3c5a2)(2aBV T, + Ty)
¢4+ cy@?

H we assume that e is constant (the unrefined approximation; see Barkham and
Soudack 1970} then T, =0, T, =1, and Ty =0. If w is time dependent {the refined
approximation; see Soudack and Barkham [970) then

_ 2c307 A4 4 3014
! (¢ +esa*)V?
T, = (e, + c3a° /2

T3 = 2(3302 tA(”
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The constant & is defined as

K
j cn (W) dyr
X
R — (24)
f ¢n ('Y} a¥
-k
with K = K(u*}if 0 < g* < 1. If 4% > 1, & can be calculated by replacing cn with dn in
(24) with K = K{#°)}—see (14). H u* <0, cn must be replaced with cd in (24) with
K = K{s*}.
Applying this method to (6}, which we use as an example, we obtain {as in Barkham
and Soudack 1970, Soudack and Barkham 1970) that

—bh
A0 = alt) = a(0) exp (Tt) (25)
for the unrefined approximation, and
—b
40 =al) = o) exp (5 ) (26)
4]

for the refined approximation.

A more detailed analysis of this method would convince us that there is nothing
that would inherently prevent its application to oscillators 2 and 3. That is, in our
exampie, the amplitude is given according to the BS method using (25) and (26} not
onty for ¢; > 0 and ¢y > 0, but also for ¢, > 0 and ¢, <0 and also ¢, <0 and ¢; > 0.
Although we do not make this analysis here, it is made for the more precise method
that we study in the next section.

4, Christopher— Brockichurst method

The first version, as expounded by Christopher { 1973), was valid only for solving (6}
with the restriction ¢, > 0 and ¢, >0, ie. for oscillator 1. Following this technique,
Bravo Yuste and Diaz Bejarano (1987) apphied the method to oscillators 2 and 3.
Christopher and Brocklehurst (1974) extended the version given by Christopher {1973)
to solving the more general (3). This method is more accurate than the BS method
basically because it allows the elliptic function parameter of the solution to change with
time,
solution of (3). This solution is chosen since {7} is the solution (generating solution)} of
{3} with £ = 0 {generating eguation).

Apart from expression {5} being the solutton of (3) (constraint 1}, it is convenient
to impose on A(f), wit), ¢{t}, and p*(1) three additional constraints, as follows:

constraint 2: X{(1) = Awcny 27
and-—see (8} and (9}
constraint 3: @® =c¢; + ¢, 4° {28)
c3 A?

constraint 4 p’= (29
The notation is of course fy{a, f) = 0f/0f. The task of obtaining the solution x{t) is
thus transformed into one of obtaining the functions A(1), w(r), &1}, and p?(t) that
satisfy the four constraints,
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Differentiating {5} with respect to ¢t and from (27}
Acn — Adeng + Ajicn, =0 (30)
Differentiating {27} again, substituting this into (3) and using (28) and (29}, we obtain
Awcny + Abchy — AGCNgy + Awjichy, + e (Acn, Aweng, 1} =0 (31)
Taking ¢ from (30) and substituting it into (31), we find
Awl{cng)? — cnctpy ] + GA(cng ) + pAwfcng, — cn chge] + gftng =0 (32)

But
Ciy = — sndn

Clhgy == cnf | — 2dn*)

Cliy,, = ClL, Cllgy = [1 K > ] [sn?dn?(1 — 2sn?) + sn®cn®(1 — 2dn?)]

Also, from {28) and (29),
@ 2Zuy
e ol 33
@ 1-2u* (33)

Putting these relations into (32), we obtain

(1 — 22em® + pisn®) (j) + (snz - fg:) (%) = (2%) fsndn (39)

In short, we must find four functions 4(f), (1), ¢(¢), and x*(r) that satisfy (28)~{31)
or, equivalently, (28)—(30) and (34). This is not easy. However, the coefficients of 4/4,
/o and f in (34) are roughly periodic and therefore we can reduce this expression to
a simpier form by using the averaging principle method. So, (34) becomes

A 20 3  fsndn)
R ) e 9
with
2 - Qlw%QZ 36
Rt =50, ~w?0y) . (38
- (%)
Qi =(n?)= T
£ - {37
24 p? -1 +#2)(?€)
0, = (sn") = 3!‘4 )
and where K = K(¢*}), E = E(u*) and
23N ML K 2
{pq (¥, p )>-4K L pg (¥, u*) ¥ (38)

We have-used the relationship

P-202Q, + 520y = AP, ““HzQ:)



Krylov— Bogoliubov methods using elliptic functions £i33

Note that the averaging is over the real period of the Jacobi elliptic function T, which
figures in {38} as 4K: T, = 4K (the Jacobi elliptic functions are doubly periodic, ie.
periodic along both the real and the imaginary axes).

For our example {6}, (35) is given as

A 5B b
2+R1(“)f§_“5 (39)

At this point, following Bravo Yuste and Diaz Bejaranc (1987} and Christopher
and Brocklehurst {1974} we show two ways to evaluate A{t) that we shall call the simple
and sophisticated modes.

Simple mode

Assume that R,{(p?)= R is constant over the integration interval. Then the
integration of {39} is simple:

Al be\ [ w(0)
A T ("2") [5(?)"]

Al _bt\[ ey +es430) P2
a0 (-5) o

or, from (28},

Sophisticated mode

Write R, (1%} as a series of powers of 4* and &/w in terms of i — see (33)—and
then integrate {39). Since .

5 29 359
2o Do 2
Ri®) = 1e + 7354 + 3oas

289 15311
4 6 8 4
+2048p +}31072Ju + . {41)

we find

A{t) ( bt)li%mﬂz(r} :|0-2343 5 2
——=mexp| ~— | —5 exp [G(u? (1) — 0 42
0= 20 PIGUAM) ~ GuO)]  (4D)
with G{u*) = 0-1851u* + 0-0719u* + 0-0374u% + 0-0208u% + ...

Using these expressions and (29) we obtain A(t).

A, Extension and improvement of CB method

We can see throughout the exposition of the above section that in the CB method
it is immaterial what value the elliptic function parameter u? takes. In other words, the
CB method is valid (ie. can be extended) for the three types of cubic osciliator. This
means for our example that (40} and (42} are valid for ali three osciilators, not just for
the first. Another question that is studied below is whether the method retains its
accuracy for the other oscillators and if it is possible to improve it.

Figure 1 {a) shows R,{u?) versus the non-linear parameter v, where R {z*) has
been evaluated from (36) and (37). When 0 < p? < 1, we simply put K- K(u*) and
E - E(*) in these expressions. When u? < 0, K and E are given by (13). When u? > 1,
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only the real part of (18) and {{9) has been used, i.e.
K -nK(n*}
E(n®} — i K(n*) (43)
> e

N

This is justified if we remember that R, (#*) comes from averaging elliptic functions
over their real period, T, = 4K, only, Notice that Q,(¢*) and Q,(r*) are real since
so (¥, 47} is real when u? > 1—see {15).

Figure 1 (a) shows that there are intervals of v where R, is not approximately
constant, i.e, where the simple mode of the solution is not good. Also, from (41) we see
that the expansion of R, (*) in a series of powers is poor when ju?| is large, i.e. in such
a case we should not expect the sophisticated mode to give good results.

The situation is that although the method is suitable for the three oscillators, its
resuits are not as accurate as we want (this affirmation is corroborated in the example
in § 6). This problem can be solved by means of the transformation properties of the
elliptic functions. Each possibility is studied separately.

E

2.0l a oo 10{ h
/A g
4 1 : :
1.5] ! . ' 8
rr C
1.0f A x 7
1 ’\2 1 ]
H [ N
0. spm—ll coo, = 3
| =~
/‘-’
- 4
0.0 . . / : ) ) .
-4 ~3 -2 =} 6 1 2z -2.0 ~1.5 -1.0
Non~linaerity footor Nor-liraority faotor
{a) (&

Figure 1. (a) R versus the non-lincarity factor v; (b} R, versus v. Line 1 gives R,, ling 2 gives
R,, and line 4 gives R,.

5.1. For y* <0
Here we use the negative parameter transformation, From (12} we define
Oy = 44
v (44)
From (11}
3
2. a
# 1—o?

and then using (33) we find
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For our example, substituting this expression into (39), we obtain

5:’_ N
A+Rz(c }wﬁ— 3 (45}

e 2
Rz(az)mZ[Im(i miz)]R‘(“ijaz) (46)

Figure 1 (a} shows R, plotted against v, As in the above section, (45) is solved in two
modes.

where

Simple mode
Assuming the simplification that R, = R is constant over the integration interval,

we obtain from (45)
A _ b\ [ en(0)]
A0 ‘”‘"( 2)[%}

However, from {44), wf = ¢, + ¢35 4%/2, s0

A bt e A*0) L e AN
m—exp(mwzw)[(ciﬂi» 3 )f/(c;ﬁ» 3 ):| (47}

Sophisticated mode

From (46) and using {13) we obtain
5 1 71 9 313
2y = el 2 4 &
Role) =3+ &a* + 1o5a* " 556* 16384

From (44) &y /wy = ~o6/(1 + ¢2), Then, integrating (45), we find

R @8)

FOR (“ %) [%:;({%T " ew o -curon @)
with
G{a?) = 0-0653¢2 + 0-01036* + 0-00470° + 0:00140® + ...
and where, from {9} and (11},

INELE A’
= (7)o

5.2, For > >1
Here we use the reciprocal parameter transformation. From {17) we define
w
W == e 50)
x= {

As u=1/n, from {33) we obtain
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Substituting this expression into {39) we obtain

A nWr b
7Rl B = 5 (51)

Ry(n?) = (;%)R (;};) (52)

Figure 1 {b} shows R; versus v. Equation (51} is again solved in two modes.

where

Simple mode
K R, = R is constant over the integration interval then from (51}

AW _ x| - 2| @=0)
W0 ""*’( 2)[%:}] Gy
From the definition (50) of wy, we get @f = ¢y 4%/2, and (53} then becomes
AD o~
40y~ “p( A+ R}) >4

Sophisticated mode
From {52} and using (43) we obtain

4 3 3 349 3i4
Ry )= — — 14 12 + 2=t + oo ® 4 e pi®
W)= I T T I T aoset T (5%
From (50) @g/wg=ni/{2—n*}. Substituting these expressions into {51) and inte-
grating, we obtain

Aty bty n(0) [ 2—#*(r) 122472
w0 exp ( ) o [W] exp [GLA (D) — GGAGY)]  (56)

where
G(n?) = 0:6177* + 0-14270* + 0-03794° + 0:00961° + ...
with
2 Heites A%

from (9) and (16).

33, For 0<p? <1

In this interval we expect the expressions given by the CB method-—in our
example these are expressions {40) and (42)—to be good. However, it scems likely
that we could increase the accuracy if the parameter changes more smoothly with
respect to v {simple mode) and/or if the parameter is smaller {sophisticated mode}.
This can be achieved by means of the Gauss transformation, Using {21} we define

o

W6 =T7F (37
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From {20}

From {57) and (33}

@ {W.i(}_*":ﬁ__. }(%)
o [WI+9G -]

Equation (3§) then becomes

RO~ -3 (8
where
o H1-9) 4
R"{‘:’“{{w@wm@}‘q‘((ué)z) (39)

Figure 1 (a) shows R, versus v. We can see that R, is effectively quasi-constant over
most of the range. Again our modes of resclution are given as follows,

Simple mode
Assuming R, = R is constant over the interval of integration, we obtain from {58k

Al b1\ [ wg(0)
Ay~ P (_ 5) [ws(“_riJ (60

[ 4] Cy

(1+E) -8 (E~rE—9)
with r =3~ 2./2 and s = 3 + 2./2. Then (60) becomes

Alt) bt (E—PE—gy TR
ﬁ?ﬁi“e’“’( )[(5(0}~r)<e:{0}~ s)] €2

Tho pardieier § 18 given in terms of 4 by means of (20) and {9}

From (57)

wg = {e1)

Sophisticated mode

From (61)
bg___3-¢
we {(—1HE—s)
Defining
O =R i’t“é;“i“;;' (63)
expression {58} becomes
A b
il H(Z) —3 (64)
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From {63), (59 and (22), we obtain after some algebraic calculation,

H@=(s+3e- 2+ ) e ne- (65)

As £ is very smali it is sufficient to use a few terms in the numerator of {65): we only use
up to first order in {. Notice that previously we carried out the expansion up to order
eight in g, o, or . However, as seen in the next section, the accuracy is not affected at
all. By integrating (64) we obtain

AW _ (_ b_r) [ ~ DAEO) ~ N]™
Al 2/ HE — s L0 — 5]

with o = 1-3801 and o, = 0-2551,
Finally it is interesting to nofe that Bravo Yusie and Diaz Bejarano {1987) have
developed a method designed exclusively for solving our example osciliator, obtaining

expressions for A{r) very similar to {47), (49) and (56), but a little more accurate.
Equation (54} is the same as their equation {58).

(66)

6. Example

In this section each technique of solution is applied to some ilfustrative cases of the
example oscillator {6}. The resuits are given in Tables 1-6, which we now discuss in
detail. The second column gives the maximum values of |x{t)} evaluated by numerical
integration using a fourth-order Runge-Kutta method. Only a certain number of
significant values are given,

¢ A A, 4, At A2 Ay A A

5p spi

2433 0902 0-885 0907 0906 090t 0-964 0902 902
4965 0808 0780 G820 817 OBO7 0-811 6-808 -809
T591 0720 0634 0738 0731 0718 0724 726 720
10-304 0637 397 0662 0650 0636 0642 0637 0637
27910 G276 0-248 0327 0289 0276 0-280 0-276 0276

Table 1. (Hard oscillator) For ey, = L ey = 1, b=01, x{0) = 1, 2{0} = O A1} is the maximum
value of [x({1}] evaluated numerically; A, is the amplitude evaluated using the vnrefined
approximation; 4, is the amplitude using the refined approximation; A! is the
amplitude using the simple mode with R, = §/2; AZ is the same as A! but with R, =
G-35; A is the amplitude given by the improved simple mode; A, is the amplitude given
by the sophisticated mode; and A, is the same as 4, but using the improved
sophisticated mode.

{ A{[} Au Ar A: AE Asi . Asp Aspi

1-898 4603 4948 4720 4725 4649 4601 4-653 4-555
3496 4713 5359 4914 4930 4782 4722 4799 4623
4920 4828 57755 5093 5126 4908 4850 4942 4702
10623 5434 7654 3878 6038 5478 5523 5652 517
20:005 6948 12235 7443 8048 6670 T161 7308 6467

Table 2. (Soft--hard oscillator with E>8) For r:,. zm o0, 0y=1, b= 01, x(0) =45,
X0} = 0: the key is the same as that in Table 1, but now using R, = I for AZ,
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We begin with two cases of 0 < u* < I. The first (see Table 1) is a hard osciilator
O<p?<i/2) with ¢; =1, ea=1, b=01, x(0) =1, and %{0) =0. We see that the
oscillations are mildly non-linear, i.e. vt =0} = | and v(t = 27-91) = 0-076. As shown
in § 3, the amplitude given by the unrefined approximation A, is the same as that ofa
linear oscillator with equal damping. For this reason 4, is good and it is even better as
the oscillations become more linear, Le. progressively smaller. ITn the refined
approximation, the amplitude 4, decays as in the unrefined one, but with the damping

t Afe) A, A, A Ay Asp Ay

1032 0974 0974 3973 0974 0974 0974 0974
2062 0948 0-950 G947 0948 0-948 6948 (+948
3090 0923 0926 0922 0923 0923 0923 0923
4115 0-899 0-962 0-887 0-859 899 0-899 0899
5140 0876 (880 0874 0876 0876 0876 G876
£1-255 0749 0755 0744 0-749 0749 0749 0749
20351 0-595 0601 0-385 0-595 3595 0-595 0-595

Table 3. (Hard—soft oscillator.} For ¢; =10, ¢5 = — 1, b =005, x(0) = 1, {0) = &: the key is
the same as that in Tabie 1, but now A, is evaluated using R; = 5/16 and A, using
R, == 35/8.

t ALY A, Al A2 AL A2 A

=pi

1756 2726 2871 2234 2395 2771 2751 2720
3242 2562 2766 2119 22 2616 2-58% 2357
4630 2434 2672 2025 2170 2489 24359 2429
3956 2324 2:585 1942 2081 2380 2:347 2320
7238 2228 2503 1-868 2001 2282 2:249 324
10-908 1988 2284 1678 1798 2038 2004 1-985
19-990 1-536 1-820 1-308 1-403 1-374 1:543 1533
35878 1-608 1-223 0-864 0928 1-032 011 1007

Table 4. {Hard-soft oscillator) For ¢, = 10, ¢; = ~1, b=005, x{0} =3, (D) =0 the key
is the same as that in Table I, but now 4! is evaluated using R, = 5/16, 4} using
R, =025, 4% using R, = 5/8, and AJ using R, = (-7,

£ At} A, A, A, Ay Ay Aspi

0959 0207 1-244 1-045 0918 4908 0959 0-954
1-926 4358 4193 4297 4354 4:358 4337 4338
2835 1-085 1-789 1-384 1-109 1087 1-198 1193
3752 4319 4806 4:202 4313 4318 4281 4282
4628 1230 2154 1-650 1-266 1231 1-3713 1376
5510 4281 3-834 4112 4271 4-280 4232 4-228
10-525 4175 3382 3866 4163 4174 4108 4085
16-852 4451 2-887 3577 4038 4044 3986 3921

Table 5. (Soft~hard oscillator with E < 0} Forc, = — 10, ¢; = 1 b =005, x{0} = 44, {0} =
A(t) denotes the maximum value and also the miniraum value of {x{t}|. The key is the
same as that in Table 1, but now A, is evaluated using R, = 1-7 and A4, using Ry =4,
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I A( I) Au Ar As A:i' A:I Asp Aspi

0712 2673 2816 707 2673 2688 2672 2659 2684
1-428 3572 3352 3-520 3570 3549 33572 3592 3555
138 27709 3088 2807 271 2754 1o 2:669 2741
2852 3545 3122 3443 3543 3499 3-543 3-585 3513
3-561 2742 s 2900 2746 2816 2746 2679 2791
5693 3497 2708 3263 3492 3401 3488 3571 3441
12766 3401 1902 2947 3391 3169 3354 3543 3314
16-957 3357 +539 2758 3345 3037 1276 3528 3265
24038 3300 1-082 2470 3287 283t 3150 3510 3215

Table 6. (Soft—hard oscillator with E <0} For¢, = — 10, ¢; =1, b = 01, x(0) = 36, {0} =
the key is the same as that in Table 1, but now Al is evaluated using R, =4 and A2
using R; = 8.

coefficient modified by the factor (1 + x*(0)} %, For {ow ¢ this correction is fortunate
and A, is good. Moreover, for large 1 the oscillations are guasi-linear and this factor
should be near unity. However, the factor in this methed is constant and therefore 4,
progressively worsens. The amplitude A, evaluated by (40} (simple mode} with
R, = 1/2 is quite good and better than the above ones. The results are given in the
column labeled 42, From Fig. 1 (a) we see that for these very linear regions, with v so
smail, R; must be chosen smaller. Thus, if we use R, = 0-35, the approximation as
given in the column labeled A7 is very good. The amplitude A, given by (62)
{improved simple mode} with R, =05 is also very good; of course a better choice of
R, {eg. R, =043 will give better results, Finally, amplitudes evaluated by the
sophisticated mode 4,,—(42)—and by the improved sophisticated mode A, —
{66)-—are the best. This is not surprising since y? and ¢ are smali and hence the series
expansions of R, (p?) and H(&) are very accurate.

The second case is a soft-hard oscillator with negative damping and with
oscillations near the interesting zone E=0: ¢, = 10, ¢y =1, b= — 1, x{0) = 45, and
%(0) = 0 (see Table 2}. Then v(1} < —2and 1/2 < g* < 1. The oscillations are very non-
linear, which is why A, is bad, However, 4, is 4 lot better, The choice of R, = 1/2 for
evaluating A, is not good—see Fig. 1{a}). It would be better to take R, =1 (see
Table 2}. Although the choice of R, =05 in evaluating 4 is now rather small—
se¢ Fig. 1{a}—the improved simple mode nevertheless gives an excellent
approximation. We now see that 4,, is not as good because p? is large. The same
happens with A,,; and its parameter ¢.

Next we show two cases of the oscillator 2 (hard—soft}, i.c. with u* < 0. In the first
¢y = 10,03 = — 1, b = (05, x{0) = 1, and X{0) = 0 (see Table 3}. As the initial amplitude
is small, the osciliations are very linear: w{0) = —{-1. We see in Table 3 that all of the
approximations are good, especially that of the CB method. In the simple mode
approximations, R, and R,-(60)-—are nearly constant (and equal to 5/16 and 5/8,
respectively} and in the sophisticated mode, {u?| and ¢%—{49)—are very small, which
is why they are so accurate.

In the second case ¢, == 10, 3 = — 1, b= 005, x{0) = 3, and {0} = ¢ {sec Table 4).
For low t the oscillations are very non-linear, v(0) > — 1, the parameter is very large
(l*1 ~ 4}, and it changes quickly with time. For this, 4,, A, and A, are not good. In
fact, 4, and A,, are so bad that their values are not significant and they are not shown
in the table. Figure 1 () shows that in this region R, and R, are not quasi-constant,
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and consequently 4, and 4, are not good (however a good choice of R, or R,—e.g.
R, =025, R, = (-7-—still gives results that are not so bad}). On the other hand, the
approximation of the improved sophisticated mode is very good since o is small.

Finally, let us discuss two cases of oscillator 3 {soft—hard)} with E < {, i.e. with
1?2 > 1. Observe now that the oscillations are not symmetrical. Of course all oscilia-
tions have maximum elongations 4 and minimum A4, .. However, for symmetrical
oscillations |4, = A4, and therefore we have not discussed A4, before. However, now
Aol # A, and in fact A4, =, 4 since the minimum of cn with u?> 1, ie. the
minimum of dn, is #;. So, for these two cases, we show 4 and A4, alternatively
{although, for brevity, only for the first values).

In the first case ¢, = — 10, ¢y = 1, b= 005, x(0) = 44, and () = 0 (zee Table 3).
We see that 4, and A, are bad, although 4, is betier. 4; with R, = 1-73s¢e
Fig. 1 {a}—and especially 4,—(54)—with R; = 4-—see Fig. | (b)—are much better.
The values of A,, and A4,,—(56)——are similar and good, but not as good as As,-. I is
not strange that 4,, is good since x*(¢) is not very large, e.g. for ¢ = 1685, p? = 1-28.

The second caseis ¢, = ~ 10, ¢y = 1, b= O 1, x{0) = 36, and X(Q) = 0 (see Table 6).
Here A, and 4, are very bad, especially A,. In fact, 4, is so bad that for £ = 3561
and, of course, for larger t— A, is absurd: 4 is too smali and so #, is imaginary. As
the oscillations are closer to the bottom of the potential well than in the above case
{now v{() = —1:296, where before v(0) = — 1936} u? is larger and changes more
quickly, and »* is smaller than before. This is the reason that A4,, is now worse,
whereas A, is better. Finally, from Fig. ! (a} one sees that R = -7 must be a good
value for evaluating A,. In fact this approximation is better than the approximation of
the improved simple method since R; changes very much in this region of oscillation.

7. Conclusions

(i} The KB eiliptic methods examined hete are more general than has generaily
been thought, since they are directly applicable not only to oscillator | (hard), but also
to oscillator 2 (hard-soft) and oscillator 3 (soft-hard}. Moreover, as has been shown,
in many cases they give very good results, especially the CB method.

(ii} We have studied in detail the more precise KB elliptic method-—the CB one—
and we have shown that in many cases it is possible to improve it using the
transformation properties with respect to the parameter of the elliptic functions. For
the example studied, very accurate (and some very simpile} expressions for the
amplitude oscillations have been obtained.

Finally, we point out that the extension presented here enables one to apply the
technique of Soudack (1974) to X + g(x} + gf{x, X, 1} = 0, with g(x) odd, without the
restriction that the first two coefficients of the power expansion proposed for g{x) be
positive.
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