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I. INTRODUCTION

Many interesting physical phenomena such as wetting and
adsorption involve fluids and their mixtures at a solid-fluid
interface. It is therefore not surprising that a lot of work has
been devoted to these problems within the last three decades.
The methods that have been used to study them include the
integral equation approach of liquid state theory �see, for
instance, Refs. �1–8��, density functional approaches �see,
for instance, Refs. �3,9–15��, and computer simulation �see,
for instance, Refs. �8,9,16–18��.

A rather simplified but essentially correct physical picture
of adsorption may be obtained if one considers the solid
surface as a planar smooth hard wall and the fluid as consist-
ing of hard spheres �HSs�. Interestingly enough, this simple
model is capable of accounting for the most important fea-
ture resulting from the interaction between the fluid particles
and the wall, namely, the strongly oscillatory nature of the
density distribution profile of the fluid particles in the inter-
facial region. The particles are depleted from the surface of
the wall due to excluded volume effects, and this is the
source of the density oscillations. A particular realization of
such a model is obtained from a binary HS mixture in which
one of the species is taken to have an infinite diameter and to
be in vanishing concentration. In this instance, the wall-
particle pair correlation functions lead immediately to the
density profiles. In fact, the availability of the analytical so-
lution of the Percus-Yevick �PY� equation for additive HS
mixtures obtained by Lebowitz �19� allowed Henderson

et al. �1� to derive the density profile of a HS fluid near a
hard wall within the PY approximation already thirty years
ago. More recently, Noworyta et al. �8� also used the PY
theory to study two binary mixtures of HSs near a hard wall.
In the same paper they also performed grand canonical en-
semble simulations for this system and used a version of
density functional theory �DFT� to derive the density profiles
of both species. Their results indicated that the second-order
PY theory provided in general the best agreement with the
simulation results, and that the DFT was a little less accurate.
It is interesting to point out that, for the most asymmetric
case that they examined, that of size ratio 1:3, anomalies
were observed, namely, a huge discrepancy between theory
and simulation, for which they could find no explanation.
This work has served as a motivation for the present paper.
Here we also tackle the problem of binary HS mixtures at a
planar hard wall. In addition to the PY theory, we use the
results of the rational function approximation �RFA� method
�20�, a different version of DFT �21�, and NVT Monte Carlo
simulation. Apart from complementing the work of Ref. �8�,
our aim is to assess the value of both the RFA method and
our version of DFT to deal with this problem in a situation
where both theories are subject to rather stringent conditions,
namely, when there is a disparate size of the diameters but
both species occupy a similar volume.

The paper is organized as follows. In order to make it
self-contained, in Sec. II we provide a brief summary of the
RFA method for the structural properties of a multicompo-
nent HS mixture and state the result for the planar hard wall
limit, in which the concentration of one of the species goes
to zero while its diameter goes to infinity. The explicit deri-
vation of such a limit is made in the Appendix. Section III is
devoted to the outline of a recent version of DFT derived by
one of us �21�. This is followed in Sec. IV by a description of
the simulation details. In Sec. V we present the results de-
rived with the two theoretical approaches as well as a com-
parison with the simulation data. The paper is closed in Sec.
VI with further discussion and some concluding remarks.
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II. THE RATIONAL FUNCTION APPROXIMATION
METHOD

We start by considering an �N+1�-component fluid of �ad-
ditive� HSs of diameters �i, mole fractions xi �with i
=0,1 , . . . ,N�, and total bulk number density �̄. The partial
bulk number density of species i is �̄i=xi�̄ and the packing
fraction of the mixture is �= �� /6��̄��3�, where

��n� = �
i=0

N

xi�i
n �2.1�

denotes the nth moment of the size distribution.
According to the RFA for HS mixtures �20,22�, the

Laplace transform

Gij�s� = �
�ij

�

dr e−srrgij�r� �2.2�

of rgij�r�, where gij�r� is the radial distribution function for
the pair ij, is explicitly given by

Gij�s� =
e−�ijs

2�s2 �L�s� · B−1�s��ij , �2.3�

where �ij = ��i+� j� /2 and L�s� and B�s� are �N+1�
� �N+1� matrices given by

Lij�s� = Lij
�0� + Lij

�1�s + Lij
�2�s2, �2.4�

Bij�s� = �1 + �s��ij − Aij�s� , �2.5�

Aij�s� = �̄i�	2��is��i
3Lij

�0� + 	1��is��i
2Lij

�1� + 	0��is��iLij
�2�� .

�2.6�

In Eqs. �2.4�–�2.6�,

	n�x� 	 x−�n+1�
�
m=0

n
�− x�m

m!
− e−x� , �2.7�

Lij
�0� = 
 + 
�� j + 2
�� − 
�

k=0

N

�̄k�kLkj
�2�, �2.8�

Lij
�1� = 
�ij +

1

2

��i� j + �
 + 
��i�� −

1

2

�i�

k=0

N

�̄k�kLkj
�2�,

�2.9�

where


 	
2�

1 − �
, 
� 	

6��

�1 − ��2

��2�
��3�

. �2.10�

In principle, the matrix L�2� and the scalar � can be chosen
arbitrarily without violating any basic condition �20,22�. In
particular, the choice Lij

�2�=�=0 gives the PY solution
�19,23�. One can go beyond this approximation by prescrib-
ing given contact values gij��ij� and the associated thermo-
dynamically consistent �reduced� isothermal compressibility
�, what fixes L�2� and � �20,22�. Specifically,

Lij
�2� = 2���ijgij��ij� , �2.11�

while � is the smallest real root of an algebraic equation of
degree 2�N+1�. Here, following the method of Ref. �24�, we
will take for gij��ij� the following extension to mixtures of
the Carnahan-Starling-Kolafa contact value �25�:

gij��ij� =
1

1 − �
+

3�

2�1 − ��2

��2�
��3�

�i� j

�ij
+

�2�5 − 2� + 2�2�
12�1 − ��3

� 
 ��2�
��3�

�i� j

�ij
�2

+
�2�1 + ��
6�1 − ��2 
 ��2�

��3�
�i� j

�ij
�3

. �2.12�

These contact values are thermodynamically consistent with
Boublík’s equation of state for HS mixtures �26�. The asso-
ciated �reduced� isothermal compressibility is

� = 
 1

�1 − ��2 +
6�

�1 − ��3

�����2�
��3�

+ �227 − 8� − 8�2 + 4�3

3�1 − ��4

��2�3

��3�2�−1

. �2.13�

Now we assume that the mole fraction of the spheres of
species i=0 vanishes �x0→0� and that their diameter is infi-
nitely larger than those of the other species ��0 /�i→�, i
�1�, in such a way that x0�0

n
 ��n� for n�3. In that case,
species 0 does not contribute to either the total packing frac-
tion � or the average values ���, ��2�, and ��3�, i.e.,

��n� → �
i=1

N

xi�i
n, n � 3. �2.14�

Under those conditions, a particle of species i=0 is seen as a
planar hard wall by the N-component mixture made of par-
ticles of species i=1,2 , . . . ,N. By carefully taking the limits
x0→0 and �0→� �with the constraint x0�0

n
 ��n� for n
�3�, it is proven in the Appendix that the local density of
particles of species i at a distance z from the wall is

�i�z� = �̄i�i�z� , �2.15�

where the function �i�z� is the inverse Laplace transform of
the function defined by Eqs. �A12� and �A14�–�A18�. As said
in connection with Eqs. �2.3�–�2.6�, �2.8�, �2.9�, and �2.11�,
the PY theory for �i�z� is reobtained by setting �=0. Our
extended RFA theory is obtained by imposing Eqs. �2.12�
and �2.13� and finding the corresponding value of �. Note
that, within the RFA method, expressions for gij and � other
than those of Eqs. �2.12� and �2.13� could equally be used.
The choice we have made relies on the fact that these con-
stitute well-tested and reliable approximations.

III. DENSITY FUNCTIONAL THEORY

DFT is based on the property that, for a given interatomic
potential, the grand potential �, or, equivalently, the intrinsic
Helmholtz free energy F, is a unique functional of the one-
body density profile �i�r� �27�. For an N-component fluid
mixture at given temperature T, total volume V, chemical
potential �i, and external potential Vi

ext�r� for each compo-
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nent, the equilibrium density profile �i�r� minimizes the
grand potential functional

����i
� = F���i
� + �
i=1

N � dr �i�r��Vi
ext�r� − �i� . �3.1�

The ideal contribution to the intrinsic free energy functional
is known exactly:

Fid���i
� = kBT�
i=1

N � dr �i�r��ln��i�r��i
3� − 1
 , �3.2�

where kB is the Boltzmann constant and �i is the thermal de
Broglie wavelength of species i. Thus, in the task of finding
the appropriate free energy functional one can focus only on
the excess part

Fex���i
� = F���i
� − Fid���i
� . �3.3�

Once the expression for the intrinsic Helmholtz free energy
functional is known, the density distribution is given explic-
itly by

�i�r� = �i
−3 exp�ci

�1��r� + ��i − �Vi
ext�r�� , �3.4�

where �	1/ �kBT�, and ci
�1��r� is the one-body direct corre-

lation function,

ci
�1��r� = − �

�Fex��� j
�
��i�r�

. �3.5�

Because the knowledge of the free energy functional pro-
vides a full description of the model under study, practically
any implementation of DFT requires some explicit approxi-
mation for the functional Fex. In the fundamental measure
theory �28�, the functional Fex of a mixture of HSs is as-
sumed to take the form

Fex���i
� = kBT� dr ���n��r�
� , �3.6�

where the excess free energy density ���n��r�
� depends
only on the system-averaged fundamental measures of the
particles,

n��r� = �
i=1

N � dr��i�r���i
����r − r�� . �3.7�

The weight functions �i
����r� characterize the geometry of

particles. The minimal space of the weight functions is gen-
erated by the basis

�i
�3��r� = ���i/2 − r� , �3.8�

�i
�2��r� = ��r − �i/2� , �3.9�

�i
�2��r� =

r

r
��r − �i/2� , �3.10�

where ��r� is the Heaviside step function and ��r� is the
Dirac delta function. The other weight functions are propor-
tional to those given by Eqs. �3.8�–�3.10�, namely, �i

�1��r�

=�i
�2��r� /2��i, �i

�0��r�=�i
�2��r� /��i

2, �i
�1��r�=�i

�2��r� /2��i.
In this work, we apply the following form of the free

energy density �21�:

� = − n0 ln�1 − n3� +
n1n2 − n1 · n2

1 − n3
+ �n2

3 − 3n3n2 · n2�

�
8�1 − n3�2 ln�1 − n3� + 8n3 − �15/2�n3

2 + 2n3
3

108�n3
2�1 − n3�2 .

�3.11�

In the limit of a bulk fluid, the vectorial weighted densities
n1 and n2 vanish, n0= �̄, n1= ��̄ /2����, n2=���̄ /2���2�, n3

=�, and therefore the excess free energy density becomes
equivalent to that following from Boublík’s equation of state
�26�. In the low-density limit the functional given by Eqs.
�3.6� and �3.11� is equivalent to that originally proposed by
Rosenfeld, which underlies the PY compressibility solution.
It is well known, however, that the PY compressibility equa-
tion of state overestimates the pressure at high densities. The
functional presented here includes corrections that more ac-
curately extrapolate from low- to high-density states �21�.

In the problem at hand, the external potential represents
the interaction with a planar hard wall, so that

Vi
ext�r� = �� for z � �i/2,

0 for z � �i/2,
� �3.12�

where z is the coordinate normal to the wall.

IV. SIMULATION DETAILS

A binary mixture of HSs confined in a box of dimensions
�Lx ,Ly ,Lz� was simulated using the NVT Monte Carlo �MC�
method. The particles were sorted out to cells and the linked-
list method was used. Periodic boundary conditions were ap-
plied in the x and y directions, whereas flat hard walls were
located at z=0 and Lz. We chose Lx=Ly =10 and Lz=30 in
units of �1 �the diameter of the small spheres� for all the
simulations.

The initial parameters of the simulations correspond to the
average densities and the average concentrations. The con-
nection between average and bulk values is not initially
known so that the bulk values are evaluated in the region of
the simulation box z�Lz /2, where no influence of the walls
is expected. It is worth mentioning that the bulk values can
be alternatively determined using two separate boxes con-
nected by the same chemical potentials �one with and the
other without hard walls� or using the Gibbs ensemble. How-
ever, we have found the simple NVT method �which does not
involve particle insertions� to be more efficient and less
problematic, especially for asymmetric mixtures and/or high
densities.

There are two common procedures as to how an initial
configuration can be prepared. The random shooting method
starting with the species of the largest diameter fails to con-
verge at high packing fractions. On the other hand, the box
can be initially filled up with particles placed at the crystal
configuration, usually a fcc lattice. The disadvantage of the
latter is the need of “relaxing” the system, a process that may
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take too long and may even turn out to be intractable. We
present a method that suffers none of the above mentioned
problems and can be easily generalized to the model of an
arbitrary number of components. First of all, both “large”
and “small” particles are inserted randomly into the box with
the only restriction of no overlapping of the like particles.
Then the system is left to propagate, keeping the interaction
between the like particles hard, whereas the penetrability of
the unlike particles is restricted by the potential

uij�r� = ���1 + a��ij − r�/�1� for r � �ij ,

0 for r � �ij ,
� �4.1�

where the value a=1 of the constant turned out to be conve-
nient. Choosing the initial reduced temperature �typically
T*	kBT /�=0.05�, the system was gradually cooled down.
We found this algorithm to be extremely efficient in creating
a nonoverlapping configuration �typically within one minute
using a standard PC�.

The system is subsequently equilibrated over more than
107 MC steps, and the bulk densities and density profiles are
averaged over another 4�108 moves. The average runs were
divided into 20 subaverages to estimate the standard devia-
tions.

V. RESULTS

In this section we report the results we have obtained with
the previous approaches, namely, the RFA method, DFT, and
simulation, for the density profiles of binary HS mixtures in
the presence of a planar hard wall. In order to test the theo-
ries under extreme conditions, we consider cases in which
the sizes of the two components in the mixture are disparate
but both occupy a similar volume.

For the sake of illustration, in Figs. 1–3 we present the
density profiles for both components of nine binary mixtures
with a common size ratio �2 /�1=3 and a total �bulk� pack-
ing fraction ��0.2 �Fig. 1�, ��0.3 �Fig. 2�, and ��0.4

FIG. 1. �Color online� Density profiles close to the wall for both species in the binary HS mixtures with �2 /�1=3 having a total packing
fraction close to �=0.2. Top panels, �=0.208 and x2=0.063; middle panels, �=0.207 and x2=0.042; bottom panels, �=0.206 and x2

=0.021. Solid lines, DFT; dashed lines, RFA results; dash-dotted lines, PY theory. The symbols are the results of simulation. The insets
provide a wider range and more details of the resulting structure.
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�Fig. 3�. For each packing fraction, three different composi-
tions have been considered: x2�0.06, so that �2 /�1�1.7
�top panels�; x2�0.04, so that �2 /�1�1.1 �middle panels�;
and x2�0.02, so that �2 /�1�0.55 �bottom panels�. Here,
�i= �� /6��̄i�i

3 �i=1,2� denotes the partial �bulk� packing
fraction of species i. Since � and x2 are measured in the bulk,
they present minor deviations with respect to the imposed
average values in each case. Apart from the simulation data
and our theoretical approaches, the figures also include the
PY results.

Without any doubt, the DFT is the one that produces the
best overall agreement. As far as the RFA method is con-
cerned, one finds that it also does a very good job in general,
being particularly accurate not only at the contact value
�which is of course an input in this approach�, but also ca-
tering very well for the second maximum and the rest of the
oscillations. These nice features worsen in the vicinity of the
first minimum, particularly for the density profile of the big-
ger species at ��0.4, where the RFA method may lead to
the unphysical prediction of a negative value. As expected,
the PY theory yields poorer contact values and gets worse as

the total packing fraction increases, yielding a negative value
for the first minimum of �2�z� at ��0.4 and x2�0.02. In
any case, it indeed accounts for the oscillatory character of
the profiles.

Figures 1–3 show that a rich and complex structure of the
local densities �1�z� and �2�z� appears for all the cases con-
sidered. This is related to the fact that �1��2 and so both
species compete for the available volume. As the total den-
sity increases so does the nonuniformity of the density pro-
files, as reflected by the contrast between the values at con-
tact and at the first minimum, especially in the case of the
large spheres. Moreover, as the mole fraction x2 of the large
spheres decreases, the characteristic wavelength of the oscil-
lations decreases. To better understand this phenomenon,
imagine a mixture with a mole fraction x2 such that �1

�2. In that case, the large spheres �species 2� are practi-
cally unaffected by the presence of the small ones, so the
local density �2�z� is the same as that of a single-component
fluid at the same packing fraction and oscillates with a char-
acteristic wavelength of the order of �2. As for the small
spheres �species 1�, their density profile is dominated by the

FIG. 2. �Color online� Same as Fig. 1 but with a total packing fraction close to �=0.3. Top panels, �=0.309 and x2=0.062; middle
panels, �=0.308 and x2=0.037; bottom panels, �=0.307 and x2=0.020.
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presence of the large spheres and so the wavelength of �1�z�
is also of the order of �2. In the other extreme situation,
namely, when �2
�1, we have the opposite situation: the
small spheres behave as a single-component fluid and en-
slave the density profile of the large spheres, so that both
�1�z� and �2�z� oscillate with a characteristic wavelength of
the order of �1. The interplay between both extreme cases
occurs when �1��2, giving rise to the superposition of both
length scales, as observed in Figs. 1–3. To illustrate the tran-
sition from �1
�2 to �2
�1, in Fig. 4 we plot the density
profiles predicted by the RFA for mixtures with �2 /�1=3,
�=0.3, and x2= 10

37 �0.27 �which corresponds to �1 /�2=0.1�,
x2= 1

28 �0.036 �which corresponds to �1 /�2=1�, and x2

= 1
271 �0.0037 �which corresponds to �1 /�2=10�. A ratio

1:10 in the partial packing fractions is enough to make the
species with the largest packing fraction behave almost as a
single-component fluid. In fact, Fig. 5 shows that the curve
of �2�z� / �̄2 in the case x2= 10

37 �0.27 ��1 /�2=0.1� and the
curve of �1�z� / �̄1 in the case x2= 1

271 �0.0037 ��1 /�2=10�
look very similar when each one is plotted as a function of

the corresponding scaled distance z /�i. It must be noticed
that, as observed in Fig. 5, the case �1 /�2=10 is actually
closer to the single-component fluid than the case �1 /�2
=0.1. In the latter case one has x1 /x2=2.7, x1�1 /x2�2=0.9,
and x1�1

2 /x2�2
2=0.3, so that the influence of the species 1 is

not entirely negligible. On the other hand, the ratios are
x2 /x1=0.0037, x2�2 /x1�1=0.011, and x2�2

2 /x1�1
2=0.033 in

the case �1 /�2=10.

VI. CONCLUDING REMARKS

The results presented in the preceding section deserve
some further discussion. To begin with, inspired by the work
of Noworyta et al. �8�, we have reconsidered the problem of
determining the structure of binary HS mixtures in the pres-
ence of a planar hard wall using three of the different ap-
proaches that have been proposed in the literature to deal
with it. Concerning the RFA method, its main advantage is
that of allowing for a completely analytical description, as it
also occurs with the PY theory, avoiding at the same time the

FIG. 3. �Color online� Same as Fig. 1 but with a total packing fraction close to �=0.4. Top panels, x2=0.062 and �=0.401; middle
panels, x2=0.036 and �=0.406; bottom panels, x2=0.019 and �=0.404.
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thermodynamic inconsistency problem present in the latter. It
is fair to say that, under the rather extreme conditions that we
tested it, this method is a reasonable compromise between
accuracy and simplicity. Whether the difficulties associated
with the prediction of a negative first minimum of �2�z� at
��0.4 and x2�0.04 could be avoided by the introduction of
additional parameters in the method remains to be assessed.
It should be mentioned in passing that for mixtures with �
�0.3 this unphysical behavior is not predicted, even for x2
→0. Moreover, in the case of pure ternary mixtures, the
agreement between the results for the structural properties of
the RFA method and simulation has been shown to be highly
satisfactory �29�. Finally, although we have illustrated the
results for the case of binary mixtures, a further asset of the
development we have presented applies in principle to any
multicomponent mixture of HSs near a planar hard wall. On
the other hand, the excellent performance of the DFT in the
approximation introduced in Ref. �21� has been already
pointed out. However, the merit of the proposed excess free

energy functional cannot be overlooked and might be useful
for other purposes as well. As a final point, it should be
stressed that the simulation method reported in this paper
allowed us to obtain results for situations that were problem-
atic ten years ago. In particular, it allowed us to confirm the
assertion made by Roth and Dietrich �12� concerning the
nonexistence of the anomaly reported by Noworyta et al. �8�
for the mixture with size ratio 1:3. Our hope and expectation
is that this method proves useful as well for other interesting
systems, some of which we plan to examine in the future.

Before closing this paper, and for the sake of setting a
wider perspective for the results we have presented, a few
further comments are in order. A simple and yet realistic
model of colloidal dispersions consists of a highly asymmet-
ric binary hard-sphere mixture in which the large spheres
stand for the colloidal particles and the small spheres repre-
sent solvent or polymer molecules. Therefore, our results
may also be applied in these systems, which are nowadays
easily amenable for experimental examination, and open up
the possibility of investigating solvation forces and other in-
teresting physical phenomena associated with particles of
different sizes competing for interfacial positions in the pres-
ence of walls. We plan to pursue some of these issues in the
future. On the other hand, the possible extension of our work
to deal with nonhard particles remains to be explored. In the
case of the RFA method, structural properties of sticky hard-
sphere mixtures and other systems have already been derived
�22�. As for the DFT approach, modifications would be re-
quired. Thus it seems that much work remains to be done
before such extensions become a reality. Again, we plan to
explore these and other possibilities in future studies.
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APPENDIX: THE WALL LIMIT IN THE RFA

The limit x0→0 implies that the row i=0 of the �N+1�
� �N+1� matrix A defined by Eq. �2.6� vanishes, so that

Aij = Ãij�1 − �i0��1 − � j0� + Ai0�1 − �i0�� j0. �A1�

Here, Ãij is a projected N�N matrix with i , j�1. In fact, Ãij
is the matrix corresponding to an N-component mixture in
the absence of species 0. Inserting �A1� into Eq. �2.5�, we
have

Bij = B̃ij�1 − �i0��1 − � j0� + �1 + �s��i0� j0 − Ai0�1 − �i0�� j0,

�A2�

where B̃ij is the N�N matrix

B̃ij = �1 + �s��ij − Ãij, i, j � 1. �A3�

It can be checked that the �N+1�� �N+1� inverse matrix B−1

is

�B−1�ij = �B̃−1�ij�1 − �i0��1 − � j0� + �1 + �s�−1�i0� j0

− Ci�1 − �i0�� j0, �A4�

where B̃−1 is the N�N inverse matrix of B̃ and the elements
Ci are

Ci =
1

1 + �s
�
j=1

N

�B̃−1�ijAj0. �A5�

Insertion of Eq. �A4� into Eq. �2.3� yields

2�s2e�ijsGij = �
k=1

N

Lik�B̃−1�kj�1 − � j0� +
Li0

1 + �s
� j0

+ �
k=1

N

LikCk� j0. �A6�

In particular, if i , j�1,

2�s2e�ijsGij = �
k=1

N

Lik�B−1�kj, i, j � 1, �A7�

where we have taken into account that �B̃−1�ij = �B−1�ij if
i , j�1. Equation �A6� implies that, as expected, the
N-component mixture is not affected by the presence of the
species 0 in the infinite dilution limit x0→0. On the other
hand, setting i�1 and j=0 in Eq. �A6�, we have

2�s2e�i0sGi0 =
Li0

1 + �s
+

2�s2

1 + �s
�
j=1

N

e�ijsGijAj0, i � 1,

�A8�

where use has been made of Eqs. �A5� and �A7�. The cross
function Gi0 �with i=1, . . . ,N� is related to the spatial corre-
lation between the diluted species 0 and the species i of the
true N-component mixture. We see from Eq. �A8� that Gi0 is
expressed in terms of the matrix Gij of the N-component
mixture and the cross elements Li0 and Aj0.

Let us now introduce the shifted radial distribution func-
tion

�i�z� = gi0�z + �0/2� , �A9�

where z��i /2 represents the distance from the center of a
sphere of species i to the surface of a sphere of species 0. In
Laplace space,

Gi0�s� = e−�0s/2
�0

2
�i�s� − �i��s�� , �A10�

where

�i�s� = �
�i/2

�

dz e−sz�i�z� �A11�

is the Laplace transform of �i�z� and �i��s�=d�i�s� /ds.
Thus far, the diameter �0 is arbitrary as long as Eq. �2.14�

is satisfied. Now we take the wall limit ��0→��. In that
case, the function �i�z� has a clear meaning as the ratio be-
tween the local density of particles of species i at a distance
z from the wall, �i�z�, and the corresponding density in the
bulk, �̄i=�i���. In the wall limit �i��s� can be neglected ver-
sus �0�i�s� in Eq. �A10�. Therefore,

�i�s� = 2 lim
�0→�

�0
−1e�0s/2Gi0�s�

= e−�is/2
 Li0�s�
�s2�1 + �s�

+
2

1 + �s

� �
j=1

N

e�ijsGij�s�A j0�s��, i � 1, �A12�

where in the last step use has been made of Eq. �A8� and

Li0�s� 	 lim
�0→�

�0
−1Li0�s�, Ai0�s� 	 lim

�0→�
�0

−1Ai0�s� .

�A13�

From Eqs. �2.4�, �2.6�, �2.8�, �2.9�, and �2.11� one gets

Li0�s� = Li0
�0� + Li0

�1�s + Li0
�2�s2, �A14�

Li0
�0� = 
� − ��
�

j=1

N

�̄ j� jgj0�� j0� , �A15�

Li0
�1� =




2
+


�

2
�i − ��




2
�i�

j=1

N

�̄ j� jgj0�� j0� , �A16�
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Li0
�2� = ��gi0��i0� , �A17�

Ai0�s� = �̄i�	2��is��i
3Li0

�0� + 	1��is��i
2Li0

�1� + 	0��is��iLi0
�2�� .

�A18�

It must be noted that the parameter � appearing in Eqs.
�A12� and �A15�–�A17� is independently obtained from the
RFA solution for the N-component mixture. Regarding the
contact values gi0��i0�, they are obtained by taking the limit
�0→� in Eq. �2.12�, namely,

gi0��i0� =
1

1 − �
+

3�

�1 − ��2

��2�
��3�

�i +
�2�5 − 2� + 2�2�

3�1 − ��3

� 
 ��2�
��3�

�i�2

+
4�2�1 + ��
3�1 − ��2 
 ��2�

��3�
�i�3

. �A19�

Taking into account that Gij�s�=s−2+O�s0� for small s, it
is possible to prove that

lim
s→0

s�i�s� = 1, �A20�

which implies the physical condition

lim
z→�

�i�z� = 1. �A21�
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