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We study the long-time behavior of decoupled continuous-time random walks characterized by superheavy-
tailed distributions of waiting times and symmetric heavy-tailed distributions of jump lengths. Our main quantity
of interest is the limiting probability density of the position of the walker multiplied by a scaling function of
time. We show that the probability density of the scaled walker position converges in the long-time limit to a
nondegenerate one only if the scaling function behaves in a certain way. This function as well as the limiting
probability density are determined in explicit form. Also, we express the limiting probability density which has
heavy tails in terms of the Fox H function and find its behavior for small and large distances.
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I. INTRODUCTION

Continuous-time random walks (CTRWs), introduced by
Montroll and Weiss [1], constitute an important class of jump
processes that are widely used to model a variety of physical,
geological, biological, economic, and other phenomena. In
particular, these processes describe anomalous diffusion and
transport in disordered media (see, e.g., Refs. [2–4] and
references therein), seismic [5,6], and financial [7,8] data. A
remarkable fact is that systems so different from one another
can successfully be described within the CTRW approach.
This is because two random variables that many systems have
in common, the waiting time between successive jumps and
the jump length, are used to model the CTRW. Therefore, even
the decoupled CTRW, when these variables are independent,
is rather flexible.

The probability density P (x,t) of the walker position X(t) is
the most important characteristic of the CTRW. It satisfies the
integral master equation [9–11] which in the decoupled case
depends only on the probability density p(τ ) of waiting times
and on the probability density w(x) of jump lengths. Because
exact solutions of this equation are known in very few cases
[12–15], there is considerable interest in studying the long-
time behavior of P (x,t) that is responsible for the transport and
diffusion properties of objects described by the CTRW model.
In this context, much attention has been paid to the probability
densities p(τ ) and w(x) having finite second moments and/or
to those having heavy tails. It has been established [16–18] that
different combinations of these properties of the waiting time
and jump densities lead to different long-time distributions of
X(t). In Ref. [19], all possible distributions were expressed
in terms of the limiting distributions of the properly scaled
walker position.

In some cases the waiting-time densities are assumed to be
superheavy-tailed, that is, such that all fractional moments of
p(τ ) are infinite. In particular, this class of densities is used
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to model the superslow diffusion in which the diffusion front
spreads more slowly than any positive power of time [20–23].
In general, one might expect superheavy-tailed distributions
to reflect extremely slow time-dependent phenomena such
as may occur in some relaxation and aging processes. Such
distributions are also applicable within a Langevin rather
than a CTRW description when dealing with processes that
are interrupted by an absorption event or by the transition
of a particle to a qualitatively different state [24,25]. The
long-time behavior of the decoupled CTRWs characterized
by these waiting-time densities and jump densities with finite
second moments is considered in Ref. [26]. Here we focus
on asymptotic solutions of the CTRWs in the case when the
densities p(τ ) and w(x) are superheavy- and heavy-tailed,
respectively.

The paper is structured as follows. In Sec. II, we formulate
the main definitions and write the basic equations describing
the decoupled CTRW. A one-parameter limiting probability
density of the scaled walker position that corresponds to
the superheavy-tailed distributions of waiting times and the
symmetric heavy-tailed distributions of jump lengths is deter-
mined in Sec. III. Here we also find the scaling function and
prove the positivity and unimodality of the limiting probability
density. In Sec. IV, we express the limiting density and the
corresponding cumulative distribution function in terms of Fox
H functions and consider a few particular examples. The short-
and long-distance behavior of the limiting density is studied
in Sec. V. Our main results are summarized in Sec. VI.

II. MAIN DEFINITIONS AND BASIC EQUATIONS

The CTRW approach deals with a wide class of continuous-
time jump processes X(t) represented as

X(t) =
N(t)∑
n=1

xn. (2.1)

Here N (t) = 0,1,2, . . . is the random number of jumps that
a walker has performed up to the time t [if N (t) = 0 then
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X(t) = 0], and xn ∈ (−∞,∞) are the independent random
variables (jump lengths) distributed with some probability
density w(x). In order to specify the counting process N (t),
the waiting times τn, that is, times between successive jumps,
are introduced. Like the jump lengths, the waiting times
are assumed to be independent random variables distributed
with probability density p(τ ). If the variables xn and τn are
independent of each other as well, that is, if the CTRW is
decoupled, then the probability density P (x,t) of the walker
position X(t) depends only on w(x) and p(τ ). According to [1],
in Fourier-Laplace space this dependence has the form

Pks = 1 − ps

s(1 − pswk)
, (2.2)

where wk = F{w(x)} = ∫ ∞
−∞ dxeikxw(x) (−∞ < k < ∞) is

the Fourier transform of w(x), ps = L{p(t)} = ∫ ∞
0 dte−stp(t)

(Res > 0) is the Laplace transform of p(τ ), and Pks =
F{L{P (x,t)}}.

From Eq. (2.2) one can get

Ps(x) = (1 − ps)ps

s
F−1

{
wk

1 − pswk

}
+ 1 − ps

s
δ(x) (2.3)

and

P (x,t) = L−1

{
(1 − ps)ps

s
F−1

{
wk

1 − pswk

}}
+V (t)δ(x).

(2.4)

Here F−1{fk} = f (x) = (2π )−1
∫ ∞
−∞ dke−ikxfk is the inverse

Fourier transform, δ(x) is the Dirac δ function, L−1{gs} =
g(t) = (2πi)−1

∫ c+i∞
c−i∞ dsestgs (c is a real number exceeding

the real parts of all singularities of gs) is the inverse Laplace
transform, and

V (t) = L−1

{
1 − ps

s

}
=

∫ ∞

t

dτp(τ ), (2.5)

with V (0) = 1 and V (∞) = 0 is the survival or ex-
ceedance probability. Using Eq. (2.4), the integral formula∫ ∞
−∞ dxe−ikx = 2πδ(k), and the well-known properties of the

δ function, it is not difficult to show that the probability density
P (x,t) is properly normalized:

∫ ∞
−∞ dxP (x,t) = 1. Since

X(0) = 0, the initial condition for P (x,t) reads P (x,0) = δ(x)
and, if boundary conditions are not imposed, P (x,t) → 0 as
t → ∞.

According to this last property, the probability density
of the walker position vanishes in the long-time limit. It is
therefore reasonable to introduce the scaled walker position
Y (t) = a(t)X(t) and find the positive scaling function a(t)
such that the limiting probability density,

P(y) = lim
t→∞

1

a(t)
P

(
y

a(t)
,t

)
, (2.6)

of Y (t), that is, the probability density of the random variable
Y (∞) is nonvanishing and nondegenerate. The importance
of the functions a(t) and P(y) is that, since P (x,t) ∼
a(t)P(a(t)x) as t → ∞, they completely describe the long-
time behavior of the original walker position X(t). To satisfy
the above requirements on P(y), the scaling function must go
to zero as t → ∞ in a certain way. In fact, these requirements

permit one to determine a(t) up to a constant factor which,
however, is not important and can be chosen for convenience.

The pairs a(t) and P(y) have been determined for all cases
characterized by finite second moments and/or heavy tails of
the probability densities p(τ ) and w(x) [19]. In contrast, the
case with superheavy tails has been much less studied. In fact,
the pair a(t) andP(y) has been determined only when p(τ ) has
a superheavy tail and w(x) has a finite second moment l2 [26].
Because l2 = ∞ if w(x) is heavy-tailed, one may expect that in
this case the long-time behavior of the walker position changes
qualitatively and thus the pair a(t) and P(y) changes as well.
More precisely, in this paper we study the long-time behavior
of decoupled CTRWs whose waiting-time densities p(τ ) and
jump densities w(x) [it is assumed that w(−x) = w(x)] are
described by the asymptotic formulas

p(τ ) ∼ h(τ )

τ
(τ → ∞) (2.7)

and

w(x) ∼ u

|x|1+α
(|x| → ∞), (2.8)

where the positive function h(τ ) varies slowly at infinity,
that is, h(μτ ) ∼ h(τ ) as τ → ∞ for all μ > 0, the tail
index α is restricted to the interval (0,2], and u > 0. The
waiting-time and jump densities considered here belong
to the classes of superheavy- and heavy-tailed densities,
respectively. The difference between these classes consists in
different asymptotic behavior of the constituent probability
densities that, in turn, results in different properties of their
fractional moments. Specifically, while the fractional moments∫ ∞

0 dττρp(τ ) of p(τ ) are infinite for all ρ > 0, the fractional
moments

∫ ∞
−∞ dx|x|ρw(x) of w(x) are infinite only if ρ �

α. It should also be noted that the conditions u > 0 and
α ∈ (0,2] are completely compatible with the normalization
condition

∫ ∞
−∞ dxw(x) = 1. In contrast, the normalization

condition
∫ ∞

0 dτp(τ ) = 1 imposes an additional restriction on
the asymptotic behavior of h(τ ): h(τ ) = o(1/ ln τ ) as τ → ∞.

III. SCALING FUNCTIONS AND THE LIMITING
PROBABILITY DENSITY

According to the Tauberian theorem for Laplace transforms
[27], the long-time behavior of the probability density P (x,t)
is determined by the asymptotic behavior of the Laplace
transform Ps(x) when the real parameter s tends to zero.
Because the waiting-time distribution is normalized to unity,
the condition ps → 1 holds as s → 0. It follows from
Eq. (2.3) that we also need to find the s → 0 behavior of
1 − ps . To this end, it is convenient to use the representation
1 − ps = ∫ ∞

0 dqe−qV (q/s) which, together with the fact [26]
that the survival probability V (t) varies slowly at infinity,
immediately gives

1 − ps ∼ V (1/s) (3.1)

as s → 0. Then, taking into account that as s → 0 the main
contribution to F−1{wk/(1 − pswk)} comes from a small
vicinity of the point k = 0, that is,

F−1

{
wk

1 − pswk

}
∼ F−1

{
1

V (1/s) + 1 − wk

}
, (3.2)
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Eq. (2.3) in the small-s limit yields

Ps(x) ∼ V (1/s)

s
δ(x) + V (1/s)

πs

∫ ∞

0
dk

cos(xk)

V (1/s) + 1 − wk

.

(3.3)

The long-time behavior of P (x,t) can be found directly
from the limiting formula (3.3) by applying the above
mentioned Tauberian theorem. It states that if the function v(t)
is ultimately monotonic and vs ∼ s−γ L(1/s) (0 < γ < ∞)
as s → 0, then v(t) ∼ tγ−1L(t)/�(γ ) as t → ∞. Here �(γ )
denotes the � function and L(t) is a slowly varying function
at infinity. In our case γ = 1; therefore, from Eq. (3.3) one
obtains

P (x,t) ∼ V (t)δ(x) + V (t)

π

∫ ∞

0
dk

cos(xk)

V (t) + 1 − wk

(3.4)

(t → ∞). Since in the long-time limit [when V (t) tends to
zero] the main contribution to the integral in Eq. (3.4) comes
from a small vicinity of the point k = 0, the exact formula

1 − wk = 2
∫ ∞

0
dx[1 − cos(kx)]w(x) (3.5)

can be replaced by one valid in this regime. Using Eq. (2.8)
and the integral relation∫ ∞

0
dx

1 − cos(x)

x1+α
= π

2�(1 + α) sin(πα/2)
(3.6)

(0 < α < 2) from Eq. (3.5) at |k| → 0 we find

1 − wk ∼ πu

�(1 + α) sin(πα/2)
|k|α. (3.7)

Substituting this result into the asymptotic formula (3.4) and
applying the definition (2.6), the limiting probability density
P(y) can be written in the form

P(y) = lim
t→∞

1

π

∫ ∞

0
dx

cos(yx)

1 + πuaα (t)
�(1+α) sin(πα/2)V (t) xα

. (3.8)

It appears from this thatP(y) is nonvanishing and nondegener-
ate only if the factor in front of xα tends to a nonzero finite limit
as t → ∞. Assuming for convenience that this limit equals 1,
we obtain the asymptotic representation of the scaling function

a(t) ∼
(

�(1 + α) sin(πα/2)

πu
V (t)

)1/α

(3.9)

(t → ∞) and the corresponding limiting density

P(y) = 1

π

∫ ∞

0
dx

cos(yx)

1 + xα
(3.10)

[the fact that P(y) is a probability density will be proved be-
low]. The symmetry condition P(−y) = P(y), which follows
from Eq. (3.10), is a consequence of the symmetry of the jump
density w(x).

Since at α = 2 the integral in Eq. (3.6) diverges, the limiting
formula (3.7) is not applicable to this case. Therefore, in
order to find 1 − wk at α = 2 and |k| → 0, we first split the
interval of integration in Eq. (3.5) into two parts, (0,b) and
(b,∞) with b ∼ 1. Then, taking into account that as |k| → 0
the contribution of the first interval to the right-hand side of

Eq. (3.5) can be approximated by k2
∫ b

0 dxx2w(x) and the
second one by uk2 ln(1/|k|), we get

1 − wk ∼ uk2 ln
1

|k| (3.11)

(|k| → 0). In accordance with this, the limiting probability
density when α = 2 takes the form

P(y) = lim
t→∞

1

π

∫ ∞

0
dx

cos(yx)

1 + ua2(t) ln[1/a(t)]
V (t) x2

. (3.12)

As before, we choose the long-time limit of the factor
in front of x2 to be equal to unity. In this case the asymp-
totic behavior of the scaling function a(t) is determined
by the relation ua2(t) ln[1/a(t)] ∼ V (t) (t → ∞). Assuming
that a(t) ∼ √

V (t)/u a1(t), where the positive function a1(t)
satisfies the conditions a1(t) → 0 and

√
V (t) = o(a1(t)) as

t → ∞, from this relation we obtain a1(t) ∼ √
2/ ln[1/V (t)],

and thus

a(t) ∼
√

2V (t)

u ln[1/V (t)]
(3.13)

(t → ∞). The limiting probability density (3.12) which
corresponds to this scale function is given by

P(y) = 1

π

∫ ∞

0
dx

cos(yx)

1 + x2
= 1

2
e−|y|, (3.14)

showing that Eq. (3.10) is valid for α = 2 as well. We note that
the same two-sided exponential density (3.14) describes the
limiting distribution when the jump density w(x) has a finite
second moment l2 = ∫ ∞

−∞ dxx2w(x) [26]. However, because
at l2 < ∞ the asymptotic behavior of the scaling function,
a(t) ∼ √

2V (t)/l2, is quite different from that given in
Eq. (3.13), the long-time behaviors of the walker position in
these cases are also quite different.

A. Positivity and unimodality of P( y)

To be a probability density, the function P(y) must be
normalized and positive (non-negative). The normalization
condition

∫ ∞
−∞ dyP(y) = 1 can easily be proved using

Eq. (3.10), which represents P(y) as a cosine
Fourier transform, and the integral representation
δ(x) = (1/2π )

∫ ∞
−∞ dy cos(yx) of the δ function. However,

except for the case α = 2, where according to Eq. (3.14)
P(y) > 0, the use of Eq. (3.10) to prove the positivity of
P(y) is impractical because of the oscillating character of the
integrand. On this point, the representation of P(y) in the
form of a Laplace transform would be preferable. In order to
find it, we first define the function

f (z) = 1

π

ei|y|z

1 + zα
(3.15)

(0 < α < 2) of the complex variable z = x + iu. This function
is analytic in the first quadrant of the z plane (when |z| > 0 and
0 � arg z � π/2), and so from the Cauchy integral theorem
[28] we have

∮
C

dzf (z) = 0, where C is a simple closed
contour that lies in the domain of analyticity of f (z). Then,
choosing the contour C to be the boundary of the first quadrant
(we emphasize that the branch point z = 0 is outside the
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FIG. 1. (Color online) Plots of the probability density P(y) for
two values of the tail index α belonging to the intervals (0,1]
and (1,2].

contour) and applying the Jordan lemma [28], the above
integral reduces to∫ ∞

0
dxf (x) − i

∫ ∞

0
duf (iu) = 0. (3.16)

Finally, taking into account that P(y) = Re[
∫ ∞

0 dxf (x)] and
iα = cos(πα/2) + i sin(πα/2), from the real part of Eq. (3.16)
we obtain

P(y) = 1

π

∫ ∞

0
dxe−|y|x sin(πα/2)xα

1 + 2 cos(πα/2)xα + x2α
. (3.17)

The main advantage of this representation of P(y) is that
it clearly shows that P(y) > 0 when 0 < α < 2. Thus, since
P(y) is positive for α = 2 as well, we can conclude that the
function P(y) is indeed the probability density for all α in
the interval (0,2]. Another important property of P(y), which
follows directly from Eq. (3.17), is that dP(y)/dy < 0 when
y > 0. Together with the condition P(−y) = P(y), it shows
that the limiting probability density is symmetric, unimodal,
and centered at the origin. In contrast to the scaling function,
which depends on all the parameters characterizing the
asymptotic behavior of the waiting time and jump densities, the
limiting density depends only on the tail index α. According
to Eqs. (3.10) and (3.17), this parameter strongly influences
the properties of P(y). In particular, the behaviors of P(y) in
the vicinity of the origin differ substantially from one another
when α ∈ (0,1] and α ∈ (1,2], as illustrated in Fig. 1 (for
details, see Sec. V).

IV. LIMITING DISTRIBUTION IN TERMS
OF SPECIAL FUNCTIONS

To get more insight into the mathematical structure of the
limiting probability density P(y), it is reasonable to express
it in terms of well-known special functions. Toward this
end, we first represent P(y) as the inverse Mellin transform.
The Mellin transform of a function f (y) is defined by
fr = M{f (y)} = ∫ ∞

0 dyf (y)yr−1. Therefore, for the function
f (y) = ∫ ∞

0 dxu(yx)v(x) one gets fr = urv1−r [29]. If f (y)
is associated with P(y) from Eq. (3.10), then the functions

u(x) and v(x) can be chosen as u(x) = π−1 cos(x) and v(x) =
(1 + xα)−1 whose Mellin transforms are given by [29]

ur = 1

π
�(r) cos

(
πr

2

)
(0 < Re r < 1) (4.1)

and

vr = 1

α
�

(
r

α

)
�

(
1 − r

α

)
(0 < Re r < α). (4.2)

Using the reflection formula [30] �(1/2 − r/2)�(1/2 +
r/2) = π/ cos(πr/2) to replace cos(πr/2) in Eq. (4.1), the
Mellin transform Pr = urv1−r of P(y) takes the form

Pr = �(r)�(1 − 1/α + r/α)�(1/α − r/α)

α�(1/2 − r/2)�(1/2 + r/2)
, (4.3)

where max (1 − α,0) < Re r < 1. Finally, introducing
the inverse Mellin transform as M−1{fr} = f (y) =
(2πi)−1

∫ c+i∞
c−i∞ drfry

−r and utilizing the fact that
P(−y) = P(y), we find

P(y) = 1

2πi

∫ c+i∞

c−i∞
drPr |y|−r . (4.4)

The structure of Pr suggests that the probability density
P(y) is a particular case of the Fox H function which can
be defined by means of a Mellin-Barnes integral as follows
(see, e.g., Ref. [31]):

Hm,n
p,q

[
y

∣∣∣∣ (a1,A1), . . . ,(ap,Ap)
(b1,B1), . . . ,(bq,Bq)

]
= 1

2πi

∫
L

dr	ry
−r . (4.5)

Here

	r =
∏m

j=1 �(bj + Bjr)
∏n

j=1 �(1 − aj − Ajr)∏q

j=m+1 �(1 − bj − Bjr)
∏p

j=n+1 �(aj + Ajr)
, (4.6)

m,n,p,q are whole numbers, 0 � m � q, 0 � n � p, aj and
bj are real or complex numbers, Aj ,Bj > 0, and L is a suitable
contour in the complex r plane which separates the poles of
the � functions �(bj + Bjr) from the poles of the � functions
�(1 − aj − Ajr). It is also assumed that an empty product
equals 1. Comparing Eqs. (4.3) and (4.4) with Eqs. (4.6) and
(4.5), respectively, we see that

P(y) = 1

α
H

2,1
2,3

[
|y|

∣∣∣∣ (1 − 1/α,1/α),(1/2,1/2)
(0,1),(1 − 1/α,1/α),(1/2,1/2)

]
. (4.7)

It should be noted that the cumulative distribution function
F (y) = 1/2 + ∫ y

0 dy ′P(y ′) of the random variable Y (∞) can
also be expressed through the H function. To show this, we
write F̃ (y) = ∫ y

0 dy ′P(y ′) and take into account the following
property of the Mellin transform [29]: M{∫ y

0 f (y ′)dy ′} =
−fr+1/r . According to this, F̃r = −Pr+1/r and, from
Eq. (4.3) and the functional equation �(1 + x) = x�(x), one
gets

F̃r = −�(r)�(r/α)�(1 − r/α)

α�(1 − r/2)�(r/2)
(4.8)

[− min (1,α) < Re r < 0]. Therefore, using Eqs. (4.5) and
(4.6), we obtain

F (y)= 1

2
− sgn(y)

α
H

2,1
2,3

[
|y|

∣∣∣∣ (0,1/α),(0,1/2)
(0,1),(0,1/α),(0,1/2)

]
. (4.9)
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A. Particular examples

For some special values of the tail parameter α the H

functions in Eqs. (4.7) and (4.9) can be reduced to more
familiar special (or even elementary) functions. Because the
probability density P(y) and the distribution function F (y)
provide equivalent descriptions of the long-time behavior of
the scaled walker position Y (t), next we consider only the
properties of P(y). The simplest situation occurs when α = 2.
In this case both reduction formulas [31] can be applied,
yielding

P(y) = 1
2H

2,1
2,3

[
|y|

∣∣∣∣ (1/2,1/2),(1/2,1/2)
(0,1),(1/2,1/2),(1/2,1/2)

]

= 1
2H

2,0
1,2

[
|y|

∣∣∣∣ (1/2,1/2)
(0,1),(1/2,1/2)

]

= 1
2H

1,0
0,1

[
|y|

∣∣∣∣ (0,1)

]
. (4.10)

Since the last H function equals e−|y| [31], this ascertains that
Eq. (4.7) at α = 2 reduces to Eq. (3.14).

If the parameter α is rational, then the probability density
P(y) can, in principle, be expressed in terms of the Meijer G

function as well. The G function, which is a particular case of
the H function, is defined as

Gm,n
p,q

[
y

∣∣∣∣ a1, . . . ,ap

b1, . . . ,bq

]
= 1

2πi

∫
L

dr
ry
−r , (4.11)

with 
r = 	r |Aj ,Bj =1. As a first illustrative example, we
consider the case when α = 1. Changing the variable of in-
tegration in Eq. (4.4) from r to 2r , one readily obtains P(y) =
(πi)−1

∫ c+i∞
c−i∞ drP2r (y2)−r , where max (1 − α,0)/2 < c < 1/2.

Then, using Eq. (4.3) with α = 1 and the duplication formula
[30] �(2r) = π−1/222r−1�(r)�(1/2 + r), the Mellin trans-
form P2r can be written in the form

P2r = 22r

4π3/2
�2(r)�(1/2 + r)�(1 − r). (4.12)

Therefore, in accordance with the definition (4.11), the limiting
probability density (4.7) at α = 1 has the following G function
representation:

P(y) = H
2,1
2,3

[
|y|

∣∣∣∣ (0,1),(1/2,1/2)
(0,1),(0,1),(1/2,1/2)

]

= 1

2π3/2
G

3,1
1,3

[
y2/4

∣∣∣∣ 0
0,0,1/2

]
. (4.13)

Remarkably, the limiting probability density P(y) at α = 1
can be expressed not only in terms of the Fox and Meijer
functions, but also in terms of the well-known sine, si(y) =
− ∫ ∞

y
dx sin(x)/x, and cosine, Ci(y) = − ∫ ∞

y
dx cos(x)/x,

integral functions. Indeed, using the exact result for the cosine
Fourier transform of (1 + x)−1 [32], we obtain

P(y) = − 1

π
[sin(|y|) si(|y|) + cos(y) Ci(|y|)]. (4.14)

Finally, in our last example we consider the case α =
1/2. Following straightforward calculations similar to those

described above, for the Mellin transform P2r we obtain the
expression

P2r = 22r

8π7/2
�(−1/4 + r)�2(r)�(1/4 + r)�(1/2 + r)

×�(5/4 − r)�(1 − r)�(3/4 − r), (4.15)

from which it follows that

P(y) = 2H
2,1
2,3

[
|y|

∣∣∣∣ (−1,2),(1/2,1/2)
(0,1),(−1,2),(1/2,1/2)

]

= 1

4π7/2
G

5,3
3,5

[
y2/4

∣∣∣∣−1/4,0,1/4
−1/4,0,0,1/4,1/2

]
. (4.16)

V. ASYMPTOTIC BEHAVIOR OF P( y)

Using Eq. (4.7), the behavior of the limiting probability
density P(y) for small and large values of |y| can, in principle,
be found from the expansions obtained for the H function
in different limits (for details, see Ref. [31] and references
therein). However, because P(y) is a very particular case
of the H function, it is reasonable and convenient to derive
the corresponding limiting formulas directly from the source
representation (3.10).

A. Short-distance behavior

There are three regions of the tail index α, which we
consider separately, where the limiting behaviors of P(y) as
|y| → 0 differ from one another.

α ∈ (0,1). In this case Eq. (3.10), after changing the variable
of integration from x to x/|y|, as |y| → 0 yields

P(y) ∼ 1

π |y|1−α

∫ ∞

0
dx

cos(x)

xα
. (5.1)

Then, since
∫ ∞

0 dx cos(x)/xα = �(1 − α) sin(πα/2), one gets

P(y) ∼ �(1 − α) sin(πα/2)

π |y|1−α
. (5.2)

α = 1. Using the formulas si(|y|) ∼ |y| and Ci(|y|) ∼ ln |y|
(|y| → 0) [33], Eq. (4.14), which follows from Eq. (3.10),
immediately yields

P(y) ∼ − 1

π
ln |y|. (5.3)

α ∈ (1,2]. Finally, in this case it is convenient to rewrite Eq.
(3.10) in the form

P(y) = P(0) − |y|α−1

π

∫ ∞

0
dx

1 − cos(x)

|y|α + xα
, (5.4)

where P(0) = [α sin(π/α)]−1. Then, neglecting |y|α in the in-
tegrand and taking into account that

∫ ∞
0 dx[1 − cos(x)]/xα =

�(2 − α) sin(πα/2)/(α − 1), we obtain

P(y) ∼ 1

α sin(π/α)
− �(2 − α) sin(πα/2)

π (α − 1)
|y|α−1. (5.5)

It should be noted that, since limx→0 �(x) sin(πx/2) = π/2,
the limiting formula (5.5) at α = 2 reduces to P(y) ∼ (1 −
|y|)/2, in accordance with Eq. (3.14).
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B. Long-distance behavior

The asymptotic behavior of P(y) as |y| → ∞ can easily
be found by a single (if 0 < α < 1) or double (if 1 < α < 2)
integration by parts of Eq. (3.10) with a subsequent change
of the integration variable from x to x/|y|. In particular, for
α ∈ (0,1) this yields

P(y) = α

π |y|1+α

∫ ∞

0
dx

sin(x)

x1−α[1 + (x/|y|)α]

∼ α

π |y|1+α

∫ ∞

0
dx

sin(x)

x1−α
(5.6)

and so

P(y) ∼ �(1 + α) sin(πα/2)

π |y|1+α
. (5.7)

It is not difficult to verify that the asymptotic formula (5.7)
also holds for α ∈ (1,2). Moreover, since Eq. (4.14) leads to
P(y) ∼ π−1|y|−2 as |y| → ∞, this formula is valid for α = 1
as well.

Thus, according to Eq. (5.7), the limiting probability density
P(y) when α ∈ (0,2) is heavy-tailed with the same tail index α

as in the jump density w(x). In contrast, at α = 2 the limiting
density has exponential tails, while the jump density is still
heavy-tailed [see Eq. (2.8)]. We also note that the same tail
index α characterizes the limiting probability density when
both the waiting-time and jump distributions are heavy-tailed
[19]. However, this does not mean that the long-time behaviors
of the CTRWs with heavy- and superheavy-tailed distributions
of waiting times are identical. This is because the scaling
functions for these CTRWs are quite different. Specifically,
while in the former case the scaling functions are power
functions of time [19], in the latter case they vary more slowly
[see Eqs. (3.9) and (3.13)].

VI. CONCLUSIONS

We have determined a new class of asymptotic solutions of
the CTRWs characterized by superheavy-tailed distributions

of waiting times and symmetric heavy-tailed distributions
of jump lengths. These solutions represent the probability
densities of the scaled walker position, that is, the random
walker position multiplied by a time-dependent deterministic
scaling function, in the long-time limit. We have found both
the limiting probability densities and the corresponding scaling
functions which completely describe the long-time behavior
of the reference CTRWs. It turns out that the scaling functions
depend on the survival probability characterizing the long-time
behavior of the waiting-time density and on the tail index
α ∈ (0,2] describing the asymptotic behavior of the jump
density. In contrast, the limiting densities, which have been
represented in the form of Fourier and Laplace transforms,
depend only on α.

The limiting probability densities P(y) form a class of
symmetric and unimodal functions centered at the origin.
Among other things, we have determined the limiting behavior
of these densities for small and large distances. We find that
while at α = 2 the function P(y) has exponential tails, at
α ∈ (0,2) the tails are heavy and are characterized by the same
tail index α as the jump density. In the vicinity of the origin, the
behavior of P(y) for α ∈ (0,1] is quite different from that for
α ∈ (1,2]. Specifically, P(0) is infinite in the former case and
is finite in the latter. Finally, we have expressed the limiting
probability densities in terms of the Fox H function for the
general case of arbitrary α and, for a few values of α, in terms
of the Meijer G function.
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