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Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps:

A fractional equation approach
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We calculate the survival probability of an immobile target surrounded by a sea of uncorrelated diffusive or
subdiffusive evanescent traps (i.e., traps that disappear in the course of their motion). Our calculation is based
on a fractional reaction-subdiffusion equation derived from a continuous time random walk model of the system.
Contrary to an earlier method valid only in one dimension (d = 1), the equation is applicable in any Euclidean
dimension d and elucidates the interplay between anomalous subdiffusive transport, the irreversible evanescence
reaction, and the dimension in which both the traps and the target are embedded. Explicit results for the survival
probability of the target are obtained for a density p(¢) of traps which decays (i) exponentially and (ii) as a power
law. In the former case, the target has a finite asymptotic survival probability in all integer dimensions, whereas
in the latter case there are several regimes where the values of the decay exponent for p(¢) and the anomalous
diffusion exponent of the traps determine whether or not the target has a chance of eternal survival in one, two,

and three dimensions.
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I. INTRODUCTION

Geometric and dynamical constraints imposed by complex
or crowded environments often result in subdiffusive behavior;
that is, in sublinear growth of a particle’s mean squared
displacement at long times. However, a complete description
of the underlying transport process at a mesoscopic level must
go beyond the mean squared displacement and involve other
properties of experimental interest which may be studied via
suitable quantifiers [1,2]. This may help one to discriminate
between models when describing realistic experimental sit-
uations where subdiffusive (or, more generally, anomalous)
transport is observed.

The detailed microscopic subdiffusive transport mechanism
is often unknown, and so the literature is populated with a
number of different models. One popular choice to mimic
situations of experimental interest is the continuous time ran-
dom walk (CTRW) model [3] with a long-tailed waiting time
distribution. The CTRW model has been used successfully
as a phenomenological model to describe aging effects in
systems as diverse as stock markets [4-7], charge carrier
transport in disordered media [8], luminescence quenching in
micellar clusters [9], transport in porous media [10,11], escape
problems [12], and morphogen gradient formation [13—15].

From a mathematical point of view, the CTRW with a long-
tailed waiting time distribution and a jump length distribution
of finite variance is known to be equivalent to a fractional
diffusion equation in the long-time limit; that is, a diffusion
equation with fractional time derivatives rather than ordinary
derivatives [16]. Despite the fact that fractional derivatives
are nonlocal integrodifferential operators, Laplace transform
techniques commonly used for the solution of the ordinary
diffusion equation remain applicable and can be used to tackle
a wide variety of these problems [17].

One compelling reason to work with CTRW models and the
associated fractional equations is that they make it possible to
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include reactive processes. We introduce this terminology in
the broadest sense of including particle destruction, creation,
binding, or transformation processes. While the combination
of subdiffusion with its memory effects and reaction processes
is complex, at least the CTRW approach offers a way to
consider them in combination; something that has proved more
elusive with other approaches. In some fortunate situations,
the effect of the reactions can be adequately described by
suitable boundary conditions imposed upon the corresponding
fractional diffusion equation (see, e.g., Ref. [18], Sec. 4.1 in
Ref. [17], and references therein); however, such situations
are rather exceptional, since in general the combination of
reaction with non-Markovian kinetics [19] leads to nonintu-
itive fractional equations where the parameters describing the
chemical kinetics appear in a nonuniversal, model-dependent
fashion [20-24]. In particular, heuristic approaches based on
fractional equations with separate reaction and transport terms
such as we are accustomed to in ordinary reaction-diffusion
problems very often lead to unphysical results even in the
simplest cases of irreversible first-order reactions.

While fractional reaction-subdiffusion equations have been
used to investigate a number of different problems correspond-
ing to different mesoscopic models and different boundary
conditions [14,25-30], many subdiffusive versions of classical
reaction-diffusion problems [31] remain unexplored. Thus,
one can legitimately claim that the field is still in its infancy.
One class of problems that has attracted considerable interest
in recent years concerns target search processes driven by
(sub)diffusion. Such processes are ubiquitous in nature and
include binary searches where two objects must meet for
a reaction or trapping event to occur. In many instances,
Smoluchowski’s theory of diffusion-controlled reactions turns
out to be a successful tool for the quantitative characterization
of diffusional target search. Examples include scavenging
reactions [32,33], site location in DNA [34], ligand binding
to sites on macromolecules [35], predator-prey models [36],
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luminescence quenching [37], intermittent search processes
[38], and search processes with resetting to the initial position
[39], to name but a few. In this context a key quantity is
the so-called survival probability of the target, from which
the moments of the first-passage-time distribution for target
annihilation can also be straightforwardly computed [40,41].

In recent years the classic diffusional target search problem
has been generalized to particles that undergo anomalous
diffusion [42-45]. In this paper we consider a related prob-
lem; namely, the survival probability of an immobile target
immersed in a sea of uncorrelated subdiffusive traps that may
die “spontaneously” in the course of their motion. In other
words, there are now two reactions occurring simultaneously:
the disappearance of the target and a trap upon encounter with
each other, and the disappearance of the traps due to some other
physical process. We term this latter process “spontaneous’ as
a way to recall that it is not induced by collision with the target.
The spontaneous evanescence process may, for instance, be
triggered by particle scavengers in the system, but for practical
purposes any process that turns off the interaction between a
trap and the target can also be thought of as an evanescence or
death process.

A solution to this problem in dimension d = 1 was given
in Ref. [46] using a functional method first developed by
Bray et al. [47] for the diffusive case. Here we approach the
problem from a different point of view that allows us to also
obtain results in higher dimensions. In particular, we make use
of a recently derived reaction-subdiffusion equation obtained
from a mesoscopic CTRW model with a long-tailed waiting
time distribution and a superimposed reactive process. The
elimination of the fixed target is incorporated as a boundary
condition, while the decay mechanism of the traps as they move
subdiffusively is modeled by a phenomenological choice of a
monotonically decaying functional form for the trap density
p(1).

The paper is organized as follows: In Sec. II we briefly
recall the results for the survival probability of a target in a
sea of nonevanescent traps. Our new general results for the
survival probability of the target when the traps are evanescent
are presented in Sec. III. In Sec. IV we implement these results
for particular forms of evanescence; namely, exponential and
power law. We conclude with a short summary in Sec. V.

II. RECAP OF RESULTS FOR NONEVANESCENT TRAPS

We consider a statistical ensemble of systems each of which
is composed of a fixed hyperspherical target of radius R
located at the center » = 0 of a large d-dimensional volume
V. Each volume V initially contains Ny randomly distributed
noninteracting point traps. At time ¢ = 0 the traps begin
to move subdiffusively. If any of them hits the surface of
the target, both the target and the trap are instantaneously
annihilated (fully absorbing case). Our goal is to compute the
survival probability of the target at time ¢ (i.e., the probability
that no traps have collided with the target up to this time). In this
section, we briefly recall previous results obtained in Ref. [42]
when the traps are not subject to spontaneous evanescence.
In the next section we use these results to obtain the solution
when the subdiffusive traps evanesce.
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In the absence of evanescence, the motion of each trap is
dictated by the fractional diffusion equation

ow(r,t|rg; 0)

o =K, oD, " V2 w(r,tlrg;0), 0<y <1, (1)

where w(r,t|ry; 0) is the probability density of finding the trap
at location r at time ¢ if it started at position rg at t = 0, K,
is the anomalous diffusion coefficient, and Vrz stands for the
Laplacian operator with respect to the position r. The operator
OD,l 7 is the Riemann-Liouville fractional derivative, defined
as follows [48]:

f@r.t')

t —t)H)-r’ )

1 o !
D7 f(r.t :——f dt’
ol f(r) TG 9t Jo

Strictly speaking, the operator appearing in the derivation
of Eq. (1) is the Griinwald-Letnikov fractional derivative
rather than the Riemann-Liouville derivative. However, both
operators are identical for sufficiently smooth functions [48],
as are all the functions we encounter in this problem. The
propagator solution of the fractional diffusion equation (1)
yields a mean squared displacement with the long-time
behavior (r?) ~ K yt7 resulting in subdiffusive behavior when
y is less than unity.

Let Qr(t; R) denote the ensemble averaged survival
probability of the target in a sea of randomly distributed
uncorrelated traps. This quantity can be obtained from the
survival probability of the target in the presence of a single
trap starting at location rog, Q) r(ro,t; R). We shall focus
on the thermodynamic limit; that is, we take Ny — oo and
V — oo while keeping a fixed global initial trap density
po = limy, v—00 No/ V. In this limit one has

. 1 Mo
Or(t;R) = lim |:— Ql,T(I'oJ;R)dl'oi|
No,V—o00

1% ro>R
= exp{—poRYc(1,R)}, A3)

where the integration is carried out over the volume that is
exterior to the target. We have introduced the auxiliary quantity

o(t;R) = [1 — Q1,7(ro.1; R)ldry

Rd
R ro>R

In Qr(t; R). @

poR4

Note that the survival probability Q; 7(rg,?; R) of the target
is identical with the survival probability Q;(rg,?; R) of the
trap, because we have assumed that both the target and the
trap disappear instantaneously upon encounter (i.e., there is
only one decay channel for both particles). Note also that this
is no longer the case when the traps undergo spontaneous
evanescence. In that case one has Q;r > Q; (see next
section).

In order to compute Q(rop,?; R), we must first define the
relevant boundary value problem by complementing Eq. (1)
with the deterministic initial condition,

w(r,0[ro; 0) = (r —ro), (&)
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and the boundary conditions

w(R,t|ro;0) = 0, (6)
lim w(r,|ry;0) = 0. 7)
r—00

The boundary condition (6) reflects the fully absorbing nature
of the target, which prevents the trap from being found on the
target surface or inside the target. The solution w(r,z|ry; 0) is
related to Q1 (ryp,t; R) via the integral relation

01(Fo.t: R) = f w(r.f|ro; 0)dr. ®)

The spherical symmetry of the target means that Q(ro,?; R)
only depends on the initial distance ry of the trap to the target.
For this reason, we shall drop the subindex of r( and from here
on use the simpler notation Q(r,t; R). Taking into account
Eq. (8), the boundary value problem stated directly in terms of
Q(r,t; R) then is

W =K, oD, " V2Q,(rnt;R),  (9a)
01(r,0;R) =1, (9b)
O1(R,t;R) =0, (9¢)

rli{go O1(rt;R) = 1. (9d)

The second equation in this set corresponds to the initial
condition and is self-explanatory, while the third one is a
boundary condition which reflects yet again the fully absorbing
nature of the target. The last equation states that a trap which
is “pushed” infinitely far away from the target will survive
forever, because its only decay channel is provided by the
interaction with the target.

The above problem can be solved exactly in Laplace space

[42]:
uQi(ru; R)=1— (L)li% Kd/z—l(\/ rzuy/KV) (10)
R R Kap1(/RuV [K,)

where K;/,_1(-) is a modified Bessel function of the sec-
ond kind and Q,(r,u; R) = [;~ ¢ Q;(r,t; R)dt denotes the
Laplace transform (the function and its Laplace transform are
clearly distinguished by the argument and so we use the same
designation for both). Alternatively, the solution Q(r,u; R|y)
for y < 1 can be found from the corresponding solution for
normal diffusion (y = 1) by means of the “time-expanding
transformation” [49,50] associated with the so-called subordi-
nation principle: u Q(r,u; R|y) = u?¥ Q,(r,u”; R|y = 1).
Ford = 1 and d = 3 the Bessel functions can be expressed
in terms of exponentials, and explicit exact solutions are
available for arbitrary times ¢. In other dimensions simple
expressions are only available at long times. Setting Q7 =
0, in Eq. (3), Tauberian theorems can be used to find the
long-time behavior in the multiple trap problem [42]:

172, d=1
o(t;R) o { t7/In(eyt), d=2 (11
tY, d >3,

where o, = (4K, /R*)'/7 .

Thus, the survival probability of the target goes to zero in
all dimensions d. This result is in strong contrast with the
single-trap problem, since in that case the probability that the
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random walk of the trap never intersects the target becomes
nonzero as soon as d > 3.

III. SURVIVAL PROBABILITY FOR EVANESCENT TRAPS:
GENERAL EXPRESSIONS

The behavior of the survival probability of the target
changes completely if the traps disappear in the course of
their motion. We assume a spontaneous evanescence process;
specifically, that the decrease of the global trap density p(¢) is
described by the following differential equation:

o dp@®)
p(t) = T MD)p(2), (12)

where A(t) > 0 is a rate coefficient which is in general
time dependent. The solution pyexp[— fot A")dt'] yields
a decaying density of surviving traps which describes the
time evolution of the trap density in the absence of the
fully absorbing target. The case A = constant leads to an
exponentially decaying density.

Our main goal is to compute the survival probability
Q7 (t; R) of the target at time ¢ (we use survival probabilities
with a star to distinguish these quantities from their coun-
terparts in the absence of trap evanescence). We follow the
strategy of the previous section; namely, to derive the solution
from the single-trap case.

We wish to combine the effects of Eqs. (12) and (1). One
might be tempted to proceed as in the case of ordinary diffusion
and simply construct some superposition of transport and
reaction terms. However, a careful analysis shows that this
is incorrect. Instead, a rigorous derivation starting at the level
of the CTRW shows that the correct equation is [24]

8w(r,l‘|l‘0,0) p(t) 1—y Lo 2
e Pk L0 20(r,t]rp,0
o7 oy Srobe TS Fw(r,trg,0)
y(t
PO tir0.0). (13)
o)

It is straightforward to show that the survival probability
Qi(ro,t; R) = Q7(ro,t; R) = [ w(r,|rp; 0)dr of the trap then
obeys the equation

IQI(rnt; R) _ p(1) 1—y (ﬂ 2) —
—3[ = o KV oD; p(t)vr Ql(r,t,R)
+%Q7<m;m, (14a)

where we have again dropped the subindex from ry for
notational convenience. The above equation must now be
complemented with the conditions

Q¥(r,0;R) = 1, (14b)
Q¥(R.1;R) =0, (14¢)
lim Q1 R) = ) (14d)

Lo

Note that the last equation is substantially different from the
corresponding one in the absence of the evanescence process.
Indeed, even the survival probability of a trap which is at an
infinite distance from the target decays in time because of the
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evanescence reaction, and this probability is equal to the ratio
of the global trap density at time ¢ in the absence of the target
and the initial density py.

At this stage, one can easily check that if one performs the
transformation Q7(r,t; R) = [p(t)/polQ(r,t; R) in Egs. (14),
the resulting set of equations for the transformed function Q is
identical with the boundary value problem (9) for Q. Because
of the uniqueness of the solution, we thus conclude Q = Q,
and, furthermore,

&le R). (15)

Qi(rt; R) =
This expression is intuitively clear: it simply states that the
probability that up to time ¢ the trap has neither evanesced
(one decay channel) nor hit the target (another decay channel)
is equal to the product of the probability p(#)/po that the trap
has not evanesced, and the conditional probability that it has
not hit the target given that it has not previously evanesced.
The latter probability is precisely the survival probability of
the trap when no evanescence is at play.

The next step in our route to the solution for the multitrap
problem is to derive a relation between Q7F (r,¢; R) and
Q7(r.t; R). As already anticipated in the previous section, the
evanescence of the trap implies that the survival probability
of the target and the trap are no longer the same. Let ¢’
be a time in the interval (0,7). In the single-trap problem,
the infinitesimal probability {d[1 — Q7 ;(r,t"; R)]/d¢'}dt’ that
the target is annihilated by collision with the trap during the
interval (¢/,¢ + dt’) is the product of two factors: (i) the
probability {d[1 — Qi(r,t’; R)]/dt'}dt’ that the trap collides
with the target during the time interval (', ¢’ + dt’) given that
ithas not previously evanesced, and (ii) the probability p(t')/ g
that up to time ¢’ the trajectory of that trap is not interrupted
by an evanescence event. Thus,

p(t') d

dt/[ 07 1 (r,t's R)Idt’ _WE[I—QI(M s R)ldr.
(16)

We next implement a number of steps [integrate this equation,
integrate by parts, and use Eq. (15)] to obtain

t /

01 r(rnt;R) = QT(r,t;R)—/ Q’f(r,t';R)%dt (17)
0

which quantifies the difference between QLT(r,t;R) and

Qi(n1: R).

Having clarified the relation between Q7F(r,t;R) and
Q1(r,t; R) (survival probability of a single nonevanescent trap)
and between Q7 ;(r,¢; R) (survival probability of the target
in the presence of a single evanescent trap) and Q7(r,t; R)
(survival probability of a single evanescent trap), we are now
ready to tackle the multiple trap problem by proceeding as in
the previous section (i.e., by using the statistical independence
of the traps). Equations (3) (for the survival probability of the
target in the presence of a collection of traps) and (4) are now
respectively replaced with

* : 1 * NO
Q7R = lim [7 LR 0% 1 (rt; R)dr}

= exp{—poR0*(t,R)}, (18)
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and

1
o*(t;R) = —d/ [1 — Q7 7(r.t; R)ldr (19)
r>R

1 .
- —Wln Q4(t; R). (20)

Taking the derivative of Eq. (19) with respect to time and using
Eq. (17) we get

gt R) _ 1 997 _ A1)
o Rd/r>R[8t p(r)Q} roeb

Next we use Eq. (14a) and the relation (15) in the right-hand
side of Eq. (21) and apply Gauss’s theorem to change the
volume integral to a surface integral. This allows us to write

do*(t; R) _s, Ky p@t) Dl 001(r.t; R)

., (22
at R po 0 or

r=R
where S; = 27%/?/T'(d/2) denotes the surface of a d-
dimensional hypersphere of unit radius. Finally, integrating
from O to # and using the condition 0 *(0; R) = 0 [QT,T(O, R) =
1] we obtain the general formula
t/
} P 4y
r=R Po
(23)

o*(t: R) = Sd_ / [0D1 y 001(rt'; R)
ar
which extends the result for nonevanescent traps obtained in
Ref. [42] to the case of evanescent traps. More specifically, we
have again related the logarithm of the survival probability of
the target, now in the presence of a collection of evanescent
traps, to the survival probability of the target in the presence
of a single nonevanescent trap. If the trap density p(¢) decays
sufficiently rapidly, then QF ,(t — oo,R) > 0 and o*(t —
00; R) < 00, and it is possiblé to conclude from Eq. (23) that

0*(00; R) — o *(t; R)
} Mdt’
r=R L0

B Sd_/ [ODI , 90111 R)
o
To continue from here we need to specify the dimensionality
explicitly, and also the explicit form of the trap density as a
function of time. First we discuss the dimensionality. The case
d = 1 has been dealt with in Ref. [46]; suffice it to say that we
recover the result obtained therein:

t
o*(t; R) = ot dt, (25)

PR T'(y/2)
where we have made use of the explicit one-dimensional form
of Q; in terms of the Fox H function

Q101 R) = 1 = Hy} [ e o

N
for the survival probability of a nonevanescent trap. For d =
3, and exact expression for the survival probability valid for
arbitrary ¢ can also be obtained. This is an interesting result so
we proceed in more detail. For the single-trap problem without
evanescence we have [42]
(1,y/2)
PR o

0.1)

(1,y/2>] 6)

OrriRy =1— Rpgwo|”
r,t; = -
1 r 11 /;Kyty
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leading to

001(r1; R)
or

1 1 1
= — 4+ )
~—r R TA-vy/2) /K,
With this result we get from Eq. (23)

(28)

47 . /K !
o*(t; R) = —y/ o> ar’
PoRT(y/2) Jo

47(](,,
poR2T(y) Jo

Here we have used the fact that the fractional derivative of C,
a constant, is not zero but is instead thl_yC =Ct" Y/ T(y).

In contrast with the d = 1 and the d = 3 cases, no explicit
solution in a simple integral form similar to that of Eqgs. (25)
and (29) is available for o*(z; R) when d = 2. However, we
can write explicit expressions for the approach of the survival
probability to its final value. From the result for Q; given in
Ref. [42], one finds

t
ot~ ldr'. (29)

00(r,t; R) 2 1

~ = (30)
or —r Ryln(a,1)

The fractional derivative of this expression is best computed
in Laplace space [42]. Transforming the resulting expression
back into the time domain we find that

ODtliy[l/ln(Olyl‘)] ~ tyfl/[F(y) ln(o{yl‘)]. 3D

Let us further assume that the trap density po(¢) decays
sufficiently rapidly to ensure that o*(co; R) is finite. From
Eq. (24) we find that, for d = 2,

4nK, f°° ,o(t/)t/y’ldt,
poRT(y +1) ), Inte,r)

(32)

o*(00; R) — o*(t; R) ~

We next implement our general results for particular forms
of the decay of the trap density.

IV. IMPLEMENTATION FOR PARTICULAR TRAP DECAY
FUNCTIONS

A. Exponentially decaying trap density

We first consider an exponentially decaying trap density,
p(t) = poexp(—At), where the characteristic time scale of
the decay is given by 7 =A~'. This would represent a
unimolecular decay if this were the only decay channel, which
in the presence of the target it is not. However, for a single
particle, or for the first of many, this is still the scenario because
we are looking at the decay only up to the time that this second
channel first affects the trap density. The focus of our interest
is in the final value of the survival probability of the target and
the long-time approach to it, but for completeness we also give
a general expression for the early time behavior.

Ford = 1 and d = 3 we can directly insert the exponential
decay of the density in Egs. (25) and (29) and perform the
integrals. Alternatively, we note that, for the exponentially
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decaying trap density, Eq. (17) leads to the relation

t
0% (1 R) = ¢ Q113 R) + A f e it RYdY.
‘ (33)

Next, from Eq. (10) and the Laplace transform of Eq. (33) it
then follows that

MQT’T(}’,M; R)

1 (L>'—(‘1/2> Kap-1(/r2u+ 1) /K,)
B R Kap (VR u + 17 /K,)

The Laplace transform of Eq. (19) then immediately leads to

_ 4K, Kap(/RAu + 2 /K,)
= uR(M +)\)V/2 Kd/zfl(\/Rz(u—i——)\,)V/Kvy)'

For odd-valued d (but not for even-valued d) the modified
Bessel functions of the second kind can be expressed more
simply in standard power series expansions. For d =1 we
can follow either path (direct integration or simplification and
inversion of the modified Bessel function) to obtain

~ F(y/2,kt)>
L(y/2) )’

where ¢, = (4K, t7)!/? is a characteristic length scale asso-
ciated with the distance covered by a trap during its mean
survival time when no target is present. Equation (36) is
equivalent to Eq. (15) in Ref. [46]. For d = 3 we can again
follow either route to the solution and find

(34)

o*(u; R)

(35)

o*(t;R) = %V (1 (36)

o*(t; R)

62
— o <1 _ M) il (1 _ F(mn) |
R C(y/2) R2 T(y)

resulting in a smaller survival probability than in d = 1. As
noted already, there are no simple, closed-form solutions valid
for arbitrary times for d = 2, although we are able to extract
some limiting behaviors for this case as well (see below).

The computation of the final value of o*(¢; R) in arbitrary
integer dimension is readily obtained from Eq. (35) by means
of the final value theorem for the Laplace transform:

¢y Kap(@2R/Ly)

— . (38
2R Kgqpp-1(2R/E,) (38)

o*(o0; R) = lir%uo*(u; R)=3S,
Before further evaluation, we note as an aside that the above
nonzero survival probability implies an infinite mean survival
time of the target in any dimension d. In contrast, if the
traps do not evanesce, the mean lifetime of the target is
finite [44]. For odd dimensions, Eq. (38) can be conveniently
rewritten as rational functions of the argument R/¢,. For
example : o*(co; R) =¢,/R for d =1 and o*(oo; R) =
Qnt,/R)I(1+£,/2R)] ford = 3.

Next we explicitly present the results for the approach to the
final value by exhibiting the difference o*(oc0; R) — o*(¢; R)
at long times. For d = 1 and d = 3 this respectively follows
from Eqgs. (36) and (37), whereas from d = 2 the long-time
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behavior can be inferred from Eq. (32). We find

ty/2—le—)\t’ d=1
0*(00; R) — o*(t; R) o« { In" N, 1)t~ te ™™, d =2 (39)
17 le M, d=3.

This asymptotic behavior also holds in the case of normal
diffusion (y = 1). One can see that the decay of the survival
probability to the final state prescribed by Eq. (39) becomes
faster as one goes from one to two dimensions and from two
to three dimensions. It is also straightforward to show that the
long-time behavior prescribed by Eq. (39) for d = 3 remains
valid for d > 3 (the prefactor, however, depends on d).

The limit A — 0 (no evanescence) turns out to be singular.
Indeed, in the absence of evanescence, o *(f; R) tends to infinity
as given by Eq. (11), which is different from the result obtained
when taking the limit A — 0 in Eq. (39). We conclude that the
evanescence reaction completely changes the physics of the
problem, affecting both the steady state and the decay form of
the survival probability.

Finally, the short time behavior (t <« A~!) is straightfor-
ward to obtain via a Tauberian theorem applied to the large-u
(u > A) limit of Eq. (35):

Sk
Rult+v/2

SuK2

RT(1+y/2)

o*(u; R) ~ — o*(t; R) ~ /2,

40)

As one might have guessed, the short-time result is indepen-
dent of A (i.e., the effect of the evanescence reaction is still
negligible in this regime).

B. Power-law decay of trap density

We next turn to the case of a power-law decaying density;
that is,

__ ko
(A +1/0)f’

This choice corresponds to a time dependent rate constant
A(t), which can be used to capture the essential features
of complex higher-order kinetics by means of the linear
differential equation (12) and a proper choice of the exponent
B. Interestingly, the survival probability of the target in this
case depends not only on dimensionality but also on the relative
values of the power-law decay exponent 8 and the subdiffusion
exponent y.

The behavior when d = 1 follows directly from Eq. (25),
and can be summarized as follows [46]:

p(t) = B >0. (41)

r'(B—y/2
EVE(Ings/) ' B>y/2
o7t R) ~ ) w0/, B=v/2 )
Y 2—
xoa T H/D P B <vy/2,

where £, is defined in a way similar to the exponential case
lie, ¢, = (4K,t7")'/?].
Next we consider the two-dimensional system. Our starting
equation is Eq. (23) with d = 2:
r:Ri|

K ! _, 0 ' R
O‘*([;R) — 27T—y/ I:ODTI/ 14 M
R Jo
x (1 —1/t)~Pdr. (43)

or
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The behavior of the integral on the right-hand side depends
on the relative values of 8 and y. We consider three different
cases:

Case 1 (B > y). From the asymptotic long-time behavior
(30) and the expression for the fractional derivative of the
inverse logarithm (31) one finds

1=y 001(r,t'; R)
" ar

zt/y—l
—r RI'(y+ 1)ln(ayt’)'

Under the assumption that ¢ is large enough, we now split the
interval of integration [0,¢] into two subintervals, I} = [0,z.]
and I, = [t.,t), where . is chosen sufficiently large so as to
ensure that the approximation (44) holds over the full extent
of I,. Hence one has

oD

(44)

o*(t; R) ~C+ dr', (45)

4nK,t# tyy—p-1
C(y + DHR? [ In(a, 1)

where we have used the long-time approximation p(#')/py ~
(¢'/7)* and C represents the integral from O to .. In this case
one can easily check via partial integration that the integral on
the right-hand side of Eq. (45) remains finite as t — co. Hence
o *(00; R)is finite and the target has a nonzero chance of eternal
survival. Using the explicit form of p(¢") in Eq. (32) we find

e (t/ty*
(B—y)T(y + DR? In(ayt)

Unfortunately, it does not seem possible to find an explicit
exact expression for o*(co; R) due to the lack of an exact
expression for Q(r,t’; R) valid for the whole time domain.

Case 2 (B =y). In this marginal case the target also
disappears eventually, but the approach to the empty state has
a different analytic dependence, as Eq. (45) now leads to

we?
o*(t; R) ~ v
T(y + DR
Thus, the target is eventually killed with certainty, in agreement
with the result given in Ref. [47] for the specialcase 8 = y =1
(normal diffusive traps).

Case 3 (B < y). Clearly, in this case the constant C of
Eq. (45) becomes negligible at sufficiently long times and
the behavior of o*(¢; R) is dominated by the integral on the
right-hand side. Using partial integration one easily sees that
the leading long-time behavior is given by

nty (/)"
(¥ = BT (y + DR? In(a,t)
Hence when B < y the target eventually disappears with
certainty.
We next discuss the three-dimensional case. In this case,

the integrals in Eq. (29) can be carried out exactly, and one
finds

0" (00; R) — 0™ (t; R) ~ (46)

In(In(a, 1)). A7)

o*(t; R) ~

(48)

. _ wt, B
o*(t;R) = RTG /2 Bijarn)(v/2, B —v/2)
7l
+ W&,)Bz/am(% B—7) (49)

where

Ba(z,w)=/ dir "1 —)*~' with Re(z) >0 (50)
0
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is the incomplete Beta function [51]. The long-time behavior

of o *(¢; R) again depends on the relative values of 8 and . The

analysis is carried out along lines similar to those presented in

Ref. [46] for d = 1. We shall distinguish three different cases.
Case 1 (B > y). We can rewrite o *(¢; R) as

2t
RT(y/2)
2

néy
* R2F(y)B(y’ B=Vycin(y. B—v). (51)

o*(t; R) By/2,B—v/Dlc+n(v/2, 8 —v/2)

Here B(z,w) is the Beta function [where the requirement
Re(z) > 0 and Re(w) > 0 places us in the “Case 1” regime],
and I,(z,w) is the regularized incomplete Beta function
as defined in Sec. 6.6.2 (p. 263) of Ref. [51]. Using the
property 6.6.3 inRef. [S1] we canset I (a,b) = 1 — I,_,(b,a).
Applying the relation 26.5.5 in Ref. [51], and making use of the
relation between the Beta function and the Gamma function,
we arrive at the asymptotic result

02 y—B
R s o S C2)

with

27, T(B—y/2)
R ')

leading to a nonzero survival probability Q%(oco; R) =
exp [—poR?0*(00; R)].

Case 2 (B = y). In this case the incomplete Beta function
in the term proportional to E?, in Eq. (49) can be rewritten as a
hypergeometric function and consequently for long times this
term can be approximated by

T LB —y)

O'*(OO,R) = R2 Tﬂ)

. (53)

nt
RT(y + 1)
2

1
~ In(t/7). (54)
R2T(y)

t 14
<;) 2Fily,y,y+1, —t/7)

On the other hand, the term proportional to ¢, goes to a
constant for long times, as can be seen using the same
expansion as the one used for the 8 > y case. Hence, the
survival probability Q% (z; R) vanishes as (t/r)’””“mi/r(y);
that is, o*(¢; R) o In(t /7).

Case 3 (B < y ). In this case the term proportional to 5}2, can
easily be seen to behave as {néf,/[Rz(y — ,B)F(y)]}(t/t)y’ﬂ
by performing a straightforward asymptotic analysis of the
corresponding integral. On the other hand the ¢, term is
negligible compared to the E]Z/ term. This results in a stretched
exponential decay to zero, [i.e., Q% (¢; R) ocexp (—Ct7=h)
with C > 0; that is, o*(¢; R) o ¥ ~F].

Thus, in two and three dimensions the target has a finite
probability of surviving forever only for 8 > y. For compari-
son, in the one-dimensional case it was found that the target has
a chance of eternal survival only when 8 > y /2 [cf. Eq. (42)].
We thus see that the interplay between subdiffusive transport
and the evanescence reaction determines,also in dimensions
higher than one, whether the target can ultimately survive.
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V. SUMMARY AND OUTLOOK

We have presented a particular application of a recently
derived fractional reaction-subdiffusion equation; namely,
the study of the behavior of the survival probability of
an immobile target surrounded by a sea of noninteracting
diffusive or subdiffusive point traps subject to an evanescence
reaction. The evanescence reaction is assumed to take place
independently of the CTRW jumps performed by the traps, as
opposed to a recently introduced model where disappearance
takes place at the time of each jump [52].

The problem considered in this paper is only one of a
family of many possible boundary value problems which may
be dealt with using our equations. However, this particular
choice may be of interest in a number of experimental
situations (e.g., radical recombination kinetics in the presence
of added scavenger molecules [33] also responsible for the
disappearance of radicals). As far as we know, the interplay
between the scavenging reaction and possible memory effects
arising in some environments remains unexplored.

We focused on the case of exponential evanescence and
power-law evanescence, extending previous results applicable
only to the one-dimensional case. In particular, our results also
hold for the normal diffusion case (y = 1). The presence of
the evanescence reaction was found to completely modify the
physics of the problem, both at the level of the steady state and
the decay of the survival probability to a finite steady state or
to zero. More specifically, with an exponentially decaying trap
density p(t) = pge™* (with A > 0), we find that there is a finite
survival probability of the target in all dimensions because the
traps die sufficiently quickly in their search for the target. By
way of contrast, when the traps do not evanesce the target has
a zero survival probability in all dimensions. The long-time
approach toward the final value of the survival probability
turns out to be more complex than in the case of nonevanescent
traps, and in the subdiffusive case y < 1 it involves powers
of ¢ as well as exponential factors e=*' (with a logarithmic
correction in d = 2). On the other hand, when the density
decays as a power law, p(f) ¢+~ with B > 0, the behavior
depends on the relative values of 8 and the anomalous diffusion
exponent y of the traps. In one dimension, the target has a
finite asymptotic survival probability if 8 > y /2, whereas in
two and three dimensions the target only has a finite chance of
eternal survival when 8 > y.

A natural extension of this work would allow normal
diffusive or subdiffusive target motion (the case of normal
diffusive target and normal diffusive evanescent traps has
been considered in Ref. [53]). Note, however, that in such
a case the respective distances between the target and the traps
would no longer evolve as independent variables, implying
that our asymptotically exact approach would not work in
its present form. Nonetheless, approximations based on the
fact that at long times the dominant contribution to the
survival probability comes from the subset of trajectories
where the target remains immobile [54,55] could prove useful
to tackle the problem. Ultimately, this behavior finds its
roots in what has been termed the “Pascal principle” in the
literature [56-58]; namely, a target placed in a symmetric
initial distribution of traps survives longer on average if it
stays still rather than if it moves.
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