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Territory covered by N random walkers on fractal media: The Sierpinski gasket
and the percolation aggregate
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We address the problem of evaluating the numBgit) of distinct sites visited up to timeby N nonin-
teracting random walkers all starting from the same origin in fractal media. For a wide class of ftattals
which the percolation cluster at criticality and the Sierpinski gasket are typical exam@gsopose, for large
N and after the short-time compact regime, an asymptotic serieg{ofy analogous to that found for Euclid-
ean mediaSN(t)wASN(t)(lfA). HereéN(t) is the number of sitesvolume inside a hypersphere of radius
L[In(N)/c]** whereL is the root-mean-square chemical displacement of a single random walker, vt
determine how fast £ I",(/) (the probability that a given site at chemical distarictom the origin is visited
by a single random walker by timg decays for large values of/L: 1—-T'\(/)~exd —c(//L)"]. For the
fractals considered in this paper= dv/v/(d‘,/v— 1), dv/V being the chemical-diffusion exponent. The corrective
termA is expressed as a series in I(N)In™In(N) (with n=1 and 0<m=n), which is given explicitly up to
n=2. This corrective term contributes substantially to the final valu§@f) even for relatively large values
of N.
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. INTRODUCTION ~t% for t<t<t,~InN and Sy(t)~t%?(In N)%"V for t,
<t, whered ,=d/d, is the chemical dimensiofor topo-
Random walk theory is a branch of statistical physics withlogical distance dimensiond,,, is the fractal dimension of
many application§l,2]. Problems related to a single random the shortest path on the fractal; is the fractal dimension,
walker have traditionally been the subject of thorough studyu=d,,/(d,,— 1), andd,, is the diffusion exponeror fractal
but their generalizations tbl>1 random walkers have at- dimension of the random walk2,12]. However, Drger and
tracted much less attention, although there are some, gendftafter [8] using scaling arguments have recently proposed
ally very recent, exceptiori8—8|. These multiparticle diffu- that
sion problems are characterized by the impossibility of being a2 d o
analyzed in terms of the single random walker theory, i.e., Sn(t)~tHH(InN) @

they cannot be solved through simple averaging over the,, t, <t Wherev=dv/vl(dv'/v— 1) and d\',/vzdw/dmin is the

pro_perties of a single random walker, even in the nonintersnhemical-diffusion exponeni2,12,13. Of course, the two
acting case. The recent development of experimental techyyagictions agree for those media, such as Sierpinski gaskets,
niques allowing the observation of events caused by singleyr which Ain =1.
particles of an ensembl®] should give additional encour- As stated above, two time regimes are observeBjjft):
agement to the study of these multiparticle diffusion prob-an extremely short-time regime or regime | and a long-time
lems. regime or regime Il separated by the crossover time
The subject of this paper, namely, the evaluation of the~|n N. A further long-time regime, or regime ll, is observed
average numbe8y(t) of distinct sites visitedor territory  in Euclidean lattices when the movement of the independent
covered by N random walkers up to timg all moving from  walkers are very far from each other so that their tréals
the same starting site, is a clear example of a diffusion probmosy never overlap andy(t)~NS;(t) [3,7]. In the one-
lem that cannot be solved, or even approximated, from thelimensional lattice and fractal lattices with<2, the trails
solution for N=1, Si(t). Even for independent random of the random walkers partially overlap at all times and re-
walkers, the overlap of the regions explored by differentgime Il is never reached. Such is the case in this paper
walkers prohibits a decomposition @&(t) into single-  where we are concerned only with fractals in whit< 2.
particle contributions. The origin of the problem of evaluat-Regime | and its transition to regime Il is well understood
ing Sy(t) is usually traced back to the year 1951 when the[3 4] and it will not be discussed here.
caseN=1 was posed by Dvoretzky and Esipl0]. Since Regime Il is far more interesting and difficult to analyze
then, the quantityS,(t) has been studied in detail and is than regime | due to the nontrivial interplay of the walkers in
discussed in general referen¢és$ For fractal substrates this their exploration of the lattice. In some recent wow, we
problem was studied by Rammal and co-workdrs]. More  have shown that for independent random walks on Euclidean
recently, Larraldeet al. [3] and Havlinet al. [4] studied the lattices there exist important asymptotic corrections to the
problem of evaluating,(t) whenN>1 noninteracting ran- main term ofSy(t) that cannot be ignored even for a very
dom walkers diffuse in Euclidean and fractal media, respeclarge number of particles as these corrections decay only
tively. For fractal lattices with spectral dimensiods logarithmically withN. We will see that this also holds for
=2d;/d,<2, it was argued by Havliet al. [4] that Sy(t) the fractal lattices considered in this paper. An important
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consequence that we will address in Sec. VB is that the Il. SURVIVAL PROBABILITY AND TERRITORY
corrective terms must be taken into account in the analyses COVERED BY N RANDOM WALKERS

based on “collapsing” the numerical daf8.4.§ to deter- Let I',(r) be the probability(survival probability that a

mine the exponent's in the main term &(t). L siter has not been visited by a single random walker by time
It should be noticed that, except for the Sierpinski gasket ¢ is well known thatSy(t) can be expressed tg,4]
in two dimensions wheh =1 [11], there has never been any N ’

discussion aboutSy(t) focused on deterministic fractals,
whether theoretically or numerically. Certainly, a depen- SN(t)=<E {1—[Ft(r)]N}>, 2
dence ont and N of the main asymptotic term d$(t) for
large N has been proposefsee Eq.(1)], but nothing is \yhere the sum is over all the sites of each fractal lattice,
known about the value of its amplitude or prefactor and onsr1 _[T,(r)]N} represents the mean territory explored by
the relevance(if any) of the other(corrective asymptotic  the N random walkers on a given lattig¢he first average
terms. In this paper we present a procedure for obtaining, fof4], and([ - - - 1) indicates that the averagthe second aver-
a certain class of fractals, the complete asymptotic seriegge of[ - - - ] has to be performed over all possible stochastic
expansion ofSy(t) when N>1. The procedure gives the lattices compatible with the random generation rules. Equa-
main asymptotic term in full, and determines the functionaltion (2) can be rewritten as
form of the corrective terms, which we calculate explicitly
up to second order. >/ nm

Stochastic (or disorderell fractal media are not con- SW)=2 {2 {1-[Trm)I™ ), ©)

. . . . m=0 \ i=1

structed by the iteration of an invariable rule, but are rather
the result of a random process. Their fractal nature is recog,

niz_ed by the sca_ling Of_ S.tatiStical quantities. Many naturalrated from the origin by a Euclidean distance between
objects shar(_a this statistical-fractal structtﬁ_@elZ—lz} SO mAr=r, and (m+1)Ar with Ar small(say, of the order of
that s_tochastlc model_s seem to be more sunaple to repre_seﬂﬂte lattice spacing If T'(r,;) is almost independent ofnd
diffusion in real media. The quantity we are interested in,ihe |attice realization, i.e., if the fluctuations in the probabil-
Sn(t), is, for disordered media, the result of a double averity density I'(r,,;) follow a narrow distribution, then one
age: an average over_the wall_<s that theandom walkers  cqy|d approximatd™(r ;) =(T'(rm))=T(r), and there-
can perform over a given _Iatt_lce, followed by an averagefore estimateSy(t) by

over many(ideally, all realizations of the random lattice.

This fact leads to certain subtleties, absent in deterministic o0

fractals, that require special treatment and that, at the end, Su(t)= > {1—[Ty(rmINHn(m)), (4)
are the cause of the discrepancy between Hdfsand[8] m=0

that we have already mentiongsee above EqJl)].

The paper is organized as follows. A discussion on thevhere(n(m)) is the average number of fractal sites sepa-
relation between the territory covered byrandom walkers rated from the origin by a distance bracketedryandr
and the statistical quantity known as survival probability is+Ar. This is essentially the starting relationship used-
given in Sec. Il. The asymptotic evaluation®(t) on frac-  Plicitly) by Havlin et al. [4] to find that, for largeN,
tal lattices is presented in Sec. lll. The mathematical tech-
niques involved are very similar to those corresponding to Sn(t) ~t32(In N/ 5
the Euclidean case and we will only outline the main steps.

Details may be found in Ref7]. A less rigorous but fairly in the nontrivial time regime(or regime 1) with u
simple method for obtaining the main asymptotic term and=d,,/(d,—1). However, the hypothesis leading to Ed)
estimating the corrective terms &(t) for largeN is also  on the narrowness of the distributionof(r,, ;) is in general
presented. In Sec. IV we compare the asymptotic expansiof@lse, as we will explicitly show in Sec. V A by means of
of Sy(t) with simulation results obtained on the Sierpinski humerical simulations for the two-dimensional percolation
gasket. In Sec. V we report simulation results for the survivakluster at criticality. Indeed, it is knowfil5] that the fluc-
probability of a random walker on a two-dimensional incipi- tuations of the probability densit(r,t) of random walks
ent percolation aggregate when a trap is placed at a site at(@lso called the propagator or Green’s funcjjonhich is a
fixed chemical distancg or Euclidean distance. We find  statistical quantityclosely relatedo the survival probability,
that the distribution is narrofibroad if the traps are located exhibits a broad logarithmic distribution for some random
at a fixed chemicalEuclidearj distance. The parameters fractals such as percolation clusters and self-avoiding walks.
governing the asymptotic behavior of the survival probabil-Bundeet al.[15] have found that the quantitP(r,t)%) ex-

ity, how the fractal volume grows, and how fast a singlehibits multifractal scaling(P(r,t)%~(P(r,t))"¥, where
walker diffuses are estimated in this section. We compare the(q) ~q” and y= (d(v— 1)/(d,,—1). This behavior is a con-
zeroth- and first-order asymptotic expansion &y(t) with  sequence of the large fluctuationsRfr,t) for fixed r andt
simulation results obtained for the two-dimensional incipientfrom a given aggregate to another. Nevertheless, these au-
percolation aggregate. In Sec. VI we end with some remarkthors have also shown that the distribution of the propagator
on the quality of the asymptotic approximation. in the chemical/ space,P(/,t), is narrow and, conse-

herer,; stands for théth site out ofn(m) that are sepa-
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quently, (P(/,t)9~(P(/,t))9 (the chemical distanc& is  whereV, is a constant characteristic of the fractal substrate;

the minimum path length between two sites along latticeand, second, the probability,(r) that a siter has not been

bonds on a lattice visited by a single random walker by tinnshould decay for
Let /i label theith site out of thosen(m) that are é=/(r)/L>1 as

placed at a chemical distaneé from a given origin with

(<<l m+1, /m=MA/ andA/ small (say, of the order Fy(r)=1—-A& *exp—cé)(1+hE2+--+), (10

of the lattice spacing and letl';(/,,;) be the survival prob-

ability in the chemical space defined as the probability thatvhere/(r) is the chemical distance between sitand the

site /i has not been visited by timeby a single random  starting site of the random walker, and

walker starting from the origin. Then we can rewrite ES).

in the chemical” space as |_25</2>:2D/t2/dv/v 11)
> n(m) . . . .
t)= 1=[T( /)TN 6 is the mean-square chemical distance traveled by a single
St mE=O Z’l L= m) I © random walker by time (t large, D, being the diffusion

constant. Equatiofill) is known as the Einstein relation. For

One may expect that the distribution Bf(/,,;) for fixed  fractals ;’Vith dmzi?d::_l-a we will define¢ as ¢=|r|/R=r/R
/' m andt is as narrow as the distribution of the propagator inwhere R°=2Dt""w is the mean-square Euclidean distance
the chemical spaceThis is indeed the case for the two- traveled by a single random walkd, is the diffusion con-

dimensional percolation clusters at criticality; see Sec.)V A stant, and is the Euclidean distance between sitand the
Therefore starting site of the random walker. Equati¢tO) holds on

Euclidean lattices[3,7]. Notice, also, that the dominant
/e _ asymptotic behavior of the propagator in chemical space
Ll m) =T/ mi)) =T/ m) @ [2,12,19, P(l,t)~exp(—céY), also coincides with the as-
sumed dominant exponential decay of the mortality function
1-T(/) in Eq. (10). As the propagator and the mortality
function share the same asymptotic behavior for Euclidean
lattices and for the Sierpinski latti¢&7], we can expect that
” , this behavior also is the case for stochastic fradpaks will
Sn(t) = ZO {1-[T (/I Hn(m)), (8)  check this supposition in Sec,)V
m= It should be clear at this point that for deterministic frac-

) ) tals the above two conditions can only be satisfied approxi-
where (n(m)) is the average number of fractal sites sepanately: first, becaus¥, is not strictly constantit exhibits
rated from the origin by a chemical distance with value beqog_periodic oscillations of small amplitude, see Sec); IV
tween/, and /,+ A/ From this formula and following  second, becaudg(r) does not solely depend on the distance
the procedure in Ref.7], in Sec. Ill we will arrive at an | bt ais0(in general on the actual location on the lattice;
expression forSy(t) for the nontrivial time regime whose and, third, becausE,(r) is not continuousthis fact can be
leading asymptotiq behavior coincides, apart from t_he Va'“%learly seen in Fig. 1 of Ref18]) so that Eq(10) can only
of the prefactor, with the recent proposal, Ef), of Drager e an approximation to the true distribution. The fluctuations
and Klafter[8]. Equation(1) differs from the relationship j, g (t) associated with these effects are thus not included in
proposed by Havliret al. [4], Eq. (5), for those media where ; theoretical discussion. However, their importance can be
dmin # 1. Both Havlin et al. and Drager and Klafter sup-  g5,ged by resorting to simulation. For the two-dimensional
ported their conjectures by means of data collapsing plots ogjerpinski gasket, we found that these fluctuations are indeed
computer simulation results obtained for two- and threeyg|eyant and that they can be explained to a large extent as a
d|men3|0nql percolation _aggregates,_ res_pecnvely: In _Se%onsequence of the log-periodic oscillations\

VB we will draW. attention to the risk involved in thIS- There is another dlfflCU'ty regarding the Valuel-q(r) for
method of analysis when the influence of the correctiveyeterministic and stochastic fractals: while its dominant term
terms is not properly considered since these terms have &p(cé?) is reasonably well established, the val(@nd
large influencd 16] on the final value oSy(t). even the form of its subdominant factor&& #*, hyé?,
etc. is unknown. This means that we can be fairly sure of the
. TERRITORY COVERED BY N RANDOM WALKERS value of the main term oBy(t) because, as we will show, it
ON A STOCHASTIC ERACTAL SUBSTRATE depends only on the dominant termIof(r). However, the
true value of the corrective terms 8f(t) is more uncertain

The fractals that we consider in this paper have to satisfys they also depend on the subdominant factor§ 6f).
two conditions. First, the number of sitesr volume V(”)  Nevertheless, we will see in Secs. IV and V that reasonable

of the fractal inside a hypersphere of chemical radilis cnojces of values for these subdominant factors lead to sig-
should be given by nificant improvements in the estimate $§(t).
The evaluation of5y(t) starts by replacing Eq8) by its
V(/)=Vo/ 9, 9 continuum approximation

for all possible lattice realizations so thétl'(/ n)1")
=(T'(/m))N andSy(t) can be approximated by
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Sn(t)= f:{l—[Ft(/)]N}d/Vo/d/‘l d/

Vol (2D /dWJ om{l_[rt(ﬁ)]N}fd/‘l d¢,

12

where dV(/)=Vod, 7% 1 d/ is the average number of
fractal sites placed at a chemical distance betwéemd /

+d/, and gz//(\/ZD/tl/dv/v). The rest of the analysis is
identical with that carried out for Euclidean latticgd. The
result forSy(t) is

SN(t)%‘sN(t)[l—i—/ 21 (InN)~" 20 s{”(Inn N)m}
(13 g

FIG. 1. Function [T ()N versusé=//L(t) in the two-
dimensional incipient percolation aggregate ffsom left to right
N=1, 10, 100, 1000, and 10000 whefe(/)=1—& *’ exp
(—=¢Y),¢c=1.0,v=1.7, u=0 (solid line), and = 0.8 (dashed ling
We have not plotted the unphysical values that appear in the case
with «=0.8 when¢ goes to zero. Notice the large influence of the
subdominant power terg “* on the value of I';(~) N which will
be reflected in the value @&y(t). The triangles mark the value of
&, for (from left to right N=10, 100, 1000, and 10000 obtained
from Eqg. (22).

with

InN\ 470
"

“SN<t>=vo<2D/>d/’2td/’dv/v(T

and

siH=—w, (15)

sV=u, (16)

2 2 S~V Y, (20)

sP=—(B-1) —(chy—pw), (17

a

—_ + —_
12 2 i.e., the territory covered is just the volume of a chemical
hypersphere of radius,, . Defining the width/’y, of the step
function as the distance at which-1T',(/)]N takes the in-
termediate value 1/@any other value between 0 and 1 would
also be valid ag’ is not very sensitive to this value when
N>1), and assuming that-1I' (/) ~A¢& * exp(—c¢?) for
large &, we deduce that 1RNAE “Y exp(—c£Y), with &,
=/, /L so that

sP=—p?+ (1) po, (18)

V)=~ %(/3—1)#2- (19

Here w=y+InA+ulinc, y=0.577215 is the Euler con-
stant, ang3=d,/v. The dependence drandN of the main
term of Sy(t) as given by Eq. (14), ie., Sy(t)
~192(InN)¥ | coincides with the prediction of Refig].

c&l~INnN—puv Iné +In2A. (21
The term INN is dominant on the right-hand side of EGJ1)

A simpler way to estimate the territory covered for largeN, so that a first-order solution of this equation is

We finish this section by showing how to find the full
main term of Eq.(13) and even predict the form of the cor-

cé’~InN, (22

rective terms by only resorting to extremely simple argu-i.e.,

ments already used in R¢B]. The crucial point is that, for

/% ~L"In(N)/c. Hence Eq. (20) vyields Sy(t)
~VoL9(InN/c)® ' which is in full agreement with the

a fixed timet, 1—[T',(~)]N approaches a unit step function main term of Eq(13) when the Einstein relation, E¢L1), is

O(/-/«) whenN—x, /, being the step’s widthsee
Fig. 1). The reason for this behavior is clear: For lafge
[T«(~) 1N is only non-negligible whei () is very close to

considered. Inserting the above first-order solution for
into the right-hand side of Eq21), we get the improved
solutioncé&y ~InN—uInIn N-+In Ac*+In 2, so that Eq(20)

1. Obviously this occurs when the root-mean square chemisecomes

cal distancel (t) traveled by the single random walker by

time t is small compared with”, i.e., whené=//L(t) is
large. This in turn implies that in the evaluation §f(t)

only the behavior of (/) for large ¢ is relevant. Then, as

1-[T ()N approaches a step function of width, , the
integration of Eq.(12) yields

nN d v

2

d, —uInInN+InAct+1In2
InN

SN<t)~voLd/('

X(l-f—

(23
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FIG. 2. The 11-generation Sierpinski lattice used in the numeri-
cal simulations where the smallest triangles represent eight-
generation lattices. The sites labeked B;, C;, andD; are nearest
neighbors of O in théth times decimated lattidel9,20. In case(i)
all random walkers start from the origin O. In cd&¢ the common
origin is chosen randomly from among the sites in the shaded area.

This expression is strikingly close to the first-order approxi-
mation of Eq.(13), the only difference being that the term
IN2=0.6%B ... in Eq.(23) plays the role of the Euler con- P
stant y=0.577215 in Eq.(13). Finally, notice that this

simple method is not limited to fractal media but that it is

also valid for estimatingy(t) for the Euclidean media con- 28 7
sidered in Ref[7].

L | L | L | L | L | L
3 4 5 6 7 8 9
log, r

IV. NUMERICAL RESULTS FOR THE SIERPINSKI
GASKET

To check the reliability of the analysis presented in the S
preceding section we carried out simulations of the number F!G- 3. The fractal volume/(r) of the Sierpinski lattice as a
of distinct sites visited byN random walkers on a two- function of r for case(i). (3) log, V(r) versus log(r); (b) Vo
dimensional Sierpinski lattice witg=11 generations. This =V(r)/rit versus log(r).
means that if we take the length of any side of the smallest , .
triangles(the zeroth decimated triangleas the unit length, consequence of the empty and filled triangular areas that. re-
then the length of the sides of the triangle that inscribes th@€at periodically as is increased, but thg" general trend is
lattice (the gth decimated triang)ds 29. Two different cases well repregented by a t_erm of the fpr\jbr f W(',th. Vo=3.0
are analyzed() random walkers are initially placed upon the *0-1- In Fig. 3b), in which the quotien¥/(r)/r" is plotted
center of the base of the main triangle which inscribes th&/€"SUS 10g T, one clearly sees the log-periodic oscillations of
lattice (point O in Fig. 2, and(ii) the common starting site is Yo- AS Our theory assumes a constant valueMigr we take
randomly selected. Qualitatively and quantitatively, the rehe average value over the last perifom maximum to
sults are different in cas@) and casdii). The structure of Maximum, V,=2.93, as a reasonable criterion for compari-
the lattice gives rise to oscillations superimposed on the gersOn v.v|Fh the simulation results. In order to find the diffusion
eral trend ofSy(t) in case(i). This structure is smeared out coefficientD of a random walker starting at O, we performed

in case(ii) by the double average over experiments and ovel®® simulations up ta=400. The linear numerical fit be-
starting sites, so tha(t) is now a smooth function. tweent=50 andt=400 givesd,,~=2.32 (the exact value is

dy=In5/In2=2.322) and B=1.05. Numerical fits using
other time intervalgexcluding short times, of courskead to
similar values, and we take®=1.05+-0.02 as a reliable
First, we will discuss the simulation results for the terri- estimate. For the parameterandu we take the values 0.981
tory covered byN random walkers placed initially at site O [17] andd,,/(d,,—1)=1.756, respectively. As discussed in
in Fig. 2. In order to compare with the zeroth- and first-orderSec. Ill, the values oft andA are much less certain and we
asymptotic expression, cf. E(L3), we must know the values will use here two pairs of values: those obtained by renor-
of Vg, D, ¢, u, A, andu. In Fig. 3@ we have plotted the malization[19,20Q, i.e.,u=1/2 andA=0.61, and these same
fractal volume of a circle of radius, V(r), centered upon values increased by one, i.ey=3/2 and A=1.61. Of
the privileged site O. The observed log-periodic structure is &ourse, this last pair of parameters are arbitfather values

A. Case(i)
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25 30 35 4.0
log, 1

FIG. 4. The number of distinct sites visited on the Sierpinski  FIG. 5. The ratioR between theoretical and numerical values of
lattice untilt=1000 byN=10? (circles andN=10° (squaresran- g (t) for the two-dimensional Sierpinski lattice withi=10°
dom walkers. All random walkers start from the origin O shown in (dashed lingand N= 1 (solid line). The asymptotic approxima-
Flg 2. The dashed line is the zeroth-order approximation, the dotﬁons considered arérom bottom to top the zeroth-order approxi_
dashed line corresponds to the first-order approximation with mation, the first-order approximation with=1/2 and A=0.61,
=1/2 andA=0.61, and the dotted line is the first-order approxima- and the first-order approximation withh=3/2 andA=1.61.
tion with ©=3/2 andA=1.61. The solid line also corresponds to

this last approximation but using fdf, the numerical values of the . . L
last oscillation shown in Fig. (8). The structure oBy(t) is more clearly perceived in Fig. 5

where the quotient between the theoretical prediction and the
simulation results is plotted. It is remarkable how relatively
poor the performance of the zeroth-order approximatmm
main asymptotic termis in predicting the value o8y(t): it
accounts for hardly 80% d8(t) for values ofN as large as

0°. However, the inclusion of the first corrective asymptotic
erm (especially for some suitable selections of the subdomi-
.. __hant parameter& andu) leads to a noticeable improvement.

tati fthe i ¢ £ h tive t hich Sthe log-periodic structure is observed both fo=10° and
ation of the importance of the corrective terms wWhiCh €any _ o6 pt in the latter case this structure is richer and strik-

lead to such dramatic changes and improvementSyit) ingly similar to that ofV(r) as shown in Fig. @). We at-

after modifying some of the subdominant factors of the sur-_. : : :
! S o . tribute this fact to a better mapping of the lattice structure as
vival probability. Of course, additional independent study pping

will be necessary to check the form BY(r) given by Eq. more and more random walkers are involved in the explora-

(10) and to find out whether the values fprandA consid- tion. We have plotted the solid line in Fig. 4 with the aim of
ered here are good estimates of the real vajaak Never- showing to what extent the oscillatory behavior&f(t) as

; . shown in Fig. 5 can be interpreted as a consequence of the
theless, it should be noted that the decrease nl'r) oscillatory behavior oV, shown in Fig. 80). The line is

when avlgratglng 0\|/er the Wh.°|e|.|ag'%e \;Vr']th respect t%.ns enerated in the same way as the dotted line, i.e., by means
renorma |tzaf|on Viul% as '_SB'Ep 1€ yl € co;refrf)og N% the first-order approximation of E¢L3) with A=1.61 and
increment ofy. (u=1/2—p=3/2), is analogous to the de-  _ /5 1)t instead of using the averaged vallie=2.93

gfgzz O(];.theen F:I:(;.‘t)etlﬁ:t?roW:tea_rt]'stthcl:zlsana].?]t'?izl e?g;n%tg’r P {és in the dotted ling we use the actual oscillatory value of
- SV W IStical quantitigsopag V, taken from the last oscillatioffrom maximum to maxi-

and survival probability are closely related, one is inclined n?um) shown in Fig. 8b). The way in which the solid line
to accept that, at_ least, the proposed increment n the value? ns alongside the simulation results supports the view that
w captures the right tendency. The subsequent improveme e log-oscillatory behavior dBy(t) mainly comes from the

in the prediction ofSy(t) supports this supposition. o .
The theoretical expression was not able to give a perfeclf) g-oscillatory behavior oWo.

account of the log-periodic oscillations superimposed on the .
general trend of5y(t) shown in Fig. 4. The origin of these B. Case(ii)

oscillations is clear: the enlargement of the sides of the Si- We also study the effect dB(t) of choosing other lattice
erpinski gasket by a factor 2 implies that its fractal volumesites, besides the point O, as starting sites for the random
increases by a factor 3 and the time that a random walkewalkers. To this end we performed simulations where all the
takes to traverse it increases by . N random walkers start on a site randomly selected within

could also be usgdand are mainly given to show the rel-
evance of the corrective terms.

Simulation results foiSy(t) until t=21000 are shown in
Fig. 4 for N=10° and N=1C°. Overall good agreement is
obtained in the comparison with the theoretical prediction o
Eq. (13), especially when the valugs=3/2 andA=1.61 are
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FIG. 6. The average number of distinct sites visited in the Sier- FIG. 7. Dependence oN of the fractal territorySy(t) explored
pinski lattice forN=22 (filled circles andN=22 (filled squares Py N random walkers by time=100 (circles andt=200(squares
until t=200 when the common origin is randomly selected from theWhen the common origin is randomly selected from the shaded area
shaded area of Fig. 2. The open symbols represent the corresporff-Fi9- 2. The solid lines are the zeroth-order approximation, and
ing values when the origin is the point O. The solid lines are theth® dashed line&dot-dashed lingscorrespond to the first-order ap-
zeroth-order approximation and the dashed lines are the first-orddfoximation withy=3/2 andA=1.61 (u=1.75 andA=1.75) for,
approximation withw=3/2 andA=1.61 for, from top to bottom, TOmM top to bottom{=200 andt=100.
N=21%andN=28

tance of the asymptotic corrective terms as they substantially

the shaded area of Fig. 2 in order to avoid the finite siz@mprove the zeroth-ordemain term) asymptotic prediction.
effects. As expected, the fractal volurWgr) and the aver- e have used the new pair of parameters simply as another
age number of distinct sites visitegl(t) are smooth func-  example to illustrate the gross effect of the subdominant fac-
tions in this case. An estimate &fy by numerical fiting  {ors of the survival probability,(r) on the theoretical pre-
gives Vo=3.6. The analysis of the simulation results {10 diction of Sy(t). The excellent agreement reached wjth
runs for 16 randomly selected starting sitefor the mean- = _ 3 75 anga=1.75 should not, however, be considered as

square displacement of a ;ir!gle random wallke.r IS compatiblgn indication that they are the correct subdominant param-
with 2D~0.8 when the fit is carried out inside the time eters of the survival probabilitj21].

interval (t=50f=400). Simulation results foBy(t) (five
runs for 16 randomly selected starting sijamtil t =200 for
N=1024 are shown in Fig. 6. They are compared with the

theoretical prediction of the zeroth- and first-order approxi-
mations of Eq.(13) for x=3/2 andA=1.61, and with the We have carried out simulations for the number of dis-

corresponding simulation results when the origin is at Gijnct sites visited byN independent random walkers on a

[case(ii)]. Again, we find a relatively poor performance of o) stochastic fractal: the percolation aggregate embed-
the zeroth-order approximation, as weI.I as supstanﬂal 'MYed in two dimensions. The percolation aggregate has been
phrovehmer?t when ltlhe flrs:c-or(;lerhappr0§|mat|on IS useﬁl, <r?('jl'used to characterize many disordered systgi2,13. This
though there is still room for further enhancement. It shou : o S
be noted that the performance of the two asymptotic approxigggregate is constructed by filling a regular lattice with “oc

mations is completely analogous to that obtained for EucIid—CUp'ed sites with a certain probabilitg. Nearest-neighbor

ean latticeg7]. In these Euclidean media we found that theoccupled sites are supposed to be connected and form a se-

second-order asymptotic approximation gives rise to a sigh€S ©Of clusters. At a certain critical concentratippan in-
finite cluster appears, which is called the incipient percola-

nificant improvement in the estimate 8f/(t) even for rela- ) I
tively small values oiN. It thus seems natural to conjecture fiON aggregate or percolation cluster at criticality. In our
that the same will occur for the Sierpinski gasket, althougrsimulations every random walker makes a jump from a site
definitive confirmation of this guess must wait until reliable to one of its nearest neighbors placed at one unit distance in
values forA, u, andh; are calculated. each unit time. The incipient percolation aggregates were
Finally, in Fig. 7 we show the dependence Wmof Sy(t)  constructed by the standard Leath methd®,22 on a
for case(ii). We have plotted two first-order asymptotic square lattice with side 400 using the valye=p,
curves: for the first curve we take the usual valyes 3/2 =0.592746 0 corresponding to site percolation in the square
andA=1.61, and the new valugs=1.75 andA=1.75 are lattice [12]. Our simulations were carried out over 2000 ag-
used for the second curve. Again, one sees the great impogregates generated in this way.

V. NUMERICAL RESULTS FOR TWO-DIMENSIONAL
PERCOLATION AGGREGATES
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FIG. 8. Plot of the histogranh(In h) versus|In h| in the two- FIG. 9. Plot of Ir{/?) versus Irt, (/?)=L? being the chemical
dimensional incipient percolation aggregate for fixezhdt (dotted =~ Mean-square displacement of a single random walker calculated
line) and for fixed/ andt (solid line). The values are =30, | over 2000 two-dimensional percolation clusters at criticality. The
/
=80, andt=1000. line represents the functioh?=2D ,t%% with 2D,=1.2 andd,

=2.4.
A. Survival probability, diffusion coefficients,

and fractal volume In Fig. 10 we plot Ifi—Inh(/,t)] versust=//t“ with

In order to compare the simulation results f(t) with /=80 and, according to the previous discussi@@; 2.40.

the predictions of our theoretical approach, Eff3), we If the conjecture in Eq(10) is right, we can takeh(/,t)
must check that the survival probability or, equivalently, theNeXp(_egU) as a first approximation, and hence should ob-

mortality function,h(/,t)=1-1",(/), really behaves in the serve the linear behavior [IrIn h(/,t)]~In&+vE with &

form conjectured in Eq(10). Moreover, we must confirm - 2 ) i
first that, for a given chemical distaneg the distribution of = V2D ¢ andc=c/(2D,)". Certainly the plot seems lin-

h(/,t) over different realizations of the incipient percolation ear except for a portion in the range=2.2. This is a finite
cluster is narrow because our theoretical analydisEq.(8)]  size effect (already analyzed in the case of the two-
relies on this assumptidref. Eq.(7)]. The numerical evalu- dimensional Sierpinski gasket in R¢fL7]) associated with
ation of this quantity as well as the propagakfi,t) (i.e.,

the probability of finding a single random walker at ditat T T
time t) is performed by the Chapman-Kolmogorov method 45 -
(also called the exact enumeration methadL2]). The trap

is simulated by a special site belonging to the cluster that
absorbs all the probability density that enters it without giv- 4.0
ing back any probability to its neighbors. In the simulation of
the mortality function, we located a trap at a chemical dis-
tance/ =30 in each of the 2000 percolating clusters. We
repeated the experiment for traps located at a fixed Euclidean
distance,r=80. The resulting histogram fot=1000 is
shown in Fig. 8(to be compared with the histogram of the
propagator shown in Fig. 4 of Rdf15]). One observes that 30 |
the distribution corresponding to fixed is very narrow
whereas the Euclidean version is broad and exhibits a long

35+

In[-1n h(z,t)]

tail. AR T R R
Figure 9 shows the chemical mean-square displacement 2'51,4 1.6 1.8 2.0 2.2 2.4 2.6
L2=(/?)=(Z4es ?P(/,t)) as a function of time. The In§
propagator in the chemical spaeé¢/,t) is obtained by sum- A
ming P(i,t) over all cluster sites on the chemical shell FIG. 10. Plot of li—Inh(~,t)] versus In§ averaged over 2000

situated at distancg from the origin. The result is compat- two-dimensional incipient percolation clusters. The trap was always
ible with the Einstein relation Eq(11) with 2D,=1.20 placed at a site at distanee=80 from the origin. The lines repre-

+0.1 andd{,=2.40+ 0.05. This value fod;, coincides with ~ sent the functionsh(/,t)=AZ * exp(-c&) with A=11u
that obtained in Ref.15] and is in agreement with the value =0.8¢=0.9p=1.7 (solid ling), A=1,.=0c=1.2p=1.6 (dashed
reported in Refs[2,23]. line), andA=1,.=0,c=0.9p=1.7 (dotted ling.

011105-8
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the existence of a minimum arrival time corresponding to a
random walker who travels “ballistically” along a chemical
path from the origin to the trap, which in turn implies a

maximum available value of in the simulations(in our

/
simulations this maximum value is 80/48=12.9). A reli-
able interval for numerical fits should exclude this very short

time regime. A linear fit in the interval 1s6In £&<2.17, cor-

responding to 208t<1000, gives the values=1.2+0.1,
i.e.,c=1.3£0.1, andv =1.6+0.05. The dashed line in Fig.

10 corresponds to these values. The good agreement with
numerical values in the above interval seems to assure the
correctness of the approximationh(/,t)~h,(/,t)

=exp(—céV) with the values ot andv given above. How-
ever, the solid line in Fig. 10 is a challenge to this interpre- P I I I R

tation: one sees that the function,(/,t)=AZ " exp 240 30 35 40 45
(—C&%) with v=1.70, ¢=0.9 (i.e., c=1.05), x=0.8, and Int

A=1.1is as good ak,(~,t). Indeedh,,(/,t) is more con-
sistent from a theoretical point of view thag(/,t) because
the expected theoretical value of corresponding tod\fv
=2.40 isv=d,/(d},—1)=1.71, which is in better agree-
ment with the exponent=1.7 of h,(/,t) than with the
exponentv =1.6 of h,(/,t). Finally, it should be noticed
that the valueg=1.05,v=1.70 are also in agreement with

the comresponding parameter values of the propadafs isd,/v. But in this analysis there was no consideration of

thus supporting the guess made in Sec.[¢ke below Eq. . A . .
(11)] that the dominant exponential term of the propagatorthe relatl\_/ely Iargg logarithmic _correcuons predicted by_ th?
and of the mortality function are the same. This leads us téalsymptotlc analysis presented in Sec. lll, so that the reliabil-

) - i ity of the above conclusion is seriously affected by this omis-
consider that the set of parameters 0.9p=1.7u=0.8 is

sion.
more reliable tharc=1.2p=1.6u=0. Obviously, further To illustrate this point, let us now carry out the same kind
intensive(and extremely time consumingomputer simula-  of analysis with the simulation results & (t) when the
tions for the mortality function would be required in order to substrate is a three-dimensional Euclidean lattice. For this
reliably determine the values of the parameters that appear ihse it is well knowi7] that Sy (t) is given by an asymptotic
Eqg. (10) and in the asymptotic corrections 8f(t).

We have also evaluated numerically the fractal volume in L
terms of the chemical distancé(/), i.e., the number of
lattice sites inside a circumferenda chemical spageof
radius /. The results are shown in Fig. 11. A good fit to
dV(/)=d, Vo9 ~1d/ is found withV,=1.1+0.2 andd,
=1.65+0.05. Taking into account that;=91/48, we de-
duce thatd,,, =d;/d,=1.15+0.05, which agrees with pre-
vious estimate$2,12].

35

30

In dV

25

2.0

FIG. 11. Plot of IndV(/) versus Irv” in the two-dimensional
incipient percolation aggregate withv(/)=V(/+1)—V(/) be-
ing the average number of sites in the chemical shell at distdnce
The line represents the functioryd, /%~ with Vo=1.1 andd,
=1.65.

[see Eq(5)] is used, as Fig. 12 shows. So, one might be led
to the conclusion that the correct valueybs defined above

InfS,, AIn NY'|

B. Simulation results: Territory covered by N random walkers
on the percolation aggregate

In our simulations we calculate®(t) by averaging over
100 runs per cluster over 2000 percolation clusters. The
maximum time considered was- 1000.

According to Egs. (13) and (14), the quotient
Sn(t)/(InN)” with y=d /v is only a function oft. In Fig.

12 the logarithm of that quotient is plotted versug for Int

several values dfl. The data collapse and the slope close 10 £ 12, Piot of IfiS(t)/(InN)?] versus It for N=22 (dia-
0.66 seems to support EG.) with y=d,/v=0.97, whichis  mong, 25 (down trianglg, 2% (up trianglg, 2** (circle), and 2
in agreement with similar recent results for the three-isquarg in the two-dimesional percolation aggregate with

dimensional percolation aggrega&d. The collapse is, how-
ever, slightly poorer when the exponeptd;/u=1.24 (d;
=91/48 andd,,=2.87[2,12]) proposed by Havliret al. [4]

=d,/v=0.97 andy=d;/u=1.24. The values corresponding to
y=d,/v=0.97 have been shifted up by 3/2. The line has a slope
equal tody/2=0.66.
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FIG. 13. Plot of IfSy(t)/(In N)?] versus Irt with N=28 (dia- FIG. 14. Plot ofSy(t)/t% /% versus IN in the two-dimensional
mond, 2° (down triangl¢, 212 (up triangle, 2'* (circle), 2'®  incipient percolation aggregate fo¢t=2°2%, ... 2% The circles
(square for the three-dimensional Euclidean lattice wigh=3/2, (squarepare the simulation results for=1000 ¢=500) averaging
and y=2.75. The line has a slope equal to 1.4. over 2000 aggregate realizations. The dastdmtted line is the

) . ) . ] zeroth-order theoretical prediction witb=1.05 andv=1.7 (c

expression with the form of E¢13) in which the logarith-  =1.3 andv=1.60) and the solid line is the first-order approxima-

mic corrective terms are very important even for very largetion with c=1.05,v=1.7, ©=0.8, andA=1.
values ofN. Indeed, the main asymptotic term leads to very
poor predictions forSy(t), whereas the second-order ap-
proximation (1=2) gives excellent agreement with numeri-
cal simulation results. The exponeptof the main logarith-
mic term inN and the time exponemt//dv/v=ds/2 are equal

to 3/2. We have plotted in Fig. 13 the quotie®(t)/In”N
versus Irt for several values dfl taking into account that the
rigorous value ofy is 3/2. We see that the collapse is far
from being perfect because the logarithmic corrections hav
been ignored. Nevertheless, an effeciibat incorrect value

of y=2.75 yields a much better data collapse and a slope
close to the theoretical valug,/2=1.5. We thus conclude
that the analysis of data collapse plots based on the form of |n this paper the average fractal territory covered up to
the main term of quantities such &g(t) (which typically  time t by N independent random walkers all starting
exhibit large corrective termshould be performed with cau- from the same origin on fractal lattices is calculated
tion. The values of the exponents estimated in this way argh  terms of an asymptotic series expansion,
untrustworthy because the existence of logarithmic correcs”_sh s (In N)% /*~"(InIn N)™ [see Eq(13)], which is

tions to the main term cannot simply be ignored. The valugormally identical to those obtained for Euclidean lattices.
of ’y:275 obtained before is then Only an effective way Oquuation(lg) is obtained by assuming that) the average
including all these corrective terms together but the true eXfractal volume inside a “hypersphere” of chemical raditis
pression involves a main term of the formlg N)** times & grows asV,/%, (ii) the distribution of the short-time sur-
series similar to that given in E¢13). These considerations yjval probability of a single random walker in the presence
should prevent us from drawing hasty conclusions from gf a trap is narrow, so that E¢7) holds, andiii) this short-
simple view of plots such as Figs. 12 and 13. time survival probability is asymptotically given by EG.0).
Finally, in Fig. 14 we show the dependenceSpft) onN  \we performed numerical simulations for the Sierpinski gas-
and compare simulation results with the zeroth- and firstiet and two-dimensional percolation aggregate at criticality
order asymptotic prediction given by E¢L3). When the which support the validity of the above assumptions. The
parameter set=0.9p=1.7u=0.8A=1 (see Sec. VAis  mathematical method used to derive such a result had al-
used, we get results with a very familiar aspect as they areeady been successfully applied to Euclidean lattjgésind
quite similar(although, perhaps the first-order approximationthe fractal case is a fairly straightforward generalization
is too good to that already found for Euclidedi@] and Si-  when the previous conditions are fulfilled.
erpinski latticegSec. IV). This is indeed encouraging. How- In order to check the goodness of the approximation, we
ever, when the parametecs=1.3 andv=1.6 are used, we carried out numerical simulations on a standard deterministic
obtain a surprising and strikingly accurate zeroth-order apsubstrate(the two-dimensional Sierpinski gasketnd on a

proximation. At this point, we again suspect that this last set
of parameters are only effective parameters that include the
influence of the true logarithmic corrective terms in the range
of N simulated. Hence, Fig. 14 illustrates again, but from a
different perspective, how the omission of important correc-
tive terms could lead to finding effective parameters that,
although providing excellent approximations in t(ela-
'ﬁvely shor) range under consideration, are really erroneous.

VI. SUMMARY
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standard stochastic fractéthe two-dimensional percolation (almos) the sum of the probabilitjgiven by 1—T',(r (V)] of
aggregate at criticalifyobtaining reasonable agreement with each of the z individual events, i.e., h(t,r)=z1
the theoretical results, especially when theoretical first-orderT',(r(V)]. Of course, the two events are not fully indepen-
asymptotic corrective terms are considered. The performancgnt because the random walker could first arrive atréite

of the theoretical expressions discussed closely resembleg;., passing by the Silé]i)_ However, this is very unlikely
that attained for Euclidean lattices. However, a more defini; ’

() (1) i
tive check of the theoretical expressions fg(t) that in- becausery, andr,’ are separated by distances of order of

: . .
clude corrective terms is hindered by the uncertainty in the “ (S,)O that the fr%)ct_lon of random wakers that, a_fter arrving
value of the parameters c, A, u, hy, . .. that appear in the atry’, travel torm_ in the short-time intervdl0,t] is of the
survival probabilityT',. The determination of its dominant order exp-£Y), with é~r/R>1, because the propagator
and subdominant terms by numeric{al’ ana|ytica] proce- or Green’s function is of this order for |arge values @f
dures is a problem for future work which will surely be beset[19,17. Therefore, it is reasonable to assume that 1
with the technical difficulties associated with the identifica- —I'(r)=h(t,r)/z{1+ O exp(~ ")} for large £. But 1

tion of these faint term§17]. —h(t,rM) has the form of the right-hand side of E@.0)

For stochastic fractals, the use of the chemical distanceith u=d,,/(d,—1), at least for the fractals that we are
turns out to be fundamental in our procedure because theonsidering[19,20, so that Eq.(10) for r=r® follows. In
distribution of the short-time survival probability in the this discussion we have assumed, in order for the renormal-
chemical space is so narrow that we can safely replace thgation analysis that leads #,(r’) to work, that the traps
powerN of the mean value of the survival probability by the were placed at those sitésuch ashy,Bg, ... inFig. 2 that
mean value of the powe of the survival probability. This  pecome the nearest neighbors of the starting site after several
allowed us to easily translate the theoretical results previgecimations. But, in the calculation &(t), the function
ously derived for Euclidean lattic¢g] to disordered media. [ (r) is required for every pair of origin and destination sites
in the lattice. At this point, we shall assume that the survival
probability forr#r® andr=r" are very similar, i.e., we
assume that T,(r)=T (r)=T(¢) when r/7/w

This work has been supported by the DGICYSpain  =r®/t¥w=(2D)Y%¢ for large ¢, with I',(¢) given by Eq.
through Grant No. PB97-1501 and by the Junta deg10). To the best of our knowledge this problem has not been
Extremadura-Fondo Social Europeo through Grant Nostudied and will require a specific and detailed simulation
IPR99CO31. analysis that is not the object of the present work. Neverthe-

less, previous simulations on the Sierpinski gasket of other
APPENDIX statistical quantities closely related 1a(r), such as the
_ ) ) propagator(or Green’s functioh [17], enable us to affirm

In this appendix we show that ELO) is reasonable for \yith confidence that the parametecsand u remain un-
those lattices d-dimensional Sierpinski fractals, Given- changed over the whole Sierpinski lattice whereas the sub-
Mandelbrot curve, one-dimensional lattice, hierarchical diagominant onesA, u, hy, ..., donot. In this paper we use
mond Iattice,.. ..) where the renormalization procedur.e c=0.981[19,17] and u=d,,/(d,,—1)=1.756 for the two-
implemented in Refd19,2Q can be set up. The argument is gimensjonal Sierpinski gaskétalues ofc for other fractals
as follows. Letr, n=1,... zwith rO=[r{|, be the po-  ¢an be found in Ref19]) but we must bear in mind that the
sition of thez nearest neighbors of the site a0 in the  actual values oA, u, andh,,, n=1,2, ... will likely differ
fractal lattice decimatedtimes(see Fig. 2, and leth(t,r"))  from those obtained by renormalization techniggeamely,
be the probability that, in the time intervg0,t], a single  A=0.61, x=1/2, h;=—0.56) as these latter correspond to
diffusing particle that starts at=0is absorbed bynyof the  the special placing of the traps and origins. We must also
traps located at itg nearest neighbors placed at the snﬁé)s point out that, as shown below, since the paramehegrsn
For large values o&~r/R, i.e., for relatively short times, =1,2,3,. .., only contribute to the second- and higher-order
the event “the random walker arrives for the first time at siteseries terms o(t) and since the real value of even the
ri)” and the event “the random walker arrives for the first first-order asymptotic term is uncertain, the values of these
time at siter )" are (almos) independent so that(t,rV) is  parameters are not considered in this paper.
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