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Target problem with evanescent subdiffusive traps
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We calculate the survival probability of a stationary target in one dimension surrounded by diffusive or
subdiffusive traps of time-dependent density. The survival probability of a target in the presence of traps of
constant density is known to go to zero as a stretched exponential whose specific power is determined by the
exponent that characterizes the motion of the traps. A density of traps that grows in time always leads to an

asymptotically vanishing survival probability. Trap evanescence leads to a survival probability of the target that
may go to zero or to a finite value indicating a probability of eternal survival, depending on the way in which

the traps disappear with time.
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I. INTRODUCTION

The traditional trapping problem involves diffusive
(Brownian) particles (A) that wander in a medium doped
with static traps (B) and disappear when they meet [1-4]. In
the traditional rarger problem [5-7], on the other hand, one
has static A particles and mobile traps. Both of these prob-
lems are described by the “reaction” A+B— B, but in one
case the A’s move and the B’s stand still, while in the other
the B’s move while the A’s are stationary. Both of these
problems have a long and active history in the literature.
They not only represent experimentally observable phenom-
ena, but they have served as a testbed for theoretical and
numerical studies and as a starting point for the formulation
of models for more complex systems that have only recently
been successfully solved analytically. For example, the sur-
vival probability of an A particle in a medium of B particles
when both species are diffusive, first investigated numeri-
cally in the seminal work of Toussaint and Wilczek [8], was
only partially solved analytically [9,10] until the recent full
(asymptotic) solution in one dimension [11-14]. These re-
sults have also recently been generalized to subdiffusive spe-
cies [15]. The survival probability of A particles in the reac-
tions A+A—A and A+A—0 in one dimension when A is
mobile is also of relatively recent vintage in the history of
such analytic solutions [4,16,17].

The purpose of this paper is to extend the one-
dimensional target problem calculations for both diffusive
and subdiffusive traps to the case of traps that themselves
disappear in time according to some survival probability
function of their own (e.g., exponential or power law). The
decay of the moving traps with time of course increases the
survival probability of the stationary target, and the interest-
ing questions concern the interplay of the time dependences
of the movement and decay of the traps. A related problem
was considered in Ref. [18], where diffusive particles A and
traps B and C undergoing the explicit reactions (a)
A+B—B, B+C—C, and (b) A+B— B, B+C—0 were con-
sidered using entirely different methods. Our methods are
equally applicable to trap densities that increase with time,
but this problem is less interesting because it necessarily
leads to the eventual demise of the target.
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A common characterization of the diffusive motion of a
particle is through its mean square displacement for large f,
2K
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x“(¢ t 1
@)~ ¢ 1+ (1)

Here K, is the (generalized) diffusion constant, and v is the
exponent that characterizes normal (y=1) or anomalous
(y# 1) diffusion. In particular, the process is subdiffusive
when 0 <y<{1. Subdiffusive processes are ubiquitous in na-
ture [19-24], and are particularly useful for understanding
transport in complex systems [3,25].

The problem considered in this paper is a special case of
a broad class of reaction-subdiffusion processes that have
been studied over the past decades. One approach that has
been used to study these processes is based on the continu-
ous time random walk (CTRW) theory with waiting-time
distributions between steps that have broad long-time tails
and consequently infinite moments, ¢(t)~¢"'"7 for t— o
with 0<y<1. Another approach is based on the fractional
diffusion equation, which describes the evolution of the
probability density P(x,7) of finding the particle at position x
at time 7 by means of the fractional partial differential equa-
tion (in one dimension) [7,19,26-29]

J P
Ep(x’t) = Ky oD, ywp(x,t) , (2)

where OD,'_” is the Riemann-Liouville operator,
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In this paper we study the one-dimensional target problem
for a static particle A subject to attack by diffusive or sub-
diffusive traps B that may die before reaching the target A
[18]. For this purpose, we generalize the ideas of Bray and
Blythe [11], and of our own work [15] based on a fractional
diffusion equation approach. While recent work shows that a
simple generalization of reaction-diffusion to reaction-
subdiffusion equations in which the reaction and subdiffu-
sion terms are assumed to enter additively is not valid in
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some cases [30], this is not a difficulty in our particular ap-
plication. The difficulties do not arise when the reaction pro-
cess can be translated into a static boundary value problem,
which is the case for the target (as well as the trapping)
problem [28].

In some cases, asymptotic anomalous diffusion behavior
can be found from corresponding results for normal diffusion
via the simple replacement of ¢ by #”. This can be understood
from a CTRW perpective because the average number of
jumps n made by a subdiffusive walker up to time ¢ scales as
(n)~1"” and, in many instances the number of jumps is the
relevant factor that explains the behavior of the system. The
simple replacement result is evidence of “subordination” (see
Secs. 5 and 7.2 of Ref. [6]). However, there are other in-
stances where the behavior of subdiffusive systems cannot be
found in this way. A simple example is the survival probabil-
ity of subdiffusive particles in the trapping problem (see Sec.
5 of Ref. [6]). In particular, for systems where competing
processes (motion toward target and death) occur according
to different temporal rules, such a replacement becomes am-
biguous. This is the case for the problem considered here.

While our analytic results are based on the fractional dif-
fusion equation formalism, our numerical simulations are
based on a CTRW algorithm. These two renditions of the
problem are expected to differ if trapping events are likely in
a small number of steps, that is, if the initial density of traps
is too high. On the other hand, if the initial trap density is too
low, then the simulations to produce valid statistics would
take inordinately long because trapping events are rare and
because the system must be sufficiently large to include
many particles. We note this as a caveat for our subsequent
comparisons.

In Sec. IT we present an integral equation for the survival
probability, which we reduce to quadrature in Sec. III. The
resulting integral is explicitly evaluated for exponentially de-
caying trap densities (including a stretched exponential de-
cay), as well as for trap densities that decay as a power law.
Not surprisingly, we find that a sufficiently rapid decay of the
trap density leads to a finite asymptotic survival probability
of the target. Comparisons of our results with numerical
simulations are also shown in this section. A summary and
some conclusions are presented in Sec. IV.

II. INTEGRAL EQUATION FOR THE SURVIVAL
PROBABILITY

We consider a finite interval L containing N=pL mobile
traps B of constant density p initially distributed at random,
and a single immobile A particle at the origin. Following the
approach of Bray et al. [14] for diffusive traps and our gen-
eralization of this approach to the subdiffusive case [15], we
write the survival probability of A as P(f)=exp{-uy(0},
where u(f) is to be determined. To find this function, one
calculates in two ways the probability density to find a B
particle at the origin at time #,

pzf dt' gyt G(t-1"). 4)
0

That the left-hand side is this probability density is obvious.
On the right-hand side one has the renewal theory expression
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where fio(r')dt' =(~P/P)dt’ is the probability that a B par-
ticle intersected A in the time interval (¢',¢' +dt’) for the first
time, and the propagator G(r—t') is the probability density
for this particular B to be at the origin at time ¢. In one
dimension it is given by [31,32]

Glt)=—— ”{ o Y/wz)} e
=F——=H) T [\
Va7 (0,1),(1/2,1) \"41<yﬂr<1 ) g)

(5)

where Hf:g is Fox’s H function, whose value at the given
arguments we have used to write the last equality. This for-
mulation assumes that the initially random distribution of
traps remains random (Poisson) at all times for both diffu-
sion and subdiffusion. [This is easily established by noting
that the integration of the distribution P(x,7) over all the
initial positions of the traps is independent of x and of ¢, i.e.,
it remains uniform for all time.] In a different context than
the target problem, Bray et al. [14] generalized their ap-
proach to a time-dependent density p(z) of B. They argue that
in place of Eq. (4) one now has

p(t) = f dt’&,)ﬂoG(t—t’), (6)
o pt)
that is,
1=ftdt"a—(:G(t—t’). (7)
o plt")

This is the basic equation to be considered in this paper.

III. THE SURVIVAL PROBABILITY
To calculate the survival probability of particle A, we re-
write Eq. (7) explicitly as

—_—

| Q'
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1 t
= dt’ ,
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where we have multiplied both sides by \5'4—I{y, and where we
have introduced

(8)

Fo(t)
0)="—"". ©)
p(?)
Equation (8) is an equation of Abel of the first kind [33-35],
1 g Q')
t)= dr’ , 10
uY l“(l—y/z)f0 (t=1")"? (10)

with f(r)= v’TKy. The solution of this classic equation is well
known [see Sec. 12 in Ref. [33] or Egs. (2.5a) and (2.5b) in
Ref. [34]],

) o ) 1 J‘t , f‘(l") . 1‘7/2—1
Q0= 0=t ), M e Gy

(1)

Here, as earlier, ODtl_y/ 2 is the Riemann-Liouville fractional
derivative. In our case f(r)= V”4K7 is constant, so that
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FIG. 1. (Color online) uo(t)=-In P(¢) vs t for nonevanescent
traps as given in Eq. (14) (solid line) and simulations (symbols
along with error bars). Parameter values are y=1/2, py=0.01,
K,=1/(2\m).

Q( )_’L.LO_([)_ELIV/Z—I. (12)
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It then follows that

\’R !
= —2v dz Y21 13
Ho(t) T ), 7p(2)z (13)

which provides a general solution to our problem for any
p(t). While Eq. (13) applies to trap densities that grow or that
decrease or even oscillate in time, the case of evanescent
traps is the more interesting and the one we choose to focus
on.

As a reminder, we note that for traps of a constant density
p(t)=p, the survival probability is given by

/

\’4K poty/2>
P(t) = expl| — =200 14
® exP( T(1+2) (14)

As a benchmark, we show in Fig. 1 a typical comparison of
this result with simulation results. The agreement is clearly
good, although a lower initial density run for a longer time
would lead to even better agreement.

A. Exponentially decaying trap density

Suppose that the traps have a finite lifetime 7 and
decay exponentially, as in a unimolecular reaction, p(r)
=p, exp(—t/ 7). The integral in Eq. (13) immediately leads to
the solution

F(y/Z,I/T))
=4 l—-———, 15
Ko ) yp0< T(y/2) (15)
where I'(b,x) is an incomplete gamma function, and

€, = (4K, ™" (16)

When y=1, i.e., when the traps are diffusive, this reduces to
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FIG. 2. (Color online) u(t)/py=—In P(t)/p, vs t for exponen-
tially evanescent traps. Solid line, Eq. (17). Squares, simulation
results for a high initial density py=0.1. X’s, simulation results for a
lower initial density py=0.01. Other parameter values are y=1,
7=100, and K;=D=1/2. Asymptotic value, uy(®)=~€,py=12.

110(1) = €, pg erf(\i/7). (17)

For arbitrary y<<1, the survival probability of the target in
the presence of the subdiffusive traps with finite lifetime thus
is

F(y/Z,I/T))]‘ (18)

P(t) = exp{— €yp0(1 - r(2)

The interesting result here is that the funtion (7)) goes to
the constant py(*)=4 ,py and not to infinity as #— oc. There-
fore the survival probability does not vanish with increasing
time,

e—[/T
P(t)~>exp|:—€yp0<l—W>:|. (19)

We note that €, is a characteristic distance that measures the
root mean square displacement of the traps during their de-
cay time 7. Therefore ug(°)=~,p is the ratio of this average
displacement to the average initial distance pgl between
traps. This finite asymptotic survival probability, P()
=exp(—€,p), displays reasonable qualitative features: it in-
creases with decreasing trap lifetime 7, and it decreases with
increasing initial trap density py. That there is a finite
asymptotic survival probability reflects the fact that if the
traps disappear sufficiently rapidly (which they do if they
disappear exponentially while the traps move diffusively or
subdiffusively), then many traps disappear before they can
reach the particle, and there is a finite probability that the
particle remains forever “safe.”

The next two figures show the comparison of simulation
results with our analytic outcome. First, in Fig. 2 we illus-
trate our earlier caveat, that agreement cannot be expected if
the initial density of traps is too high and the extinction rate
of the traps is large, and that the agreement improves with
lower initial density. The disagreement is clear and can be
traced exactly to the early time trapping events that cumula-
tively affect the survival probability. Figure 3 shows typical
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FIG. 3. (Color online) uo(t)==In P(¢) vs t for exponentially
evanescent traps of a lower initial density py=0.01. Solid line, Eq.
(18). Symbols, simulation results (there are error bars on the
symbols but they are too small to see clea_rly). Other parameter
values are y=1/2, 7=10%, and K,=1/(2\7). Asymptotic value,
wo(©)=411p9=1.06225.

results for the lower initial density of traps and a more
slowly decaying trap density, where the agreement between
analytic results and simulations is clearly very good.

Finally, it is straightforward to extend the results of this
section to trap densities that decay as a stretched exponential,
p(t)=pg exp[-(t/7)*]. The integral (13) is still straightfor-
ward and gives

0= {’ypor(y/Za')( _ Tly2a, (D]
H = h (y12) T(y2a)

) . (20

which reduces to Eq. (15) when a=1. The asymptotic finite
survival probability then is

F(lea)< e(— % )
P - 1- ~
®- e"p{ P\ T TaRaw

(21)

An interesting interplay of y and « should be noted: there are
values of a and vy for which the survival probability of the
target when the trap density decays as a stretched exponen-
tial (& <<1) is actually greater than with an exponential decay
(a=1). This seemingly counterintuitive behavior is con-
nected with the reversal of time inequalities, i.e., with the
fact that (¢/7)* is greater (smaller) than (¢/7) when ¢ is
smaller (greater) than 7.

B. Power law decaying trap density

Suppose now that the trap density decays as a power law
as might happen, for instance, if there is a process of trap-
trap annihilation. The trap density at long times then de-
creases as p(f)~1# and it is to be expected that the target
survival probability (and, in particular, whether it is asymp-
totically vanishing or finite) depends sensitively on the rela-
tion between the exponents B and . We expect that for
sufficiently large B the target will again have a finite prob-
ability of surviving forever.
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To find a closed expression for the survival probability we
need to specify p(z) for all times, not just asymptotically, and
we choose

Po

(1+t/7F 22)

p(?) =

With this form, the integral (15) can be carried out exactly, to
give

€.po
—T——B 12,8 — vI2 23

for all B, where B is the incomplete beta function [36,37]

Mo(t) =

B,(z,w) =f di=' (1 -0)"""  with Re(z) > 0. (24)
0

Equation (1) tells us that the typical length explored by a
(living) trap grows with time as (x*(£))"”>~¢”2. On the other
hand, the mean distance between traps grows as p~! ~ %, It
thus stands to reason that the asymptotic survival probability
depends sensitively on the relative magnitudes of 8 and y/2.
To present more explicit results in this long-time regime we
distinguish three cases.

Case 1. B> y/2. In this case Eq. (23) can be written as

ol = =P B2, B~ D) (W2.B= 2. (25)
(v2)

Here B(z,w) is the beta function [where the requirement
Re(z) >0 and Re(w) >0 places us in the “Case 17 regime],
and I,(z,w) is the regularized incomplete beta function as
defined in Sec. 6.6.2 (p. 263) of Ref. [37]. Using the property
6.6.3 in Ref. [37] we can set I (a,b)=1-1,_.(b,a), and ap-
plying the relation 26.5.5 in Ref. [37] we can then write the
asymptotic result

(1/7)7>F .
(B=vI2)B(B— v/2,v/2)

Lyran(¥2,8=¥12) =1 -

(26)

Consequently, recognizing the relation between the beta

function and the gamma function, as t— % we arrive at the

asymptotic result

I'(B-v/2)
IN0Z)

. ( (t/7) 7P )
Ho(t) — €,pg _(B_y/z)r(y/2)+

27

The survival probability thus approaches (via a power law
decay of the exponent) the finite asymptotic value

I'(B- y/2)>
r'(p)

Figure 4 illustrates this result along with numerical simula-
tions for comparison.

Case 2. B<y/2. In this case the integrand in Eq. (13)
goes to zero more slowly than 1/¢ for — 0, so that a simple
asymptotic analysis of the integral (13) readily establishes
that w(¢) goes to infinity with increasing time as

P(t — ) = exp(— €,po (28)
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FIG. 4. (Color online) uo(t)=—In P(t) vs ¢ for power law eva-
nescent traps with 3> /2 (case 1). Parameter values are y=0.75,
B=0.8, py=0.01, 7=10° and K,=1/(2Vm). Asymptotic value,
Jo(0)=1€3,4p9=2.365 49. Solid line, Eq. (23). Symbols, simulation
results.

¢ ty/Z—B
_7%_(_) e (29)

) = B\ 7

The survival probability vanishes at long times as a stretched
exponential,

= expl - ¢ /2—ﬁ>
P(t)—e p( mm(l‘/ﬂy . (30)

Analytic and simulation results for this case are shown in
Fig. 5.

Case 3. B=y/2. This is the marginal case, and the incom-
plete beta function (24) can be rewritten as a hypergeometric
function,

14 T T
12
10

‘In(P)

(=T S B =)
——— —

10"

FIG. 5. (Color online) uo(t)==In P(¢) vs t for power law eva-
nescent traps with S<<y/2 (case 2). Parameter values are y=0.8,
B=02, py=0.01, 7=10°, and K7=1/(2\577). Solid line, Eq. (23).
Symbols, simulation results along with error bars.
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FIG. 6. (Color online) wuy(t)=—In P(z) vs t for power law eva-
nescent traps with B=7y/2 (case 3). Parameter values are y=0.3,
B=0.4, py=0.01, 7=10° and K,=1/(2\m). Solid line, Eq. (23).
Symbols, simulation results.

€,po(t/ )P
/‘LO(I) = %ZFI(IB’B’I + Ba_ t/T)

14
=ﬁ%ln(ﬂr)+--- as t — . 31)

The survival probability thus decays as an inverse power,
P(t — ) — (t/7) T2, (32)

Results for the marginal case are shown in Fig. 6.

IV. CONCLUSIONS

We have calculated the survival probability of a stationary
target in a one-dimensional system in which diffusive or sub-
diffusive traps that eliminate the target upon encounter them-
selves disappear according to a survival probability. The root
mean square displacement of the traps grows with time as
"2, that is, diffusively when y=1 and subdiffusively when
v<1. The survival probability of the target depends sensi-
tively on the interplay of two temporal events, namely, the
motion of the traps as characterized by the exponent y and
their disappearance. When the motion of the traps is diffu-
sive or subdiffusive and the traps do not decay in time, the
survival probability goes to zero as a stretched exponential,
Eq. (14). When the traps undergo exponential decay or
stretched exponential decay, the target has an asymptotic
safety margin, that is, a finite probability of surviving for-
ever, cf. Egs. (19) and (21). When the traps are diffusive or
subdiffusive and disappear according to a power law survival
probability ~77, the survival of the target depends sensi-
tively on the relation between y and B. If the traps move
sufficiently rapidly relative to their disappearance, that is, if
y/2> 3, the target is trapped with certainty at long times, its
survival probability going to zero again as a stretched expo-
nential, cf. Eq. (30). If the traps move slowly, y/2 < 3, then
the target has a chance of eternal survival, cf. Eq. (28). At the
critical relation y/2=p the survival probability goes to zero
as an inverse power of time, cf. Eq. (32). If in fact the trap
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density increases with time, the survival probability of the
target necessarily vanishes asymptotically.

In this paper we have calculated the survival probability
of a target particle in the presence of evanescent subdiffusive
traps of given time-dependent density. We could equally con-
sider the inverse problem, namely, that of finding the time
dependence of the density of traps to obtain a particular sur-
vival probability function. For this purpose we need only
“invert” Eq. (12),

_ F(V/z)tl—yn@

K, P )

p(r) =
An exponentially decaying survival probability of the form
P(t)=e7"'" requires a density that decays as p(t) ~t'~”2. This
is included in and consistent with case 2 in Sec. IIl B with
y/2—-B=1. Similarly, for an inverse power decay of the form
P(t) ~ (t/ 7)™ we require that p(f) ~ "2, which is consistent
with case 3 in the same section.
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This work has focused on the survival probability of a
stationary target. The survival probability of a moving target,
diffusive or subdiffusive, surrounded by nonevanescent dif-
fusive or subdiffusive traps has been considered recently in a
number of papers [11,15]. Extension of our work with eva-
nescent traps to the case of a diffusive or subdiffusive target
is in progress [38].
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