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Abstract
We consider the emerging dynamics of a separable continuous time random walk (CTRW) in the
case when the random walker is biased by a velocity field in a uniformly growing domain.
Concrete examples for such domains include growing biological cells or lipid vesicles, biofilms and
tissues, but also macroscopic systems such as expanding aquifers during rainy periods, or the
expanding Universe. The CTRW in this study can be subdiffusive, normal diffusive or
superdiffusive, including the particular case of a Lévy flight. We first consider the case when the
velocity field is absent. In the subdiffusive case, we reveal an interesting time dependence of the
kurtosis of the particle probability density function. In particular, for a suitable parameter choice,
we find that the propagator, which is fat tailed at short times, may cross over to a Gaussian-like
propagator. We subsequently incorporate the effect of the velocity field and derive a bi-fractional
diffusion-advection equation encoding the time evolution of the particle distribution. We apply
this equation to study the mixing kinetics of two diffusing pulses, whose peaks move towards each
other under the action of velocity fields acting in opposite directions. This deterministic motion of
the peaks, together with the diffusive spreading of each pulse, tends to increase particle mixing,
thereby counteracting the peak separation induced by the domain growth. As a result of this
competition, different regimes of mixing arise. In the case of Lévy flights, apart from the
non-mixing regime, one has two different mixing regimes in the long-time limit, depending on the
exact parameter choice: in one of these regimes, mixing is mainly driven by diffusive spreading,
while in the other mixing is controlled by the velocity fields acting on each pulse. Possible
implications for encounter–controlled reactions in real systems are discussed.

1. Introduction

Since its introduction by Montroll and Weiss in the mid 60s [1], the celebrated continuous time random
walk (CTRW) model has found widespread application in statistical physics and beyond, notably in the
study of problems as diverse as charge carrier transport in disordered media such as amorphous
semiconductors [2–4], luminescence quenching [5], morphogen gradient formation [6, 7], the diffusive
motion of water molecules in the hydration shell around proteins [8], the relative motion of monomers in a
protein molecule [9], the motion of protein channels in the cell membrane [10] of lipid and insulin
granules [11, 12], or of active transport [13, 14] in living biological cells, up to chemical tracer dispersion in
groundwater aquifers [15, 16], and even ageing effects in stock markets [17, 18]. Several review articles and
monographs have devoted substantial parts on CTRW [19–29]. Specific properties of the CTRW concern
the concept of weak ergodicity breaking [30–34] and ageing [35–39].
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In the original version of the CTRW model, the probability density functions (PDFs) of the waiting
times (also called trapping or sojourn times) between successive jumps and of the lengths of individual
jumps are assumed to decouple, that is, are independent of each other. In the case when the
PDF of the waiting times τ is fat-tailed and scale-free, ψ(τ) � τ−1−α with 0 < α < 1, and the variance of
the jump length PDF is finite, the long-time limit of the model is known to yield anomalous diffusion in the
subdiffusive range with the mean-squared displacement 〈x2(t)〉 � tα [1–3, 22–26]. In the more general
case, given specific forms of the waiting time and jump length PDFs, the emerging behaviour may be
subdiffusive, diffusive, or superdiffusive. This versatility of the model, together with the fact that it can be
shown to be equivalent to a generalised master equation [40] and a fractional diffusion equation (FDE) in
the anomalous diffusion case [41–43] makes the CTRW a popular choice to model anomalous
transport. One of the advantages of the FDE formulation is that it can incorporate the effect of external
force fields and various boundary conditions in a natural and transparent way [23, 24, 44]. Further
generalisations are also possible, for instance, accounting for the effect of finite lifetimes of tracer particles
(so called ‘evanescent’ or ‘mortal walkers’) [7, 45–47], or of chemical reactions occurring at random times
and locations [48–58].

Recently, it has been discussed how separable CTRWs need to be formulated when the domain, on
which the process is running off, is itself explicitly evolving in time. In particular, it has been shown that an
FDE can be derived [59–62], whence the case of normal diffusion on an evolving domain [63] is recovered
in the appropriate limit. The obtained FDE applies when the diffusing particles stick to the evolving
domain, implying that they experience a drift even when they do not jump. The interplay between diffusive
transport and the drift associated with the growth or contraction of the embedding medium
gives rise to the onset of striking effects. These include an enhanced memory of the initial condition [59,
63] and the slowing-down and even the premature halt of encounter-controlled reactions [64–66]. In the
case of subdiffusive particles evolving on an exponentially shrinking domain, a so-called big crunch may
happen. This phenomenon was first discussed in reference [59]; it consists in the collapse of an initial
particle distribution with finite extent to a delta function as a result of the strong localisation caused by the
domain contraction.

Concrete examples of expanding (or shrinking) domains include biological cells in interphase [67],
growing biofilms [68, 69], growing biological tissues [70, 71], and growing or shrinking lipid vesicles [72,
73]. The latter can be controlled easily, for instance, by adjusting osmotic pressure in solution [74]. Water
drops, puddles, or aqueous solutions in a Petri dish shrink simply by evaporation [75]. On a geophysical
scale, groundwater aquifers may be recharged by major flood events and thus the volume for tracer
dispersion increased [76, 77]. On Earth, the subducted oceanic lithosphere is stretched by the convective
mantle, and both are homogenised, among other mechanisms, by diffusion [78, 79]. Finally,
expanding domains are traditionally considered in cosmological models describing the diffusion of cosmic
rays in the expanding Universe [80, 81].4

In the present paper, we consider the case where both a domain growth process and a left-right bias of
the random walk are simultaneously at play. In reference [61], such a combination was considered for the
case where the bias stems from a force field that only manifests itself at the time of each jump. To model the
effect of the force field, a non-symmetric jump length distribution was used, and the corresponding
Fokker–Planck equation (FPE) was obtained. This approach has been recently used to deal with the
Ornstein–Uhlenbeck process on a growing domain [82].

In contrast, here we will focus on the case of a bias arising from a velocity field. This field is still at play
while the walker rests between jumps. Direct realisations of such a situation could occur in
biological cells in the presence of active, motor-driven motion [14], in suspended giant vesicles simply by
gravity. In subsurface aquifers the flow field corresponds to groundwater streams towards a spring
or well.

In a static domain, a constant force field and a constant velocity field yield the same type of
advection–diffusion equation as long as the particles are normal-diffusive. However, this is no longer true
when the CTRW becomes subdiffusive [83]. Then, a constant force field is assumed to act only on particles
when they are not trapped, while in a constant velocity field the particle is constantly advected. The former
case may, for instance, correspond to charge carriers in amorphous semiconductors (in which they are
trapped at impurities) in the presence of an electrical field [2] while the latter may correspond to a particle

4 We note that in the present work the velocity field is not associated with any intrinsic property of the spatiotemporal metrics, but
rather a result of external agents such as a complex environment flowing in a preferential direction, say. In contrast, the isotropic drift
associated with the scale factor does lend itself to such an interpretation, e.g. in the framework of the cosmological models of [80, 81].
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moving in a flowing complex environment such as an actin gel. Of course, this lack of equivalence carries
over to the case of an evolving domain. In [84] a fractional diffusion–advection equation (FDAE) was
derived for a subdiffusive CTRW in the presence of a constant velocity field. One of our main goals will be
to extend their result by considering a CTRW which takes place in a uniformly growing domain, and also
including the case of superdiffusion.

In our derivation of the sought FDAE, we will first study the case in absence of the velocity field, to see
that the domain growth itself may induce interesting behaviour of the moments of the particle
position. For instance, in the subdiffusive case, when the physical domain grows with a power-law rate we
see that a fat-tailed propagator may evolve into a Gaussian-like propagator for a suitable parameter
choice.

After deriving the FDAE we will use it to study the mixing kinetics of a pair of diffusive pulses evolving
on a growing domain in the presence of the velocity field, and we will discuss possible implications
of the results for the kinetics of encounter-controlled reactions in real systems [64–66].

The remainder of this paper is organised as follows. In section 2 we first recall the main results for a
symmetric CTRW on a static domain, and we subsequently discuss how the kurtosis of a subdiffusive walk
changes when the initial domain grows uniformly in time. In section 3 we carry out a similar programme
for a CTRW subject to the action of a velocity field, and we derive the relevant FPE for the case of a
uniformly growing domain. In section 4 we study the mixing of diffusive pulses that are biased by velocity
fields acting in opposite directions. Finally, in section 5 we summarise our main results, discuss their
possible relevance for encounter-controlled reactions in real systems, and outline possible extensions of the
present work.

2. CTRW in the absence of the velocity field: static versus growing domain

In this section we compare the behaviour of a separable, symmetric CTRW evolving on a one-dimensional
static domain with the same walk on a uniformly growing domain. For both cases we discuss the difference
in the behaviour of the moments of the particle position. In the case of the growing domain special
emphasis is paid on the interesting onset of a time dependence at the level of the kurtosis. This section is
also intended to introduce the general concepts and thus prepare the reader for the case of a CTRW subject
to a constant velocity field, discussed in section 3.

2.1. Static domain
We start with a brief reminder of the derivation of a bifractional equation describing the diffusive limit of a
fat-tailed CTRW. For further details we refer to the review [23] and to the recent monograph [48].

Consider a particle performing a one-dimensional, symmetric CTRW with decoupled jump length and
waiting time PDFs, respectively denoted by λ(y) and ϕ(t). Since the random walk is symmetric, the jump
length PDF reflects this symmetry, λ(y) = λ(−y). The Fourier–Laplace transform W0(k, u) of the particle’s
position PDF W0(y, t) is known to obey the Montroll–Weiss relation [1–3]

W0(k, u) =
Φ(u)

1 − ϕ(u)λ(k)
W0(k, 0), (1)

where W0(k, 0) = W0(k, t = 0) denotes the (Fourier-transformed) initial condition, ϕ(u) is the Laplace
transform of the waiting time PDF, and Φ(u) = u−1(1 − ϕ(u)) is the Laplace transform of the sticking
probability Φ(t) = 1 −

∫ t
0 dt′ϕ(t′) for not performing a jump up to time t. Here, we have used standard

definitions of the Laplace transform

L [f (t)] = f (u) =

∫ ∞

0
e−ut f (t) dt (2)

and of the Fourier transform

F[f (y)] = f (k) =

∫ ∞

−∞
e−ikyf (y) dy. (3)

The subscript ‘0’ in the definition of W0 indicates that this quantity refers to the case where the velocity
field is absent.

The diffusive limit of the CTRW process and the associated FDE are obtained from the long-time
behaviour of ϕ(t) and from the large-|y| behaviour of λ(y), which respectively correspond to the small-u
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behaviour of ϕ(u) and to the small-k behaviour of λ(k). For these transforms of the respective PDFs we use
the well-known forms [29]

ϕ(u) = 1 − (τu)α + · · · (4)

with 0 < α � 1, and
λ(k) = 1 − σμ |k|μ + · · · (5)

with 0 < μ � 2. This implies the asymptotic power-law forms ϕ(t) = O
(
τα/t1+α

)
for t � τ with

0 < α < 1 as well as λ(y) = O
(
σμ|y|−1−μ

)
for |y| � σ with 0 < μ < 2. In the limit α = 1 the

characteristic waiting time 〈t〉 = τ is finite, and typical choices are either ϕ(t) = δ(t − τ ) or
ϕ(t) = τ−1exp(−t/τ). Similarly, in the limit μ = 2 the variance 〈y2〉 = 2σ2 of the jump lengths is finite,
and the typical choice is the Gaussian form λ(y) = (4πσ2)−1/2 exp(−y2/[4σ2]) [29]. In particular, the
choice α = 1 and μ = 2 then yields Brownian diffusion with finite characteristic waiting time and jump
length variance, and thus a Gaussian position PDF. In contrast, 0 < α < 1 and μ = 2 lead to
(fractional) subdiffusion, and α = 1 and 0 < μ < 2 correspond to (fractional) superdiffusion (Lévy flights)
(for more details, see [23, 29]).

Inserting equations (4) and (5) into (1) yields

W0(k, u) =
W0(k, 0)

u + Kμ
α |k|μu1−α

, (6)

or, equivalently,
uW0(k, u) − W0(k, 0) = −Kμ

α |k|μu1−αW0(k, u). (7)

This is a diffusion equation in Fourier–Laplace space. In direct space, the equation reads

∂

∂t
W0(y, t) = Kμ

α∇μ
y 0

D1−α
t W0(y, t), (8)

where Kμ
α = σμ/τα is the anomalous diffusion coefficient of dimension cmμ/secα, 0D1−α

t stands for the
Grünwald–Letnikov (GL) fractional derivative, and ∇μ

y is the Riesz fractional operator [23]. The latter is

defined via the relation F∇μ
y f (y) = −|k|μf (k) in Fourier space.

The GL fractional operator has the property [85]

L 0D1−α
t f (t) = u1−αf (u). (9)

This fractional operator is equivalent to the Riemann–Liouville (RL) fractional derivative

0D1−α
t f (t) = 0D1−α

t f (t) (10)

provided that both operators are applied to sufficiently smooth functions f(t) at t = 0, that is, when the
condition [85]

lim
t→0

∫ t

0
(t − τ)α−1 f (τ) dτ → 0 (11)

holds. Unless otherwise specified, we will henceforth assume that this is the case and therefore use the RL
fractional derivative in what follows. The RL operator 0D1−α

t is simply the first derivative of the RL
fractional integral

0D−α
t =

1

Γ(α)

∫ t

0
dτ

f (τ)

(t − τ)1−α
. (12)

For the special case μ = 2 implying a finite variance of the jump-length PDF, it is possible to obtain the
behaviour of the moments associated with the solution W0(y, t) of equation (8) either from the exact
solution or from the corresponding hierarchy of differential equations. For 0 < μ < 2, in contrast, only
fractional moments of order ν exist as long as 0 < ν < μ. For a particle initially located at the origin,
W0(y, 0) = δ(y), the well-known propagator for μ = 2 reads

W0(y, t) =
1√

4Kαtα
H1,0

1,1

[
|y|√
Kαtα

∣∣∣∣ (1 − α/2,α/2)
(0, 1)

]
, (13)
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where Kα ≡ K2
α. In result (13), H1,0

1,1 [·] stands for a Fox H-function [86]. For 0 < α < 1, the above
propagator displays a non-differentiable peak (cusp) at the origin. The solution (13) is equivalent to the
series representation

W0(y, t) =
1√

4Kαtα

∞∑
n=0

(−1)n

n!Γ(1 − α[n + 1]/2)

(
y2

Kαtα

)n/2

. (14)

Employing standard theorems for the Fox functions [86] one can show that for |y| �
√

Kαtα the following
asymptotic stretched Gaussian behaviour emerges [23]:

W0(y, t) ∼ 1√
4πKαtα

√
1

2 − α

(
2

α

)(1−α)/(2−α)( |y|√
Kαtα

)−(1−α)/(2−α)

× exp

(
−2 − α

2

(α

2

)α/(2−α)
[

|y|√
Kαtα

]1/(1−α/2)
)
. (15)

From equation (13) (or from symmetry arguments) it is immediately clear that odd moments vanish. In
turn, the behaviour of the even moments is strongly influenced by the stretched Gaussian behaviour (15).
One finds [23]

〈y2n(t)〉0 = (2n)!
(Kαtα)n

Γ(1 + nα)
, n = 0, 1, . . . (16)

Higher order integer moments can be expressed in terms of the variance 〈y2〉 as follows,

〈y2n〉0 =
(2n)![Γ(1 + α)]n

2nΓ(1 + nα)
〈y2〉n

0. (17)

For α = 1 (normal diffusion) one recovers the moments characterising the typical Gaussian propagator,

〈y2n〉0 =
(2n)!

2nn!
〈y2〉n

0 = (2n − 1)!!〈y2〉n
0 . (18)

In particular, equation (17) can be used to calculate the kurtosis. This quantity is a measure of the
‘tailedness’ of a given probability distribution, defined as

β2 =
〈(y − 〈y〉)4〉
〈(y − 〈y〉)2〉2

. (19)

Recall that for a normal distribution one has β2 = 3. In contrast, a fat-tailed distribution exhibits a large
skewness or kurtosis, relative to that of a normal distribution. Distributions with β2 > 3 are called
leptokurtic (as opposed to distributions with β2 < 3, which are termed platykurtic). For the particular case
μ = 2 described by result (16) one finds

β2 =
〈y〉4

0

〈y2〉2
0

= 6
[Γ(1 + α)]2

Γ(1 + 2α)
=

3Γ(α)Γ(1 + α)

Γ(2α)
. (20)

Thus, β2 decreases monotonically from β2 = 6 for α = 0 to β2 = 3 for α = 1 as α increases. In other
words, the tails become less fat with increasing α, and in this sense the distribution becomes more
Gaussian-like. However, for any value α < 1, the distribution remains leptokurtic with β2 > 3.

2.2. Growing domain
Next we compare the behaviour of positive integer moments up to the kurtosis of the particle distribution
for a symmetric CTRW with their counterparts in a uniformly growing domain.

In the growing domain, the coordinate y of a physical point (hereafter also termed ‘physical coordinate’
or ‘Eulerian coordinate’) is no longer stationary, since each physical point is advected by the growing
domain. Thus, the distance between a physical point at y and the origin 0 changes in time as the domain
expands. In the following, we will also assume that a random walker ‘sticks’ to the physical medium while it
does not jump5 —consequently the walker is also advected by the medium as it expands. It is convenient to
describe the time evolution of y in terms of its initial position x ≡ y0, hereafter termed ‘Lagrangian
coordinate’. One has

5 For instance, a tracer bead intermittently stuck in an expanding hydrogel.
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y = a(t)x, (21)

where a(t) > 0 is the so-called scale factor with ȧ > 0 for a growing domain. Note, however, that our
formalism also accounts for the case of a shrinking domain ȧ < 0.

Analogously to section 2.1 we consider the case of a separable random walk with a (time independent)
jump length PDF λ(y) and a waiting time PDF ϕ(t) with asymptotic behaviours respectively given by
equations (4) and (5). A description of the random walk in terms of the Lagrangian coordinate is especially
well-suited, since the kinetics can then be mapped onto the original domain, at the expense of having to
deal with a time-dependent jump length PDF. Indeed, from probability conservation, the jump length PDF
on the fixed domain (probability per unit length to take a jump of length x) then reads
λ(x|t) = a(t)λ(y = a(t)x).

Assuming that the Fourier transform λ(k) ≡ F[λ(y)] takes the asymptotic form (5) for small wave
numbers k, one finds that the Fourier transform λ(kx|t) ≡ F[λ(x|t)] with respect to the Lagrangian
coordinate x is given by

λ(kx|t) = 1 − σμ |kx|μ/aμ(t) + . . . . (22)

Using both equation (22) and the asymptotic form (4) of the Laplace-transformed waiting time PDF, a
formalism similar to the one introduced in section 2.1 leads to the corresponding description in terms of an
FDE for the evolution of the particle’s PDF W0(x, t) on the original domain (for details we refer
to [59]),

∂

∂t
W0(x, t) =

Kμ
α

aμ(t)
∇μ

x 0D1−α
t W0(x, t). (23)

Note that the main difference with respect to the case of a static domain given by result (8) is that the
anomalous diffusion coefficient is now multiplied by the time dependent prefactor a−μ(t). In other words,
one has an effective, time dependent anomalous diffusion coefficient Kμ

α,eff ≡ a−μ(t)Kμ
α . In the case of a

growing (shrinking) domain, one can therefore interpret that the diffusive steps measured in Lagrangian
coordinates become shorter (larger). In general, this time-dependent diffusion coefficient
complicates the solution of equation (23) considerably. When α = 1, an analytic solution can be obtained
for any value 0 < μ � 2, which includes the parameter range 0 < μ < 2 describing Lévy flights (cf
subsections 2.4 and 4.2). In contrast, a solution in closed form does not appear to exist when α 
= 1.
However, for μ = 2 a careful analysis of the moments of the distribution suffices to unveil a drastic change
in the behaviour of the solution with respect to the case of a static domain. For this particular case, general
expressions for the Lagrangian moments 〈xn〉0 are available, whence expressions for the Eulerian moments
〈yn〉0 immediately follow via the relation

〈yn〉0 = an(t)〈xn〉0. (24)

The most straightforward way to compute the moments is to work in Lagrangian space and then apply
equation (24). However, it is also possible to obtain the PDF W∗

0 (y, t) to find a particle inside the interval
[y, y + dy] at time t by noting that it is related to the PDF W(x, t) for finding the particle in the
corresponding interval [x, x + dx], where x = y/a(t). In some cases, this allows direct computation of the
moments via the evaluation of the corresponding integrals. To start with, one notes that [59]

W ∗
0 (y, t) =

W0(x = y/a, t)

a(t)
. (25)

This implies the three relations
∂W0

∂t

∣∣∣∣
x

= a
∂W ∗

0

∂t

∣∣∣∣
y

+ ȧ
∂(yW ∗

0 )

∂y

∣∣∣∣
t

, (26)

∂W0/∂x|t = a2∂W ∗
0 /∂y|t , (27)

and
∇μ

x W0(x, t) = a1+μ∇μ
y W ∗

0 (y, t). (28)

Inserting relations (26)–(28) into equation (23) one eventually finds the sought equation

∂W ∗
0 (y, t)

∂t
= − ȧ(t)

a(t)

∂

∂y

[
yW ∗

0 (y, t)
]
+ Kμ

α∇μ
y a(t)−1

{
0D1−α

t

[
a(t)W ∗

0 (a(t)x, t)
]}

x→y/a(t)
. (29)

6
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As becomes evident from a comparison between equations (23) and (29), in Lagrangian space the emerging
integrodifferential operators are the same as in the static case (with the aforementioned peculiarity of the
time-dependent effective jump length statistics), whereas the description in Eulerian space is significantly
more involved. The underlying reason is of course that in the former case the walker’s spatial coordinate
only changes when it jumps, whereas in the latter it also changes in the absence of jumps as a result of the
Hubble drift associated with the continuously evolving domain.

In the case μ = 2 it is possible to directly obtain the behaviour of the Eulerian moments
〈yn(t)〉 ≡

∫ ∞
−∞ ynW∗

0 (y, t)dy by multiplication of equation (29) with yn and subsequent integration over y.
This yields a hierarchy of differential equations for the Eulerian moments.

2.3. Behaviour of the moments for 0 < α � 1 and μ = 2
Our starting point is equation (23), which in the present case becomes

∂

∂t
W0(x, t) =

Kα

a2(t)

∂2

∂x2 0D1−α
t W0(x, t) (30)

with Kα ≡ K2
α. Moments of different order can be obtained by multiplication with the spatial variable x

raised to the corresponding power and by subsequent integration.

2.3.1. Variance
For a generic scale factor a(t), one has the formula [59]

〈x2〉0 =
2Kα

Γ(α)

∫ t

0
dτ

τα−1

a2(τ)
. (31)

In the case of a power-law expansion a(t) = (1 + t/t0)γ (with γ � 0, whereby γ = 0 corresponds to the
case of a non-growing domain), one has

〈x2〉0 = 2Kαtα2F̃1

(
α, 2γ, 1 + α,− t

t0

)
, (32)

where 2F̃1(·) denotes the regularised hypergeometric function. From relation (15.3.7) on page 559 of
reference [87] one directly finds

2F̃1(a, b, c,−z) ∼ Γ(b − a)

Γ(b)Γ(c − a)
z−a +

Γ(a − b)

Γ(a)Γ(c − b)
z−b, a 
= b, (33a)

when z →∞. Similarly, using relation (15.3.13) on page 560 of the same reference one obtains

2F̃1(a, a, c,−z) ∼ z−a ln(z)

Γ(a)Γ(c − a)
. (33b)

Equation (32) in combination with equation (33) allows one to conclude that the Lagrangian variance
displays three different asymptotic long-time regimes, depending on the specific values of α and γ, namely
[59]

〈x2〉0 ∼
2Kαt2γ

0

Γ(α)(α− 2γ)
tα−2γ (34a)

for γ < α/2,

〈x2〉0 ∼
2Kαtα0
Γ(α)

ln

(
t

t0

)
(34b)

for γ = α/2, and

〈x2〉0 ∼
2Kαtα0 Γ(2γ − α)

Γ(2γ)
(34c)

for γ > α/2. In this latter case, 〈x2〉0 tends to a constant value as t →∞, implying that the Lagrangian
propagator ‘freezes’ as a result of the fast domain growth.

Correspondingly, in physical space one gets

〈y2〉0 ∼
2Kα

Γ(α)(α− 2γ)
tα (35a)

7
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for γ < α/2,

〈y2〉0 ∼
2Kα

Γ(α)
tα ln

(
t

t0

)
(35b)

for γ = α/2, and

〈y2〉0 ∼
2Kαtα−2γ

0 Γ(2γ − α)

Γ(2γ)
t2γ (35c)

for γ > α/2.
In the first case γ < α/2, the domain growth is slow enough to ensure that the long-time behaviour of

the variance is the same as in case of a static domain, except for the fact that one has a modified effective
diffusion coefficient Kαα/(α− 2γ). In contrast, for γ > α/2, the particle drift associated with the
deterministic domain growth (the so-called ‘Hubble drift’ in the language of cosmology) becomes so large
that the intrinsic diffusive motion of the particle only represents a negligible perturbation, and thus
〈y2〉0 ∝ t2γ at sufficiently long times. Finally, in the marginal case γ = α/2 the asymptotic variance displays
the same qualitative time dependence as for a non-growing domain, but a logarithmic correction
appears.

Since a sufficiently fast power-law growth γ > α/2 implies that the long-time behaviour is essentially
dominated by the Hubble drift, this will obviously also hold true for faster types of domain growth. An
interesting example is the case of an exponential growth a(t) = exp(Ht) with H > 0. This yields

〈x2〉0 = 2Kα(2H)−α

[
1 − Γ(α, 2Ht)

Γ(α)

]
∼ 2Kα(2H)−α, (36)

implying 〈y2(t)〉0 ∝ exp(2Ht), as expected.

2.3.2. Fourth-order moment
In contrast to the case of a static domain, on a growing domain the fourth-order moment is related to the
variance in a more intricate fashion [59],

〈x4〉0 = 12Kα

∫ t

0

dτ

a2(τ) 0D1−α
τ 〈x2(τ)〉0. (37)

Using formula (31) and performing the corresponding fractional derivative, one obtains

〈x4〉0 = 24
(Kα)2

Γ(α)

∫ t

0

dτ

a2(τ) 0D−α
τ

τα−1

a2(τ)
. (38)

For the specific case of a power-law growth, one has

〈x4〉0 = 48(Kα)2α

∫ t

0
dττ 2α

(
1 +

τ

t0

)−2γ [
1

τ 2F̃1

(
α, 2γ, 1 + 2α,− τ

t0

)

− γ

t0
2F̃1

(
1 + α, 1 + 2γ, 2 + 2α,− τ

t0

)]
. (39)

No elementary analytic expression for the above integral appears to exist. However, it can be evaluated
numerically. Conversely, equations (33a) and (33b) allow one to infer the long-time behaviour of the
fourth-order moment. As in the case of the second-order moment, three different regimes can be
distinguished. For a slow expansion γ < α/2, one has

〈x4〉0 ∼ 24(Kα)2t4γ
0

(α− γ)Γ(α− 2γ)

(α− 2γ)Γ(α)Γ(1 + 2α− 2γ)
t2α−4γ. (40a)

In the marginal case γ = α/2, we find

〈x4〉0 ∼
12(Kα)2t2α

0

[Γ(α)]2

[
log

(
t

t0

)]2

. (40b)

Finally, when γ > α/2, since 〈x4〉0 ∝
∫ t/t0

0 dz zα−2γ−1, in the long-time limit 〈x4〉0 tends to a constant value
(to be determined numerically). As was the case for the variance, the Lagrangian fourth-order moment
tends to a constant value. In fact, it can be proven that whenever a ‘freeze-out’ of the variance takes place, it
propagates to all even-order moments (to this end, one can e.g. take equations (62) and (63) in

8
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reference [59] as a starting point). Of course, this can only mean that the Lagrangian propagator tends to a
stationary profile as t →∞.

For the sake of completeness, we also give here the result for an exponential growth a(t) = eHt with
H > 0. One finds

〈x4〉0 =
24(Kα)2

Γ(2α)

∫ t

0
dτ exp(−3Hτ)τ 2α−1

0F1

(
1

2
+ α,

H2τ 2

4

)
, (41)

where 0F1(·) stands for the confluent hypergeometric function. The integral on the right-hand side remains
well-defined in the limit t →∞ and the asymptotic value of the fourth-order moment is

〈x4〉0(t →∞) ∼ 3 × 81−α(Kα)2H−2α. (42)

2.3.3. Kurtosis
Let us briefly discuss the behaviour of the kurtosis (19) on the basis of the results for the fourth-order
moment. To start with, note that this quantity refers to the form of the propagator, and is therefore scale
invariant as long as the domain growth is uniform (the only case we consider throughout the present work).
Thus,

β2 =
〈(y − 〈y〉)4〉
〈(y − 〈y〉)2〉2

=
〈(x − 〈x〉)4〉
〈(x − 〈x〉)2〉2

, (43)

i.e., one may indistinctively use Eulerian or Lagrangian coordinates for the computation of the kurtosis. For
a symmetric walk, this gives

β2 =
〈y4〉0

〈y2〉2
0

=
〈x4〉0

〈x2〉2
0

. (44)

The main novelty introduced by the domain growth is a time-dependent kurtosis in the subdiffusive case
0 < α < 1 (in the normal diffusive case α = 1, the kurtosis remains a stationary quantity). This implies
that the propagator for the present case cannot be obtained by a simple rescaling of the propagator referring
to a static domain. More precisely, the difference βstatic

2 − β2 grows in time and attains a maximum value
βstatic

2 − β∞
2 as t →∞.

For the special case of the power-law growth studied previously, the behaviour of the hypergeometric
functions in the case γ � α/2 yields (cf equations (34a) and (40a))

β∞
2 =

3Γ(α)Γ(1 + α− 2γ)

Γ(2α− 2γ)
. (45)

In particular, this implies β∞
2 > 3 for γ < α/2 and β∞

2 = 3 for γ = α/2. Starting from the case γ = 0 of a
non-growing domain and increasing γ, as one approaches γ = α/2 from below the final value of kurtosis
decreases monotonically, and the form of the final propagator increasingly resembles a Gaussian. In fact,
when γ = α/2 the stationary kurtosis takes the value 3, i.e., that of a Gaussian PDF. In this sense, even
though the solution of equation (30) remains non-Gaussian in this case, one may still speak of
Gaussian-like behaviour.

The physical origin of the time decrease of the kurtosis observed in the case α < 1 with 0 < γ � α/2
(and also for γ > α/2, see below) is intriguing; for α = 1, equation (30) describes scaled Brownian motion,
and the propagator remains strictly Gaussian at all times. In contrast, for α < 1 the propagator is fat-tailed
at short times; however, as time goes by, the effect of the Hubble drift on these fat tails of the distribution
appears to become stronger than in the central part. This could explain that for α < 1 the kurtosis takes
values which are increasingly close to the Gaussian value β2 = 3 in the course of time. We have
no physical explanation for the Gaussian-like behaviour observed when γ = α/2, other than the fact that
this particular value separates the diffusion-dominated regime from the regime dominated by the domain
growth [59].

In figure 1 we show simulations results for a power-law expansion a(t) = (1 + t/t0)γ with t0 = 103 and
different values of γ � α/2 (see appendix A for a brief description of the simulation algorithm). The curves
for β2(t) can be seen to approach the value of β∞

2 given by result (45). In particular, the decrease of β∞
2

with increasing γ predicted by equation (45) is confirmed. The theoretical results compare very favourably
with Monte-Carlo simulations at times sufficiently long to reach the diffusive regime.

In figure 2 we illustrate how the form of the propagator changes as its kurtosis evolves in time. We show
the Lagrangian propagator for a power-law expansion a(t) = (1 + t/t0)γ with t0 = 103 and γ = α/2 = 1/4
at two different times. In panel (a), we display the propagator at a comparatively short time (t = 214). We
have been able to solve the FDE computationally up to this time (details of the algorithm can be found in

9
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Figure 1. Kurtosis for a subdiffusive random walk with α = 1/2 and Kα = 1/2 on an evolving domain with power-law scale
factor a(t) = (1 + t/t0)γ , for t0 = 103 and γ = 0, 1/20, 1/10, 3/20, 1/5, and 1/4. Symbols represent simulations results with 106

realisations. Numerical solutions are represented by solid lines. The value of β2(t) was computed by numerical integration of the
Lagrangian fourth-order moment and subsequent division by the analytical expression of the squared Lagrangian second-order
moment. Horizontal dashed lines represent the value of β∞

2 for each value of γ according to equation (45). The asymptotic value
for γ = 1/4, β∞

2 = 3, is not shown.

Figure 2. Logarithmic representation of the Lagrangian propagator W(x, t) for a subdiffusive particle with α = 1/2 and
Kα = 1/2. The domain growth is given by the power-law scale factor a(t) = (1 + t/103)1/4. In panel (a) we show the simulations
results (empty squares) for the propagator at time t = 214, together with the numerical solution of equation (30) obtained via a
fractional finite-difference method [88] with spatial discretisation Δx = 0.1 and time discretisation Δt = 0.1 (solid line). The
dashed line represents the exact solution for the static case at t = 214. In panel (b) we show the propagator at t = 234 obtained
from simulations (empty circles), and we compare it with a Gaussian whose variance is taken to be that of the real distribution.
To obtain the simulation results displayed in both panels we performed 106 realisations.

reference [88]). The propagator is still quite pointy at x = 0 and thus not too different from the shape on a
static domain (γ = 0). In more quantitative terms, at t = 214 the kurtosis of W(x, t) is β2

(
214

)
� 4.22,

whereas on a static domain one would have βstatic
2 ≈ 4.71. However, at the later time t = 234 —see panel

(b)—our numerical Monte-Carlo simulations reveal that the sharp peak at x = 0 evolves into a bell-shaped
hump. This signals the evolution of the propagator towards the Gaussian-like state reached as t →∞.
However, the kurtosis β2

(
t = 234

)
� 3.42 at this time is still clearly distinguishable from the final value

β∞
2 = 3.

In contrast to the case γ � α/2 for a sufficiently fast domain growth (γ > α/2) the final value of the
kurtosis β∞

2 increases as γ grows. As shown in reference [59], in this γ-regime the Lagrangian propagator
eventually freezes and its final form is always leptokurtic (β∞

2 > 3). This also implies the long-time
freeze-out of all the associated moments, which tend to finite values as t →∞. In particular, this holds for
the second- and the fourth-order moments, from which the kurtosis is computed. As explained in reference
[59], the physical reason for the observed freeze-out is the irrelevance of the diffusive spreading
with respect to the Hubble drift at sufficiently long times. As a result of this, after a characteristic time
tchar > t0 (see figure 3), changes in the form of the Lagrangian propagator and in the associated kurtosis
become negligibly small, and the monotonic time decrease of the kurtosis saturates at a value
β∞

2 ∈ (3,βstatic
2 ). Of course, tchar will depend on both t0 and γ. For larger values of γ, one expects a decrease

of tchar, since the Hubble drift becomes dominant with respect to the diffusive spreading at earlier times,
and hence the saturation in Lagrangian space becomes faster. This entails a stronger memory of the
tailedness displayed by the early-time propagator, and therefore a larger γ leads to a larger β∞

2 . Note that

10
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Figure 3. Kurtosis for a subdiffusive random walk with α = 1/2 and Kα = 1/2 on fast growing domains (γ > α/2 for
power-law expansions and H > 0 for exponential expansions). The two upper curves correspond to an exponential scale factor
a(t) = exp(Ht), whose logarithmic derivative is, respectively, H = 10−5 and 10−6. The two bottom curves correspond to a
power-law scale factor a(t) = (1 + t/t0)γ with t0 = 104 and γ = 3/2 and 3/4, from top to bottom at t = 108. Symbols represent
simulation results from 106 realisations. Numerical solutions are depicted by solid lines. The value of β2(t) was computed by
numerical integration of the Lagrangian fourth-order moment and subsequent division by the analytical expression of the
squared Lagrangian second-order moment. The dashed line depicts the value of βstatic

2 � 4.71 (cf equation (20)).

this is just the opposite of what happens when 0 < γ � α/2. Our findings for the case γ > α/2 are fully
confirmed by the results shown in figure 3, which displays a comparison between theory and simulations in
the long-time regime.

Summarising, Gaussian-like behaviour is only observed when γ = α/2. For any other value the kurtosis
of the final distribution is always > 3, i.e., the final PDF is leptokurtic and a strong signature of the
early-time PDF persists for arbitrarily long times. Note, however, that the asymptotic value β∞

2 does not
depend on the characteristic time t0, which only has an influence on the transient behaviour.

Of course, in the exponential case a(t) = eHt with H > 0, a freeze-out of the Lagrangian propagator also
takes place. It is, however, striking that β∞

2 = 3 × 21−α, regardless of the value of H. For any α < 1 one has
β∞

2 > βGaussian
2 ≡ 3, but β∞

2 < βstatic
2 ≡ 3Γ(α)Γ(1 + α)/Γ(2α)—see equation (20).

Results for two different values of H > 0 are displayed in figure 3. The kurtosis β2(t) in this case is seen
to approach β∞

2 at a time of the order of 1/H. As already anticipated β∞
2 does not depend on H.

Of interest is also the behaviour in the case of an exponential contraction, i.e., a(t) = eHt with H < 0. In
this case it is easier to work in physical coordinates. In the limit t →∞ one has the asymptotic behaviour

〈y2〉0 ∼
Kαtα−1

|H|Γ(α)
, (46a)

〈y4〉0 ∼
3 × 21−α(Kα)2

|H|1+αΓ(α)
tα−1 (46b)

whence
β2 ∼ 3 × 21−α|H|1−αt1−α. (47)

For further details of the calculations of the moments, including the use of Tauberian theorems, we refer to
reference [59].

As expected, when α = 1 the kurtosis is equal to three, whereas for α < 1 the kurtosis always grows in
time (in this case, it is proportional to t1−α).

Other types of contraction can also be considered. The case of power-law contraction, i.e.,
a(t) = (1 + t/t0)γ with γ < 0, is also covered by our formalism. The kurtosis β2(t) increases in time, until a
limiting value β∞

2 is attained. This limiting value is still given by equation (45), which also holds for γ < 0.
For a given α < 1, the value of β∞

2 grows with increasing |γ|.
We close this subsection by noting that the observed time increase of β2 for shrinking domains is likely

to be related to the inversion of the direction of the Hubble drift with respect to the case of a growing
domain (in uniformly shrinking domains, the Hubble drift tends to bring any two physical points closer to
each other, whereas it tends to separate them in a uniformly growing domain). We actually conjecture that
beyond the two cases with exponential and power-law scale factor studied here, the kurtosis of the
propagator generated by subdiffusive walks with α < 1 displays a time decrease (increase) on any uniformly
growing (shrinking) infinite domain.
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2.4. Lévy flights
As already anticipated, in the case of Lévy flights (α = 1 and μ < 2) the propagator W0(x, t) associated with
equation (23) can be explicitly obtained. One has

W0(x, t) = Lμ

(
x;Kμ

1

∫ t

0
a−μ(u)du

)
, (48)

where
Lμ(x;σμ

L ) = F−1
[
exp

(
−|kσL|μ

)]
(49)

is a symmetric Lévy-stable density with exponent μ and scale factor σL. Note that for μ = 2, this Lévy
density becomes a Gaussian PDF with standard deviation

√
2σL.

By definition, the second-order moment of a Lévy flight is infinite. However, one can define a typical
width as wμ(t) ≡ CμσL(t), where Cμ is a constant chosen in such a way that

∫ wμ(t)

0
W0(x, t)dx = P/2 (50)

holds, where P is a predetermined probability.
The typical width wμ will be seen to play an important role when addressing the kinetics of mixing of

two initially localised Lévy pulses evolving on a growing domain (cf section 4).

3. CTRW in a velocity field

The diffusion of a particle in a uniform velocity field can be regarded as the motion of a random walker
dragged by a fluid flowing with velocity �v with respect to the laboratory reference frame SL (for simplicity,
the velocity �v will hereafter be assumed to be stationary unless otherwise specified). An example would be a
frog performing random jumps with statistically distributed waiting times on a wooden log that is
longitudinally floating downstream on a river. On a more microscopic scale one could imagine a tracer
particle subdiffusing in a hydrogel that itself is slowly streamed in a fluidic device.

Let us now introduce a second reference frame S0 in which the deterministic contribution of the velocity
field is subtracted from the overall particle motion, i.e., a frame which follows the fluid that drags the
particle along. Clearly, SL moves with velocity −�v with respect to S0. Let us respectively denote by W0(�y, t)
and W(�y, t) the walker’s PDF in S0 and SL. On a static domain the relation between both PDFs will be
given by the Galilean transformation W(�y, t) = W0(�y − �vt, t). In particular one has

W(y, t) = W0(y − vt, t) (51)

in one dimension. In Fourier–Laplace space equation (51) becomes

W(k, u) = W0(k, u + ikv). (52)

In the case of a growing domain the particle is not only advected by the velocity field but also
experiences an additional drift as it is dragged by the physical medium (i.e., the aforementioned Hubble
drift). Recalling the previous example of a hopping frog on a log floating downstream, one might wonder
what the equation of motion of the frog would be if the log were replaced by a linear rubber
strip that expands uniformly with a certain scale factor. Before providing the answer to this question, we
will first address the simpler case of a static domain, as done in section 2.

3.1. Static domain
From equations (52) and (6) one finds

W(k, u) =
W(k, 0)

u + ivk + Kμ
α |k|μ(u + ivk)1−α

, (53)

or, equivalently,
(u + ivk)W(k, u) − W(k, 0) = −Kμ

α |k|μ(u + ivk)1−αW(k, u), (54)

whence the Galilei-invariant (GI) advection–diffusion equation

12
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(
∂

∂t
+ v

∂

∂y

)
W(y, t) = Kμ

α∇μ
y

(
∂

∂t
+ v

∂

∂y

)1−α

W(y, t) (55)

follows. The operator
(
∂t + v ∂y

)1−α
is the fractional material derivative introduced by Sokolov and Metzler

[89]. It is defined by

FL

[(
∂

∂t
+ v

∂

∂y

)1−α

W(y, t)

]
= (u + ivk)1−αW(k, u). (56)

From this expression and from relation (9) one can see that the fractional material derivative reduces to the
GL derivative if v = 0. As mentioned in the Introduction, the GI fractional advection–diffusion
equation (55) for μ = 2 was recently obtained by Cairoli et al [84]. While the standard material derivative,
corresponding to the limit α = 1 reflects the GI of a standard physical system, the power (1 − α) reflects
the spatio-temporal coupling in a waiting time-random walk scenario with a constant relocation
speed v.

The fractional derivative in direct (position-time) space is [90]

(
∂

∂t
+ v

∂

∂y

)1−α

W(y, t) =
1

Γ(α)

(
∂

∂t
+ v

∂

∂y

) ∫ t

0
dτ

W(y − v(t − τ), τ)

(t − τ)1−α
. (57)

Here, it is assumed that W(k, t) satisfies the condition (11) of good behaviour at t = 0.6

The fractional material derivative can be rewritten in terms of the RL integral in the convenient form

(
∂

∂t
+ v

∂

∂y

)1−α

W(y, t) =

(
∂

∂t
+ v

∂

∂y

) [
0D−α

t W(y + vt, t)
]

y→y−vt

=

(
∂

∂t
+ v

∂

∂y

) [
0D−α

t W0(y, t)
]

y→y−vt
. (58)

In this way the GI advection-diffusion equation (55) becomes

(
∂

∂t
+ v

∂

∂y

)
W(y, t) = Kμ

α∇μ
y

(
∂

∂t
+ v

∂

∂y

) [
0D−α

t W0(y, t)
]

y→y−vt
. (59)

Note that in the above expression the time fractional derivative is applied to W0, which corresponds to the
particle distribution in the reference frame S0. This frame moves by a distance vt during the time t. As a
result of this the evaluation point for the derivative is shifted by the same quantity.

Finally, it should be noted that the propagator (53) and the corresponding FDAE (59) differ from those
considered in references [91, 92]. In particular, for μ = 2, the propagator studied in these works can reach
non-physical negative values with moments that are only correct up to order two.

3.2. Growing domain
We continue to assume that the particle is subject to the influence of a constant velocity field (the velocity
measured with respect to the laboratory frame SL is v). As in the case of a symmetric walk it is convenient
to work in Lagrangian coordinates. If the domain expands uniformly with the scale factor a(t), the
Lagrangian distance travelled by the reference frame S0 (the frame moving with velocity v with respect to
SL) during the time t is

Λ(t) =

∫ t

0

v

a(t′)
dt′ ≡

∫ t

0
ν(t′) dt′ ≡ vT(t). (60)

Here, the transformed time T(t) replaces the physical time t as a result of the difference between the
Lagrangian distance Λ(t) travelled by S0 and the distance vt that it would cover on a static domain7. For
instance, an exponential growth a(t) = exp(Ht) with H > 0 yields,

T(t) =
1 − exp(−Ht)

H
, (61)

6 Equation (57) is slightly different from that in [90], since in that reference the Fourier transform is defined as in equation (3) but with
the replacement k →−k).
7 Notice that in cosmology, Λ, T and ν are known as ‘comoving distance’, ‘conformal time’, and ‘comoving velocity’, respectively [93].
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Figure 4. Lagrangian propagators for a subdiffusive random walk with μ = 2, α = 1/2, and Kα = 1/2. The domain growth is
given by a power-law scale factor a(t) = (1 + t/103)1/8. We display cases with v = 0 (zero field) and v = 1. Symbols depict
simulations results at times t = 104 and t = 105 for the case v = 0 and v = 1 (see legend). To obtain these results, 106

realisations were performed for each parameter set. Solid lines represent numerical solutions of equation (30) at these times (the
temporal and spatial steps are, respectively, Δt = t/105 and Δx = 0.1). The broken lines are the exact solutions at t = 104

(dashed) and t = 105 (dotted) for a static domain.

whereas a power-law growth a(t) = (1 + t/t0)γ gives

T(t) =
t0

γ − 1

[
1 −

(
t

t0

)1−γ
]

, γ 
= 1 (62a)

and

T(t) = t0 ln

(
1 +

t

t0

)
, γ = 1. (62b)

Thus, for a sufficiently fast growth (exponential or power-law with γ > 1) one has an asymptotic finite
value T∞ ≡ T(t →∞), and correspondingly the asymptotic Lagrangian distance Λ∞ ≡ Λ(t →∞) is also
finite.

The PDF W(x, t) in the laboratory frame SL is just the PDF W0(z, t) in the comoving reference frame S0,
but with the shifted position z = x − Λ(t). In other words,

W(x, t) = W0(x − Λ(t), t). (63)

In figure 4 the above relation is illustrated for a stretching domain with a(t) = (1 + t/103)1/8 by comparing
simulations results for W0 and W. The Lagrangian propagators are also compared with the corresponding
ones for the case of a static domain. Note that the width of the propagator is decreased with respect to the
static case, since the jump length measured in Lagrangian coordinates is divided by a(t).

Now, as we already know from section 2, W0(x, t) satisfies relation (23). Since Λ(t) may be a complicated
function of t, in general no relationship between the Fourier–Laplace transforms of W(x, t) and W0(x, t)
similar to equation (52) can be obtained from result (63). Therefore, we can no longer use the
straightforward procedure of section 2 to derive the FDAE that we seek. For this reason, we will follow a
different path involving equations (23), (59), and (63).

In view of equations (59) and (23) a reasonable guess for the FDAE is

(
∂

∂t
+ ν

∂

∂x

)
W(x, t) =

Kμ
α

aμ(t)
∇μ

x

[
0D1−α

t W0(x, t)
]

x→x−Λ(t)
, (64)

since Λ(t) and vt in equations (64) and (59) are, respectively, the displacement in the laboratory frame SL of
the comoving frame S0 during the time t. We confirm that equation (64) is indeed the correct FDAE by
showing that W(x, t), as given by equation (63), satisfies relation (64). First, let us evaluate the left-hand side
of equation (64), (

∂

∂t
+ ν

∂

∂x

)
W(x, t) =

(
∂

∂t
+ ν

∂

∂x

)
W0(x − Λ(t), t) =

∂W0

∂t

∣∣∣∣
x−Λ(t)

. (65)

Next, we evaluate the right-hand side of equation (64),
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Kμ
α

aμ(t)
∇μ

x

[
0D1−α

t W0(x, t)
]

x→x−Λ(t)
=

[
Kμ
α

aμ(t)
∇μ

x 0D1−α
t W0(x, t)

]
x→x−Λ(t)

=
∂W0

∂t

∣∣∣∣
x−Λ(t)

, (66)

where, in the last step, equation (23) was taken into account. Comparing equation (65) with (66) we
conclude that W(x, t) = W0(x − Λ(t), t) indeed satisfies relation (64). Defining

(
∂

∂t
+ ν

∂

∂x

)1−α

W(x, t) ≡
(

∂

∂t
+ ν

∂

∂x

)
1

Γ(α)

∫ t

0
dτ

W (x + Λ(τ) − Λ(t), τ)

(t − τ)1−α
, (67)

the FDAE (59) for a uniformly growing domain can be rewritten in a way similar to equation (55),

(
∂

∂t
+ ν

∂

∂x

)
W(x, t) =

Kμ
α

aμ(t)
∇μ

x

(
∂

∂t
+ ν

∂

∂x

)1−α

W(x, t). (68)

Equation (68), or equivalently equation (64) (see just below), is one of the main results of this paper.
Comparing equations (64) and (68) one can see that both are equivalent if

(
∂

∂t
+ ν

∂

∂x

)1−α

W(x, t) =
[

0D1−α
t W0(x, t)

]
x→x−Λ(t)

. (69)

In order to prove this we first note that equation (67) can be rewritten as (see equation (12))

(
∂

∂t
+ ν

∂

∂x

)1−α

W(x, t) =

(
∂

∂t
+ ν

∂

∂x

) [
0D−α

t W(x + Λ(t), t)
]

x→x−Λ(t)
. (70)

Conversely, for any differentiable function G(x, t), one has

(
∂

∂t
+ ν

∂

∂x

)
[G(x, t)]x→x−Λ(t) =

(
∂

∂t
+ ν

∂

∂x

)
G(x − Λ(t), t)

=
∂G

∂t

∣∣∣∣
x−Λ(t)

− ∂Λ(t)

∂ t

∂G

∂x

∣∣∣∣
x−Λ(t)

+ ν
∂G

∂x

∣∣∣∣
x−Λ(t)

=
∂G

∂t

∣∣∣∣
x−Λ(t)

. (71)

Taking G(x, t) = 0D−α
t W(x + Λ(t), t) and assuming that (d/dt) 0D−α

t = 0D1−α
t = 0D1−α

t (see
equation (10)), one finds that the right-hand side of equations (69) and (70) coincide, implying that
relation (69) indeed holds.

Even though the velocity v has been assumed to be constant, it is worth noting that equations (64) and
(68) still hold when the reference frame S0 moves with a time-dependent velocity with respect to SL. In this
case, one simply replaces ν = v/a(t) with ν = v(t)/a(t).

We close this section by deriving the FDAE in terms of the physical coordinate y. The derivation
proceeds along the same lines as in the field-free case (cf section 2). The relations (25)–(28) for this latter
case are completely analogous to the equations relating W∗(y, t) and W(x, t) in the presence of the velocity
field. Indeed, one has

W ∗ (y, t) =
W(x = y/a, t)

a(t)
, (72)

and, correspondingly,

∂W

∂t

∣∣∣∣
x

= a
∂W ∗

∂t

∣∣∣∣
y

+ ȧ
∂(yW ∗ )

∂y

∣∣∣∣
t

, (73a)

as well as

∂W

∂x

∣∣∣∣
t

= a2 ∂W ∗

∂y

∣∣∣∣
t

, (73b)

and

∇μ
x W(x, t) = a1+μ ∇μ

y W∗(y, t). (73c)
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Inserting equations (72c)–(73c) into (64) and taking into account equation (63) one eventually obtains the
result

∂W ∗

∂t
= − ∂

∂y

[(
ȧ

a
y + aν

)
W ∗ (y, t)

]
+ Kμ

α∇μ
y 0

P1−α
t W ∗ (y, t), (74)

where

0P1−α
t W ∗ (y, t) =

1

a

{
0D1−α

t

[
aW ∗ (ax + aΛ, t)

]}
x=y/a−Λ

. (75)

Let us once more recall that equation (74) holds for well-behaved functions W∗(y, t). Strictly speaking, the
RL-fractional derivative therein must be replaced with the GL-fractional derivative 0D1−α

t , and
consequently, 0P1−α

t must also be replaced with the corresponding operator, defined via the equation

0P1−α
t W ∗ (y, t) =

1

a

{
0D1−α

t

[
aW ∗ (ax + aΛ, t)

]}
x=y/a−Λ

. (76)

As in the zero-field case, a comparison between equations (68) and (74) makes once again clear the role
of the Hubble drift, which implies that the walker moves even when it does not jump, and thereby forces
one to use more intricate integrodifferential operators for the description of the process.

3.3. Moments of the propagator
From the exact relationship (63) one can easily find the moments 〈xn〉 of W in terms of the moments 〈xn〉0

of W0. One has

〈xn〉 =
∫ ∞

−∞
dz (z + Λ)nW0(z, t) =

n∑
m=0

( n

m

)
Λn−m〈xm〉0. (77)

Restricting ourselves to the case μ = 2 and 0 < α � 1 (subdiffusive case), the second- and fourth-order
moments of the PDF are respectively given by equations (31) and (38). By symmetry, odd moments vanish
trivially, 〈x2n+1〉0 ≡ 0. Taking all this into account in equation (77) we find explicit expressions for the first
four Lagrangian moments:

〈x〉 = Λ(t), (78a)

〈x2〉 = Λ2(t) +
2Kα

Γ(α)

∫ t

0
dτ

τα−1

a2(τ)
(78b)

〈x3〉 = Λ3(t) +
6Kα

Γ(α)
Λ(t)

∫ t

0
dτ

τα−1

a2(τ)
(78c)

〈x4〉 = Λ4(t) +
12Kα

Γ(α)
Λ2(t)

∫ t

0
dτ

τα−1

a2(τ)
+ 24

(Kα)2

Γ(α)

∫ t

0

dτ

a2(τ) 0D−α
τ

τα−1

a2(τ)
. (78d)

Focussing on the first two equations, equation (78a) tells us that the first moment 〈x〉 is simply given by the
deterministic shift, i.e., the Lagrangian distance Λ(t) travelled by S0 after a time t. Conversely,
equation (78b) implies that 〈x2〉0 − 〈x〉2

0 equals 〈x2〉 − 〈x〉2, i.e., the variance in S0 is the same as in SL.
Thus, regardless of the value of α the dispersion properties of the random walk are not affected by the
velocity field. In contrast, in the case of a constant external force [61] this only holds when the particles are
Brownian (α = 1). As soon as 0 < α < 1, the dispersion properties are altered both on a static domain [23]
and on a growing domain [61].

It is instructive to check that the expressions for the moments obtained above can be directly recovered
from equation (68). In order to deduce equations (78(a)–(c) from equation (68) we first multiply this latter
equation with xn and subsequently integrate over space. We are then left with the hierarchy

d〈xn〉
dt

− nν〈xn−1〉 = Kα

Γ(α)a2(t)

(
∂

∂t

∫ t

0
dτ

I(n)
2

(t − τ)1−α
+ ν

∫ t

0
dτ

I(n)
3

(t − τ)1−α

)
, (79)

where
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I(n)
m =

∫ ∞

−∞
dx xn ∂m

∂xm
W(x − Λ(t) + Λ(τ), τ). (80)

Performing the change of variable z = x − Λ(t) + Λ(τ ) in this integral, using the binomial expansion for zn,
and integrating by parts, one finally obtains

d〈xn〉
dt

= nν〈xn−1〉+ Kα

Γ(α)a2(t)

n∑
j=2

(
n

j

)
j(j − 1)

(
d

dt
J(n)

j,2 − ν(j − 2)J(n)
j,3

)
, (81)

where

J(n)
j,m =

∫ t

0
dτ

[Λ(t) − Λ(τ)]n−j

(t − τ)1−α
〈xj−m(τ)〉. (82)

For n = 1 equation (81) becomes d〈x〉/dt = ν, and equation (78a) follows immediately. For n = 2 relation
(81) becomes

d〈x2〉
dt

= 2ν〈x〉+ 2Kα

Γ(α)a2(t)

d

dt
J(2)

2,2 . (83)

From this equation and from result (78a) one immediately finds equation (78b) by taking into account that
dJ(2)

2,2/dt = tα/α.
We now proceed to derive equation (78c) from result (81). For n = 3, relation (81) can be written as

d〈x3〉
dt

= 3ν〈x2〉+ 6Kα

Γ(α)a2(t)
tα−1Λ(t) (84)

after a straightforward calculation making use of equation (78a). Inserting equation (78b) into (84) one
obtains

d〈x3〉
dt

= 3νΛ2 +
6Kα

Γ(α)

d

dt

[
Λ

∫ t

0

τα−1

a2(τ)
dτ

]
. (85)

Equation (78c) then follows immediately from (85).
The validity of result (78d) for the fourth-order moment can also be corroborated in a similar way. The

calculation is straightforward but not shown here explicitly.
In summary, when a velocity field is ‘switched on’, the Lagrangian propagator is shifted by a

displacement Λ(t) = vT(t) (cf equation (63)) equal to the first moment, just like a propagator is shifted by
the Galilean displacement vt in the standard case of a static domain (as in this latter case, the centred
moments, i.e., moments of x − 〈x〉, remain invariant). By virtue of equation (21), the corresponding shift in
Eulerian coordinates is then a(t)Λ(t).

While the above conclusions may seem rather intuitive, we recall that they are very specific of a Galilean
bias. For example, a biasing force field which only acts at the time of each jump does not conserve the
centred moments of a subdiffusive walk (see e.g. reference [61]).

4. Mixing of diffusive pulses

We now proceed to study the influence of a velocity field on the mixing properties of two diffusive pulses on
a uniformly growing one-dimensional domain. We consider both cases of normal and anomalous diffusion.
For convenience, our analysis will be carried out in Lagrangian coordinates.

As mentioned in the introduction, mixing properties are crucial to understand encounter-controlled
reactions involving pairwise interactions, as originally modelled by Smoluchowski [94]. In biological cells,
for instance, monomers of regulatory proteins meet diffusively and form dimers [95], and the dimer then
diffuses to its designated binding site on the genome or a DNA plasmid [96, 97].8 Analogous processes need
to run off in vesicles designed as artificial cells [98]. In the case of particles advected by the growing
domain, for instance, by the expanding cytoskeleton in a living biological cell or compartments in growing
vesicles [98], it is intuitively clear that the associated Hubble drift will reduce diffusional mixing and thereby
decrease the reaction rate [64–66]. For a sufficiently fast domain growth the lack of mixing stems from a
premature freezing of the pulse propagators [63–66], since the Lagrangian step lengths become
increasingly short in the course of time (for a contracting domain, the Lagrangian steps become larger and
one has the opposite effect).

8 In the latter case the diffusion coefficients of the two binding partners are different.
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In our problem, the random motion of each pulse is not only subject to a Hubble drift, but also to an
additional drift arising from the velocity field. In order to formulate the problem in the most general form,
we will assume that each diffusing particle ‘feels’ a different velocity field. In other words, the force
underlying this velocity field can be thought of as being able to discriminate each particle by a distinctive
property. For instance, if the physical origin of the force is an electric field acting on charged,
overdamped diffusive particles, then this property will be the sign and absolute value of their electric
charge. In the particular case where both particles have the same charge, they will experience the same
biasing force, and the mixing problem will be equivalent to its zero-field counterpart, save for a coordinate
shift. In the biological context, we could be thinking of growing neuron cells, in which messenger RNA
molecules are shuttled along by molecular motors [14]. Depending on the orientation of the molecular
track these motors are walking, their direction may be towards either extremity of the
pseudo-one-dimensional cell.

More specifically, consider two walkers labelled with indices 1 and 2. Let x(1)
0 and x(2)

0 denote their initial
positions. Without loss of generality we assume that x(1)

0 < x(2)
0 . Owing to the external force acting on each

walker, the maxima are shifted with respect to their initial positions as the pulses associated with each
walker widen. Correspondingly, one has x(1)

M = x(1)
0 + v(1)T(t) and x(2)

M = x(2)
0 + v(2)T(t). The velocities v(1)

and v(2) will hereafter be considered to be constant for the sake of simplicity.
The two-pulse PDF can be written as a normalised linear combination of the propagators for the

respective initial conditions, i.e.,

W(x, t) =
1

2

[
W (1)

0 (x − x(1)
0 − v(1)T(t), t) + W (2)

0 (x − x(2)
0 − v(2)T(t), t)

]
. (86)

Here, one encounters the difficulty that if at least one of the particles is subdiffusive, its propagator is not
known, and hence its contribution to the joint PDF is also unknown. Nevertheless, it is possible to carry out
a semiquantitative study of particle mixing on the basis of the second-order moments. To this end, let us
first introduce the Lagrangian half-width of a zero-field single-particle propagator as

w(t) = 2
√
〈x2〉0 − 〈x〉2

0. (87)

Let us further define two characteristic points x(1)
C (t) = x(1)

M + w(1)(t) and x(2)
C (t) = x(2)

M − w(2)(t) where,
following the notation of equation (87), w(1,2)(t) > 0 denotes the Lagrangian half-width of the symmetric
propagator W (1,2)

0 (x, t). Mixing after a time t will be considered to be weak (in a statistical sense) if x(2)
C (t)

remains to the right of x(1)
C (t), i.e., if the characteristic distance dC(t) ≡ x(2)

C (t) − x(1)
C (t) remains > 0. In

other words, at a time t, one has weak mixing if

x(2)
0 − x(1)

0 >
[
v(1) − v(2)

]
T(t) + w(1)(t) + w(2)(t). (88)

In contrast, when
x(2)

0 − x(1)
0 <

[
v(1) − v(2)

]
T(t) + w(1)(t) + w(2)(t) (89)

we will simply speak about ‘mixing’. Similarly, if ‘<’ can be replaced with ‘�’ in equation (89) we will
speak about ‘strong mixing’. The last two terms on the right-hand side are positive and
independent of the respective velocities. Therefore, for a given set of diffusive properties, the mixing
behaviour depends on the first term, which is influenced by the relative velocity v(1) − v(2) and by the scale
factor a(t) entering the definition of T(t). Clearly, a positive (negative) relative velocity favours (hinders)
mixing, as is the case in the particular case of a static domain (this latter case is recovered by setting
T(t) ≡ t).

Note, however, that the domain growth introduces a key difference in the behaviour. On a static domain
the strong mixing condition is always fulfiled provided that one waits long enough, irrespective of whether
the diffusive pulses are normal or anomalous (mixing becomes maximal when both pulse peaks overlap,
i.e., when the distance dM ≡ x(2)

M − x(1)
M between the two peaks vanishes). However, for a given initial pulse

separation and relative velocity, it is intuitively clear that a sufficiently fast domain growth may freeze both
pulses before their mixing becomes significant. More precisely, for v(1) > 0 and v(2) < 0, one has weak
mixing at arbitrarily long times if

x(2)
0 − x(1)

0 >
[
v(1) − v(2)

]
T∞ + w(1)

∞ + w(2)
∞ , (90)
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Table 1. Asymptotic long-time behaviour of T(t) and w(t) for a power-law scale factor with
characteristic exponent γ. The results for T(t) and w(t) stem, respectively from the long-time
behaviours of equations (62) and (87).

γ < α/2 γ = α/2 α/2 < γ < 1 γ = 1 γ > 1

T t1−γ t1−γ t1−γ lnt const.
w t(α−2γ)/2

√
ln t const. const. const.

where T∞ ≡ limt→∞T(t) < ∞ and w(1,2)
∞ = limt→∞w(1,2)(t) < ∞ are the long-time asymptotic values of the

half-widths. Thus, a sufficiently fast domain growth favours the localisation of the Lagrangian propagators
about the respective initial conditions, thereby preventing that the memory of the latter is eventually lost by
mixing.

In terms of physical coordinates, the situation described by equation (90) corresponds to the case when
the Hubble drift is so strong that the pulses separate from each other at a rate much faster than the typical
growth rate of their half-widths. Therefore, the overlap of both pulses remains negligibly small at all
times.

In what follows, we focus on the case of a set of two particles with identical diffusive properties
(w ≡ w(1) = w(2)) but subject to opposite drift velocities v ≡ v(1) = −v(2). Without loss of generality the
midpoint between the two pulse peaks will be chosen as the origin, i.e., x0 ≡ x(2)

0 = −x(1)
0 .

4.1. Normal diffusion and subdiffusion
When both particles are normal-diffusive (α = 1) or subdiffusive (0 < α < 1) the variance 〈x2(t)〉0 is
well-defined and can be used to estimate w(t).

In order to study the mixing kinetics the parameter P in equation (50) should be chosen large enough to
ensure significant mixing as soon as both tails overlap. In general, for a given value of P the corresponding
value of Cμ (as well as the associated characteristic width wμ(t) = CμσL(t)) must be computed numerically.
However, for the Gaussian case μ = 2 one can obtain an analytic expression, namely, C2 = 2erf−1(P). This
result is in agreement with what we had already anticipated for the Brownian case since, for a Gaussian
distribution, the probability that a particle is found within an interval of half-width w(t) = 2

√
2σL(t) is

P = 0.9545, i.e., precisely the value which follows from the relation erf−1(P) =
√

2.
In the case of two Gaussian pulses with identical diffusive properties and opposite drift velocities this

last result implies that when the weak mixing condition (88) holds the overlap of both tails as given by

∫ x(1)
C

−∞
W (2)

0 (x, t)dx +

∫ ∞

x(2)
C

W (1)
0 (x, t)dx (91)

remains below 5% at all times.
For a power-law scale factor a(t) ∼ tγ the different possible subcases are given in table 1. From this table

one concludes that for v = 0 and x0 � w∞ strong mixing does not occur when γ > α/2. However, a
nonzero value of v may completely change this scenario and bring about strong mixing for sufficiently long
times. For v > 0, when α/2 < γ � 1, one has T∞ = ∞, implying that the crossing of the two
maxima will eventually occur with certainty. In contrast, when the domain growth is fast enough to ensure
that T∞ < ∞ the propagator evolves towards a steady state. In this latter case strong mixing will never take
place if it has not already occurred by the characteristic time tC at which W(x, tC) can be considered
to be practically indistinguishable from W(x,∞). According to equation (89) strong mixing may be
observed at a finite time t if the initial separation distance is small enough—more precisely, if
x0 � vT(t) + w(t) holds.

Figure 5 displays the temporal evolution of two subdiffusive pulses (α = 1/2) on a growing domain
with scale factor a(t) = (1 + t/103)3/4. Since γ > α/2 we can see that the probability of overlap grows in
time. However, the respective pulse widths remain almost stationary throughout the time window spanned
by the represented set of plots (the length of this window is ∼ 10t0). Thus, we conclude that in the present
case mixing is driven by the opposed velocity fields rather than by the spreading of the pulses. The
maximum overlap probability is attained after a time tM, corresponding to the crossing of both pulses, i.e.,
to a vanishing peak separation dM(tM) = 0. This characteristic time can be obtained from the solution of
the implicit equation x0 = vT(tM). Only at this specific time tM does the PDF correspond to the zero field
solution for a single particle, W(x, tM) = W0(x, tM).

For a fixed time t = 104 figure 6 displays a series of snapshots of the Lagrangian propagator
corresponding to different values of v. For the chosen value of the domain growth exponent (γ = 1/2) and
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Figure 5. Lagrangian propagator at times t = 104, 2 × 104, 3 × 104, and 4 × 104, for two subdiffusive pulses that drift in
opposite directions. Parameter values: x0 = 75, α = 1/2, and Kα = 1/2. The domain growth is given by the power-law scale
factor a(t) = (1 + t/t0)γ with γ = 3/4 and t0 = 103. The advective velocity of the pulses is v = x0/T1(4 × 104) ≈ 1.225 × 10−2.
Solid lines: theoretical curves obtained from the numerical integration of the fractional diffusion equation. We used an
adaptation of the fractional Crank–Nicolson algorithm of reference [88] with Δt = 0.1 and Δx = 0.2. The symbols depict
simulations results (106 runs).

Figure 6. Lagrangian propagator at times t = 104 for v = 10−2, 1.25 × 10−2, 1.5 × 10−2, and v = x0/T(104) ≈ 1.62 × 10−2.
Solid lines: propagator obtained from the numerical integration of the fractional diffusion equation. We used a fractional
Crank–Nicolson algorithm with Δt = 0.1 and Δx = 0.2. The symbols depict simulations results (106 runs). The remaining
parameters are: x0 = 75, γ = 1/2, t0 = 103, α = 1/2, and Kα = 1/2.

of the anomalous diffusion exponent α the inequality 1/4 = α/2 < γ < 1 holds, and so the mixing is once
again driven by the relative velocity term. As in the static case, increasing v results in enhanced mixing. For
the chosen parameter set the degree of mixing at a given time is maximised by the velocity value v = 0.162.
For this precise value, dM(t = 104) = 0, i.e., one has a single-hump propagator.

Finally in figure 7 we study a case where the domain growth is so fast (γ = 2) that mixing is absent at all
times. As one can see, the pulse widths remain practically the same at all times, and the deterministic
displacement of the pulse peaks is greatly slowed down by the domain growth, until both pulses become
almost stationary.

The theoretical curves in figures 5–7 (obtained by the numerical integration of the FDE) were
corroborated by CTRW simulations. As expected, a significant discrepancy occurs at short times, since the
number of steps taken by the random walker is not large enough to reach the diffusive limit (see also
reference [23]). At longer times the agreement is excellent.

4.2. Lévy flights
To conclude our study about pulse mixing, let us now focus on the specific case of Lévy flights,
corresponding to the parameter choice α = 1 and 0 < μ < 2 in our bifractional equation. Lévy flights are
intrinsically superdiffusive processes which, when evolving on growing domains, are characterised by the
properties introduced in 2.4 for the zero-field case. This framework provides a suitable starting point to deal
with problems which do involve biasing fields, notably the mixing of spreading pulses.

The solution for a two-pulse initial condition can be easily inferred from the one-particle propagator
(48) for the zero-field case via the relation (86). The explicit form of the solution is

W(x, t) =
1

2

[
Lμ (x + x0 − vT(t); [σL(t)]μ) + Lμ (x − x0 + vT(t); [σL(t)]μ)

]
, (92)
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Figure 7. Lagrangian propagator obtained from the numerical integration of the fractional diffusion equation for α = 1/2,
Kα = 1/2, a(t) = (1 + t/5000)2, x0 = 75, and v = 7.5 × 10−3. We used a fractional Crank–Nicolson algorithm with Δt = 0.1
and Δx = 0.2. The symbols depict simulations results (106 runs).

Table 2. Asymptotic long-time behaviour of T(t) and wμ in the case of a power-law
expansion with exponent γ.

γ < min{1/μ, 1} 1/μ = γ < 1 1/μ < γ < 1 γ = 1 < 1/μ 1/μ = γ = 1

T t1−γ t1−γ t1−γ lnt lnt
wμ t1/μ−γ (lnt)1/μ const. t1/μ−γ (lnt)1/μ

1/μ < γ = 1 1 < γ < 1/μ 1 < γ = 1/μ γ > max{1, 1/μ}

T lnt const. const. const.
wμ const. t1/μ−γ (lnt)1/μ const.

with [σL(t)]μ = Kμ
1

∫ t
0 a−μ(u)du.

Let us once again consider the case of the power-law scale factor a(t) = (1 + t/t0)γ . As it turns out the
asymptotic long-time behaviour of the typical width depends on whether 1/μ is larger, equal, or smaller
than γ. Table 2 summarises the typical subcases that result from the long-time behaviour of T(t) and wμ(t)
for different values of γ and μ.

Within the permitted range 0 < μ < 2 it is convenient to distinguish two subclasses of Lévy flights with
different qualitative behaviour, i.e., flights with μ � 1, and flights with μ < 1. For the first subclass the
qualitative behaviour is similar to that of a Brownian process and is essentially obtained by performing the
replacement 1/2 → 1/μ. Thus, for v 
= 0 the mixing of both pulses can be avoided for arbitrarily long times
by choosing γ > 1. However, when v = 0 one must only have γ > 1/μ in order to prevent mixing. The
reason is that the respective pulse widths grow as t1/μ, which is not fast enough to ensure significant
diffusive mixing of both pulses when their separation distance increases as tγ (with γ > 1/μ) due to the
domain growth.

In contrast, for Lévy flights with μ < 1, the dominant contribution to mixing in the long time limit will
stem from Lévy diffusion rather than from the biasing fields. Note that such a regime can never occur when
the jump length PDF has a finite variance, i.e., in the normal-diffusive case or in the subdiffusive
case.

The most clear-cut situation is found in the range 1 < γ � 1/μ. In this regime, since T∞ < ∞ the
positions of both peaks tend to fixed limiting values. The advection velocity v and the initial pulse
separation 2x0 will determine whether or not such limiting values are attained before the two peaks meet. In
either case diffusive spreading remains dominant with respect to the Hubble drift after a sufficiently long
time and the pulse widths grow without bound. Consequently, at long times the mixing process proceeds
via the widening of the respective pulses. Both pulses eventually merge into a single one, which still
continues to widen. This is precisely what is seen in figure 8, which displays the evolution of the theoretical
propagator for two Lévy pulses with characteristic exponent μ = 3/4 spreading on a domain whose growth
is controlled by a power-law factor with γ = 5/4 and t0 = 103. The figure also shows simulations results
that are in excellent agreement with the theoretical expression (92).

Finally, let us discuss the behaviour when 1 < 1/μ < γ. Here the diffusive spreading remains the main
mixing mechanism over a transient period. However, the Hubble drift eventually becomes dominant, and
consequently W(x, t) tends to a stationary (frozen) profile in the long-time limit. Depending on the
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Figure 8. Lagrangian propagator at times t = 5 × 103, 104, 2.5 × 104, 5 × 104, and 105 for two Lévy pulses with μ = 3/4,
Kμ

1 = 1/2, x0 = 104, and v = 1/10 for a domain growth rate given by the scale factor a(t) = (1 + t/103)5/4. Solid lines represent
the theoretical solution obtained from equation (92). Symbols depict simulations results (106 runs).

characteristic parameters (γ, t0, Kμ
1 , x0, and v) the distribution W(x, t) will be single- or double-peaked at

given time.

5. Summary and outlook

We investigated several aspects of an anomalous diffusion process described by a separable CTRW evolving
on a uniformly growing one-dimensional domain. First we studied the behaviour of the first moments in
the symmetric case, with special focus on the rich phenomenology of the kurtosis. One of the most
remarkable features is that this quantity becomes time dependent in the subdiffusive case. As a result of this,
an initially non-Gaussian subdiffusive pulse spreading on a domain subject to power-law growth
was shown to exhibit a Gaussian-like long-time behaviour when γ = α/2. For all other values γ > 0, the
asymptotic kurtosis was found to take values greater than 3, thereby reflecting the strong signature of the
early-time propagator for arbitrarily long times. This shows that the fine-tuning of the domain evolution
can in principle be used to control the memory effects in such subdiffusive systems.

We subsequently considered the effect of a velocity field on this CTRW dynamics. We derived the
corresponding FDAE (68), which generalises a previous result valid for the special case μ = 2 on a static
domain [84]. Indeed, since our bifractional equation holds also for μ < 2, it includes Lévy flights as a
particular case. The mathematical form of the FDAE is rather peculiar and not intuitive even in the case of a
static domain, given the very straightforward Galilean transformation (51) between the walker’s PDF in the
lab frame SL and its counterpart in the comoving frame S0. In the presence of a Hubble drift (or of a
velocity field considered in the laboratory frame of reference), the emerging integrodifferential operators are
far more complicated than in its absence, since they must combine the description of both the intrinsic
stochastic motion of the walk and the deterministic bias introduced by the domain evolution and/or by the
velocity field.

Taking the above results as a starting point we studied the mixing behaviour of a pair of diffusive pulses
in a one-dimensional domain whose time evolution is governed by a power-law scale factor. We focussed on
the case where the pulses are drifting with velocities v and −v as they spread, the spreading of each pulse
being characterised by their respective half-widths. In this scenario a sufficiently fast domain growth was
found to largely prevent mixing between a pair of normal diffusive walkers or between a pair of subdiffusive
walkers. However, a sufficiently large value of v is able to restore mixing. In the superdiffusive case, the
behaviour is more complex. For μ � 1 and a sufficiently large initial separation of the pulses mixing is
essentially controlled by the relative velocity introduced by the fields, as is the case for normal diffusive or
for subdiffusive walkers. In contrast, when μ < 1, diffusional mixing dominates over the deterministic
mixing induced by the velocity fields.

Our results for pulse mixing can be seen as a first step towards establishing the conditions under which
advective transport due to the medium expansion and to the existing velocity field dominates over diffusive
transport in real systems such as the ones described in the introduction or in systems where
volume dilation due to thermal effects is at play. As could be guessed from our results, the rate of
encounter-controlled reactions taking place in such systems can be strongly influenced by the evolution of
the domain. To account for such effects, an extended first-passage theory based on the calculation of
encounter probabilities rather than on the overlap of freely diffusing pulses will be needed. In the
meantime, a comprehensive analysis of two-particle systems via the evolving pulse geometries and the
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associated moments may provide some useful hints for a better understanding. Such an approach can be
regarded as a first approximation to the more general goal of developing a full theory valid in arbitrary
spatial dimension.

The present work may be extended in several other directions. One such direction should consider the
mixing behaviour of pulses for time dependent velocity fields v = v(t). From a broader perspective, one
could consider walks subject to the action of a Galilean bias and of a force inducing an asymmetry of the
jump length PDF. Another interesting generalisation concerns the case of non-separable CTRWs, e.g., Lévy
walks. Finally, one could explore the effect of nonuniform domain growth [62] introducing a spatial
dependence in the scale factor.
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Appendix A. Simulation algorithm

The problem of our separable CTRW can be decomposed into the intrinsic time-discrete stochastic motion
of the walk and the time-continuous deterministic drift induced both by the evolving domain (Hubble
drift) and by the velocity field. Here we sketch a computational algorithm allowing one to easily implement
such a composite motion in the case of a uniformly evolving domain. The domain evolution gives rise to a
new drift term which couples to an existing velocity field.

First of all, we specify the position of the N random walkers at t = 0 (we take N = 106 throughout the
paper). We initially place the particles at positions x0 = y0 that are determined by the initial particle
distribution. For example, the case of two diffusive pulses corresponds to the initial PDF
W∗(y, 0) = [δ(y − y(1)

0 ) + δ(y − y(2)
0 )]/2. In this case, we place one half of the particles at y0 = y(1)

0 , and the
other half at y0 = y(2)

0 .
After this brief description at the ensemble level, we will henceforth focus on the implementation of a

single random walk. The evolution takes place via instantaneous jumps. The time tn = tn−1 +Δnt at which
the particle takes the nth jump is determined from the time tn−1 at which it performed the previous jump.
The time increment Δnt is a random variable drawn by standard Monte-Carlo techniques from a
predetermined waiting time distribution ϕ(Δt). For the first jump, we set the internal clock of the particle
to zero at t = 0, so that t1 = Δ1t.

At any intermediate time t ∈ (tn−1, tn) between two consecutive jumps, the particle is drifted both by the
Hubble drift and by the velocity field v(t). This deterministic motion is governed by the linear ordinary
differential equation

dy

dt
=

ȧ(t)

a(t)
y + v(t). (A.1)

The solution of this equation corresponding to the initial condition y(tn−1) is

y(t) =
a(t)

a(tn−1)
y(tn−1) + a(t) [Λ (t) − Λ (tn−1)] , (A.2a)

where Λ(t) =
∫ t

0 du v(u)/a(u) is defined by equation (60).
At t = tn, the walker performs a jump whose displacement Δny is drawn from a symmetric jump length

PDF λ(Δy). Hence, the physical position of the walker immediately after the nth jump is

y(tn) =
a(tn)

a(tn−1)
y(tn−1) + a(tn) [Λ (tn) − Λ (tn−1)] +Δny. (A.2b)

Alternatively, our framework can be formulated in Lagrangian coordinates. In this case, the walkers’
evolution is described by the equations
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x(t) = x(tn−1) + [Λ (t) − Λ (tn−1)] for t ∈ (tn−1, tn) (A.3a)

and

x(tn) = x(tn−1) + [Λ (t) − Λ (tn−1)] +
Δny

a(tn)
, (A.3b)

where x(tn) and x(tn−1) respectively denote the Lagrangian coordinates immediately after performing the
nth and (n − 1)st jump. The use of the latter set of equations reduces the computational cost with respect to
that of the implementation in physical coordinates.

The above procedure concerns temporal discretisation, but one can also consider evolution rules based
on spatial discretisation. Such approaches rely on networks with a varying number of nodes, and have
proven useful to mimic biological processes such as cell migration in growing tissues [99]. Finally, it is
worth noting that both temporal and spatial discretisation (in this case with a fixed number of nodes) are at
the heart of finite difference methods for the numerical solution of the underlying fractional differential
equations [88].
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