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Territory covered by N random walkers on fractal media: The Sierpinski gasket
and the percolation aggregate
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We address the problem of evaluating the numberSN(t) of distinct sites visited up to timet by N nonin-
teracting random walkers all starting from the same origin in fractal media. For a wide class of fractals~of
which the percolation cluster at criticality and the Sierpinski gasket are typical examples! we propose, for large
N and after the short-time compact regime, an asymptotic series forSN(t) analogous to that found for Euclid-

ean media:SN(t)'ŜN(t)(12D). Here ŜN(t) is the number of sites~volume! inside a hypersphere of radius
L@ ln(N)/c#1/v whereL is the root-mean-square chemical displacement of a single random walker, andv andc
determine how fast 12G t(l ) ~the probability that a given site at chemical distancel from the origin is visited
by a single random walker by timet) decays for large values ofl /L: 12G t(l );exp@2c(l /L)v#. For the
fractals considered in this paper,v5dw

l /(dw
l 21), dw

l being the chemical-diffusion exponent. The corrective
termD is expressed as a series in ln2n(N)lnm ln(N) ~with n>1 and 0<m<n), which is given explicitly up to
n52. This corrective term contributes substantially to the final value ofSN(t) even for relatively large values
of N.

DOI: 10.1103/PhysRevE.63.011105 PACS number~s!: 05.40.Fb, 05.60.Cd, 66.30.Dn
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I. INTRODUCTION

Random walk theory is a branch of statistical physics w
many applications@1,2#. Problems related to a single rando
walker have traditionally been the subject of thorough stu
but their generalizations toN.1 random walkers have at
tracted much less attention, although there are some, ge
ally very recent, exceptions@3–8#. These multiparticle diffu-
sion problems are characterized by the impossibility of be
analyzed in terms of the single random walker theory, i
they cannot be solved through simple averaging over
properties of a single random walker, even in the nonin
acting case. The recent development of experimental te
niques allowing the observation of events caused by sin
particles of an ensemble@9# should give additional encour
agement to the study of these multiparticle diffusion pro
lems.

The subject of this paper, namely, the evaluation of
average numberSN(t) of distinct sites visited~or territory
covered! by N random walkers up to timet, all moving from
the same starting site, is a clear example of a diffusion pr
lem that cannot be solved, or even approximated, from
solution for N51, S1(t). Even for independent random
walkers, the overlap of the regions explored by differe
walkers prohibits a decomposition ofSN(t) into single-
particle contributions. The origin of the problem of evalua
ing SN(t) is usually traced back to the year 1951 when
caseN51 was posed by Dvoretzky and Erdo¨s @10#. Since
then, the quantityS1(t) has been studied in detail and
discussed in general references@1#. For fractal substrates thi
problem was studied by Rammal and co-workers@11#. More
recently, Larraldeet al. @3# and Havlinet al. @4# studied the
problem of evaluatingSN(t) whenN@1 noninteracting ran-
dom walkers diffuse in Euclidean and fractal media, resp
tively. For fractal lattices with spectral dimensionds
52df /dw,2, it was argued by Havlinet al. @4# that SN(t)
1063-651X/2000/63~1!/011105~12!/$15.00 63 0111
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;tdl for t,t!t3; ln N and SN(t);tds/2(ln N)df /u for t3

!t, wheredl 5df /dmin is the chemical dimension~or topo-
logical distance dimension!, dmin is the fractal dimension of
the shortest path on the fractal,df is the fractal dimension,
u5dw /(dw21), anddw is the diffusion exponent~or fractal
dimension of the random walk! @2,12#. However, Dra¨ger and
Klafter @8# using scaling arguments have recently propos
that

SN~ t !;tds/2~ ln N!dl /v ~1!

for t3!t, where v5dw
l /(dw

l 21) and dw
l 5dw /dmin is the

chemical-diffusion exponent@2,12,13#. Of course, the two
predictions agree for those media, such as Sierpinski gas
for which dmin 51.

As stated above, two time regimes are observed inSN(t):
an extremely short-time regime or regime I and a long-ti
regime or regime II separated by the crossover timet3

; ln N. A further long-time regime, or regime III, is observe
in Euclidean lattices when the movement of the independ
walkers are very far from each other so that their trails~al-
most! never overlap andSN(t);NS1(t) @3,7#. In the one-
dimensional lattice and fractal lattices withds<2, the trails
of the random walkers partially overlap at all times and
gime III is never reached. Such is the case in this pa
where we are concerned only with fractals in whichds,2.
Regime I and its transition to regime II is well understo
@3,4# and it will not be discussed here.

Regime II is far more interesting and difficult to analyz
than regime I due to the nontrivial interplay of the walkers
their exploration of the lattice. In some recent work@7#, we
have shown that for independent random walks on Euclid
lattices there exist important asymptotic corrections to
main term ofSN(t) that cannot be ignored even for a ve
large number of particles as these corrections decay o
logarithmically with N. We will see that this also holds fo
the fractal lattices considered in this paper. An importa
©2000 The American Physical Society05-1
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consequence that we will address in Sec. V B is that
corrective terms must be taken into account in the analy
based on ‘‘collapsing’’ the numerical data@3,4,8# to deter-
mine the exponents in the main term ofSN(t).

It should be noticed that, except for the Sierpinski gas
in two dimensions whenN51 @11#, there has never been an
discussion aboutSN(t) focused on deterministic fractals
whether theoretically or numerically. Certainly, a depe
dence ont andN of the main asymptotic term ofSN(t) for
large N has been proposed@see Eq.~1!#, but nothing is
known about the value of its amplitude or prefactor and
the relevance~if any! of the other~corrective! asymptotic
terms. In this paper we present a procedure for obtaining
a certain class of fractals, the complete asymptotic se
expansion ofSN(t) when N@1. The procedure gives th
main asymptotic term in full, and determines the function
form of the corrective terms, which we calculate explicit
up to second order.

Stochastic ~or disordered! fractal media are not con
structed by the iteration of an invariable rule, but are rat
the result of a random process. Their fractal nature is rec
nized by the scaling of statistical quantities. Many natu
objects share this statistical-fractal structure@2,12–14# so
that stochastic models seem to be more suitable to repre
diffusion in real media. The quantity we are interested
SN(t), is, for disordered media, the result of a double av
age: an average over the walks that theN random walkers
can perform over a given lattice, followed by an avera
over many~ideally, all! realizations of the random lattice
This fact leads to certain subtleties, absent in determini
fractals, that require special treatment and that, at the
are the cause of the discrepancy between Refs.@4# and @8#
that we have already mentioned@see above Eq.~1!#.

The paper is organized as follows. A discussion on
relation between the territory covered byN random walkers
and the statistical quantity known as survival probability
given in Sec. II. The asymptotic evaluation ofSN(t) on frac-
tal lattices is presented in Sec. III. The mathematical te
niques involved are very similar to those corresponding
the Euclidean case and we will only outline the main ste
Details may be found in Ref.@7#. A less rigorous but fairly
simple method for obtaining the main asymptotic term a
estimating the corrective terms ofSN(t) for large N is also
presented. In Sec. IV we compare the asymptotic expan
of SN(t) with simulation results obtained on the Sierpins
gasket. In Sec. V we report simulation results for the survi
probability of a random walker on a two-dimensional incip
ent percolation aggregate when a trap is placed at a site
fixed chemical distancel or Euclidean distancer. We find
that the distribution is narrow@broad# if the traps are located
at a fixed chemical@Euclidean# distance. The parameter
governing the asymptotic behavior of the survival probab
ity, how the fractal volume grows, and how fast a sing
walker diffuses are estimated in this section. We compare
zeroth- and first-order asymptotic expansion forSN(t) with
simulation results obtained for the two-dimensional incipie
percolation aggregate. In Sec. VI we end with some rema
on the quality of the asymptotic approximation.
01110
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II. SURVIVAL PROBABILITY AND TERRITORY
COVERED BY N RANDOM WALKERS

Let G t(r ) be the probability~survival probability! that a
site r has not been visited by a single random walker by ti
t. It is well known thatSN(t) can be expressed by@3,4#

SN~ t !5 K( $12@G t~r !#N%L , ~2!

where the sum is over all the sites of each fractal latti
($12@G t(r )#N% represents the mean territory explored
the N random walkers on a given lattice~the first average!
@4#, and^@•••#& indicates that the average~the second aver-
age! of @•••# has to be performed over all possible stochas
lattices compatible with the random generation rules. Eq
tion ~2! can be rewritten as

SN~ t !5 (
m50

` K (
i 51

n(m)

$12@G t~rm,i !#
N%L , ~3!

whererm,i stands for thei th site out ofn(m) that are sepa-
rated from the origin by a Euclidean distance betwe
mDr[r m and (m11)Dr with Dr small ~say, of the order of
the lattice spacing!. If G t(rm,i) is almost independent ofi and
the lattice realization, i.e., if the fluctuations in the probab
ity density G t(rm,i) follow a narrow distribution, then one
could approximateG t(rm,i).^G t(rm,i)&[G t(r m), and there-
fore estimateSN(t) by

SN~ t !5 (
m50

`

$12@G t~r m!#N%^n~m!&, ~4!

where ^n(m)& is the average number of fractal sites sep
rated from the origin by a distance bracketed byr m and r m
1Dr . This is essentially the starting relationship used~im-
plicitly ! by Havlin et al. @4# to find that, for largeN,

SN~ t !;tds/2~ ln N!df /u ~5!

in the nontrivial time regime~or regime II! with u
5dw /(dw21). However, the hypothesis leading to Eq.~4!
on the narrowness of the distribution ofG t(rm,i) is in general
false, as we will explicitly show in Sec. V A by means o
numerical simulations for the two-dimensional percolati
cluster at criticality. Indeed, it is known@15# that the fluc-
tuations of the probability densityP(r ,t) of random walks
~also called the propagator or Green’s function!, which is a
statistical quantityclosely relatedto the survival probability,
exhibits a broad logarithmic distribution for some rando
fractals such as percolation clusters and self-avoiding wa
Bundeet al. @15# have found that the quantitŷP(r ,t)q& ex-
hibits multifractal scaling,̂ P(r ,t)q&;^P(r ,t)&t(q), where
t(q);qg andg5(dw

l 21)/(dw21). This behavior is a con-
sequence of the large fluctuations ofP(r ,t) for fixed r and t
from a given aggregate to another. Nevertheless, these
thors have also shown that the distribution of the propaga
in the chemicall space,P(l ,t), is narrow and, conse
5-2
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TERRITORY COVERED BYN RANDOM WALKERS ON . . . PHYSICAL REVIEW E63 011105
quently, ^P(l ,t)q&;^P(l ,t)&q ~the chemical distancel is
the minimum path length between two sites along latt
bonds on a lattice!.

Let l m,i label the i th site out of thosen(m) that are
placed at a chemical distancel from a given origin with
l m<l ,l m11 , l m5mDl andDl small ~say, of the order
of the lattice spacing!, and letG t(l m,i) be the survival prob-
ability in the chemical space defined as the probability t
site l m,i has not been visited by timet by a single random
walker starting from the origin. Then we can rewrite Eq.~3!
in the chemicall space as

SN~ t !5 (
m50

` K (
i 51

n(m)

$12@G t~ l m,i !#
N%L . ~6!

One may expect that the distribution ofG t(l m,i) for fixed
l m andt is as narrow as the distribution of the propagator
the chemical space.~This is indeed the case for the two
dimensional percolation clusters at criticality; see Sec. V!.
Therefore

G t~ l m,i !.^G t~ l m,i !&[G t~ l m! ~7!

for all possible lattice realizations so that^@G t(l m,i)#N&
.^G t(l m,i)&

N andSN(t) can be approximated by

SN~ t !5 (
m50

`

$12@G t~ l m!#N%^n~m!&, ~8!

where ^n(m)& is the average number of fractal sites sep
rated from the origin by a chemical distance with value b
tween l m and l m1Dl . From this formula and following
the procedure in Ref.@7#, in Sec. III we will arrive at an
expression forSN(t) for the nontrivial time regime whose
leading asymptotic behavior coincides, apart from the va
of the prefactor, with the recent proposal, Eq.~1!, of Dräger
and Klafter @8#. Equation~1! differs from the relationship
proposed by Havlinet al. @4#, Eq. ~5!, for those media where
dmin Þ1. Both Havlin et al. and Dräger and Klafter sup-
ported their conjectures by means of data collapsing plot
computer simulation results obtained for two- and thr
dimensional percolation aggregates, respectively. In S
V B we will draw attention to the risk involved in this
method of analysis when the influence of the correct
terms is not properly considered since these terms ha
large influence@16# on the final value ofSN(t).

III. TERRITORY COVERED BY N RANDOM WALKERS
ON A STOCHASTIC FRACTAL SUBSTRATE

The fractals that we consider in this paper have to sat
two conditions. First, the number of sites~or volume! V(l )
of the fractal inside a hypersphere of chemical radiusl
should be given by

V~ l !5V0l dl , ~9!
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whereV0 is a constant characteristic of the fractal substra
and, second, the probabilityG t(r ) that a siter has not been
visited by a single random walker by timet should decay for
j[l (r )/L@1 as

G t~r !'12Aj2mv exp~2cjv!~11h1j2v1••• !, ~10!

wherel (r ) is the chemical distance between siter and the
starting site of the random walker, and

L2[^l 2&52D l t2/dw
l

~11!

is the mean-square chemical distance traveled by a si
random walker by timet (t large!, D l being the diffusion
constant. Equation~11! is known as the Einstein relation. Fo
fractals with dmin 51, we will define j as j[ur u/R[r /R
where R252Dt2/dw is the mean-square Euclidean distan
traveled by a single random walker,D is the diffusion con-
stant, andr is the Euclidean distance between siter and the
starting site of the random walker. Equation~10! holds on
Euclidean lattices@3,7#. Notice, also, that the dominan
asymptotic behavior of the propagator in chemical sp
@2,12,15#, P( l ,t);exp(2cj v), also coincides with the as
sumed dominant exponential decay of the mortality funct
12G t(l ) in Eq. ~10!. As the propagator and the mortalit
function share the same asymptotic behavior for Euclid
lattices and for the Sierpinski lattice@17#, we can expect tha
this behavior also is the case for stochastic fractals~we will
check this supposition in Sec. V!.

It should be clear at this point that for deterministic fra
tals the above two conditions can only be satisfied appro
mately: first, becauseV0 is not strictly constant~it exhibits
log-periodic oscillations of small amplitude, see Sec. IV!;
second, becauseG t(r ) does not solely depend on the distan
r but also~in general! on the actual locationr on the lattice;
and, third, becauseG t(r ) is not continuous~this fact can be
clearly seen in Fig. 1 of Ref.@18#! so that Eq.~10! can only
be an approximation to the true distribution. The fluctuatio
in SN(t) associated with these effects are thus not include
our theoretical discussion. However, their importance can
gauged by resorting to simulation. For the two-dimensio
Sierpinski gasket, we found that these fluctuations are ind
relevant and that they can be explained to a large extent
consequence of the log-periodic oscillations ofV0.

There is another difficulty regarding the value ofG t(r ) for
deterministic and stochastic fractals: while its dominant te
exp(2cj v) is reasonably well established, the value~and
even the form! of its subdominant factorsAj2mv, h1j2v,
etc. is unknown. This means that we can be fairly sure of
value of the main term ofSN(t) because, as we will show, i
depends only on the dominant term ofG t(r ). However, the
true value of the corrective terms ofSN(t) is more uncertain
as they also depend on the subdominant factors ofG t(r ).
Nevertheless, we will see in Secs. IV and V that reasona
choices of values for these subdominant factors lead to
nificant improvements in the estimate ofSN(t).

The evaluation ofSN(t) starts by replacing Eq.~8! by its
continuum approximation
5-3
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SN~ t !5E
0

`

$12@G t~ l !#N%dl V0l dl 21 dl

5V0dl ~2D l !dl /2tdl /dwE
0

`

$12@G t~j!#N%jdl 21 dj,

~12!

where dV(l )5V0dl l dl 21 dl is the average number o
fractal sites placed at a chemical distance betweenl and l

1dl , and j[l /(A2D l t1/dw
l

). The rest of the analysis i
identical with that carried out for Euclidean lattices@7#. The
result forSN(t) is

SN~ t !'ŜN~ t !F12
dl

v (
n51

`

~ ln N!2n (
m50

n

sm
(n)~ ln ln N!mG

~13!

with

ŜN~ t !5V0~2D l !dl /2tdl /dw
l S ln N

c D dl /v

~14!

and

s0
(1)52v, ~15!

s1
(1)5m, ~16!

s0
(2)52~b21!S p2

12
1

v2

2 D2~ch12mv!, ~17!

s1
(2)52m21~b21!mv, ~18!

s2
(2)52

1

2
~b21!m2. ~19!

Here v5g1 ln A1m ln c, g.0.577 215 is the Euler con
stant, andb5dl /v. The dependence ont andN of the main
term of SN(t) as given by Eq. ~14!, i.e., SN(t)
;tds/2(ln N)dl /v, coincides with the prediction of Ref.@8#.

A simpler way to estimate the territory covered

We finish this section by showing how to find the fu
main term of Eq.~13! and even predict the form of the co
rective terms by only resorting to extremely simple arg
ments already used in Ref.@6#. The crucial point is that, for
a fixed timet, 12@G t(l )#N approaches a unit step functio
Q(l 2l 3) when N→`, l 3 being the step’s width~see
Fig. 1!. The reason for this behavior is clear: For largeN,
@G t(l )#N is only non-negligible whenG t(l ) is very close to
1. Obviously this occurs when the root-mean square che
cal distanceL(t) traveled by the single random walker b
time t is small compared withl , i.e., whenj5l /L(t) is
large. This in turn implies that in the evaluation ofSN(t)
only the behavior ofG t(l ) for largej is relevant. Then, as
12@G t(l )#N approaches a step function of widthl 3 , the
integration of Eq.~12! yields
01110
-

i-

SN~ t !'V0l
3

dl , ~20!

i.e., the territory covered is just the volume of a chemic
hypersphere of radiusl 3 . Defining the widthl 3 of the step
function as the distance at which 12@G t(l )#N takes the in-
termediate value 1/2~any other value between 0 and 1 wou
also be valid asl 3 is not very sensitive to this value whe
N@1), and assuming that 12G t(l )'Aj2mv exp(2cj v) for
large j, we deduce that 1/2'NAj3

2mv exp(2cj 3
v ), with j3

[l 3 /L so that

cj3
v ' ln N2mv ln j31 ln 2A. ~21!

The term lnN is dominant on the right-hand side of Eq.~21!
for largeN, so that a first-order solution of this equation i

cj3
v ' ln N, ~22!

i.e., l 3
v 'Lv ln(N)/c. Hence Eq. ~20! yields SN(t)

'V0Ldl (ln N/c)dl /v which is in full agreement with the
main term of Eq.~13! when the Einstein relation, Eq.~11!, is
considered. Inserting the above first-order solution forl 3

into the right-hand side of Eq.~21!, we get the improved
solutioncj3

v ' ln N2m ln ln N1ln Acm1ln 2, so that Eq.~20!
becomes

SN~ t !'V0Ldl S ln N

c D dl /v

3S 11
dl

v
2m ln ln N1 ln Acm1 ln 2

ln N D . ~23!

FIG. 1. Function 12@G t(l )#N versusj5l /L(t) in the two-
dimensional incipient percolation aggregate for~from left to right!
N51, 10, 100, 1000, and 10 000 whereG t(l )512j2mv exp
(2j v), c51.0, v51.7, m50 ~solid line!, andm50.8 ~dashed line!.
We have not plotted the unphysical values that appear in the
with m50.8 whenj goes to zero. Notice the large influence of th
subdominant power termj2mv on the value of@G t(l )#N which will
be reflected in the value ofSN(t). The triangles mark the value o
j3 for ~from left to right! N510, 100, 1000, and 10000 obtaine
from Eq. ~22!.
5-4
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This expression is strikingly close to the first-order appro
mation of Eq.~13!, the only difference being that the term
ln 250.693 . . . in Eq.~23! plays the role of the Euler con
stant g.0.577215 in Eq.~13!. Finally, notice that this
simple method is not limited to fractal media but that it
also valid for estimatingSN(t) for the Euclidean media con
sidered in Ref.@7#.

IV. NUMERICAL RESULTS FOR THE SIERPINSKI
GASKET

To check the reliability of the analysis presented in t
preceding section we carried out simulations of the num
of distinct sites visited byN random walkers on a two
dimensional Sierpinski lattice withg511 generations. This
means that if we take the length of any side of the smal
triangles~the zeroth decimated triangles! as the unit length,
then the length of the sides of the triangle that inscribes
lattice~thegth decimated triangle! is 2g. Two different cases
are analyzed:~i! random walkers are initially placed upon th
center of the base of the main triangle which inscribes
lattice~point O in Fig. 2!, and~ii ! the common starting site i
randomly selected. Qualitatively and quantitatively, the
sults are different in case~i! and case~ii !. The structure of
the lattice gives rise to oscillations superimposed on the g
eral trend ofSN(t) in case~i!. This structure is smeared ou
in case~ii ! by the double average over experiments and o
starting sites, so thatSN(t) is now a smooth function.

A. Case„i…

First, we will discuss the simulation results for the ter
tory covered byN random walkers placed initially at site O
in Fig. 2. In order to compare with the zeroth- and first-ord
asymptotic expression, cf. Eq.~13!, we must know the values
of V0 , D, c, u, A, andm. In Fig. 3~a! we have plotted the
fractal volume of a circle of radiusr, V(r ), centered upon
the privileged site O. The observed log-periodic structure

FIG. 2. The 11-generation Sierpinski lattice used in the num
cal simulations where the smallest triangles represent ei
generation lattices. The sites labeledAi , Bi , Ci , andDi are nearest
neighbors of O in thei th times decimated lattice@19,20#. In case~i!
all random walkers start from the origin O. In case~ii ! the common
origin is chosen randomly from among the sites in the shaded a
01110
-

r

st

e

e

-

n-

r

r

a

consequence of the empty and filled triangular areas tha
peat periodically asr is increased, but the general trend
well represented by a term of the formV0r df with V0.3.0
60.1. In Fig. 3~b!, in which the quotientV(r )/r df is plotted
versus log2 r, one clearly sees the log-periodic oscillations
V0. As our theory assumes a constant value forV0, we take
the average value over the last period~from maximum to
maximum!, V052.93, as a reasonable criterion for compa
son with the simulation results. In order to find the diffusio
coefficientD of a random walker starting at O, we performe
106 simulations up tot5400. The linear numerical fit be
tween t550 andt5400 givesdw.2.32 ~the exact value is
dw5 ln 5/ln 2.2.322) and 2D.1.05. Numerical fits using
other time intervals~excluding short times, of course! lead to
similar values, and we take 2D.1.0560.02 as a reliable
estimate. For the parametersc andu we take the values 0.981
@17# anddw /(dw21)51.756, respectively. As discussed
Sec. III, the values ofm andA are much less certain and w
will use here two pairs of values: those obtained by ren
malization@19,20#, i.e.,m51/2 andA50.61, and these sam
values increased by one, i.e.,m53/2 and A51.61. Of
course, this last pair of parameters are arbitrary~other values

i-
t-

a.

FIG. 3. The fractal volumeV(r ) of the Sierpinski lattice as a
function of r for case ~i!. ~a! log2 V(r ) versus log2(r); ~b! V0

5V(r )/r df versus log2(r).
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could also be used! and are mainly given to show the re
evance of the corrective terms.

Simulation results forSN(t) until t51000 are shown in
Fig. 4 for N5103 and N5106. Overall good agreement i
obtained in the comparison with the theoretical prediction
Eq. ~13!, especially when the valuesm53/2 andA51.61 are
used. This last finding should only be taken as the mani
tation of the importance of the corrective terms which c
lead to such dramatic changes and improvements inSN(t)
after modifying some of the subdominant factors of the s
vival probability. Of course, additional independent stu
will be necessary to check the form ofG t(r ) given by Eq.
~10! and to find out whether the values form andA consid-
ered here are good estimates of the real values@21#. Never-
theless, it should be noted that the decrease in 12G t(r )
when averaging over the whole lattice with respect to
renormalization value, as is implied by the correspond
increment ofm (m51/2→m53/2), is analogous to the de
crease of the propagator when this same averaging is
formed. Given that the two statistical quantities~propagator
and survival probability! are closely related, one is incline
to accept that, at least, the proposed increment in the valu
m captures the right tendency. The subsequent improvem
in the prediction ofSN(t) supports this supposition.

The theoretical expression was not able to give a per
account of the log-periodic oscillations superimposed on
general trend ofSN(t) shown in Fig. 4. The origin of thes
oscillations is clear: the enlargement of the sides of the
erpinski gasket by a factor 2 implies that its fractal volum
increases by a factor 3 and the time that a random wa
takes to traverse it increases by 5@2#.

FIG. 4. The number of distinct sites visited on the Sierpin
lattice until t51000 byN5103 ~circles! andN5106 ~squares! ran-
dom walkers. All random walkers start from the origin O shown
Fig. 2. The dashed line is the zeroth-order approximation, the
dashed line corresponds to the first-order approximation withm
51/2 andA50.61, and the dotted line is the first-order approxim
tion with m53/2 andA51.61. The solid line also corresponds
this last approximation but using forV0 the numerical values of the
last oscillation shown in Fig. 3~b!.
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The structure ofSN(t) is more clearly perceived in Fig. 5
where the quotient between the theoretical prediction and
simulation results is plotted. It is remarkable how relative
poor the performance of the zeroth-order approximation~or
main asymptotic term! is in predicting the value ofSN(t): it
accounts for hardly 80% ofSN(t) for values ofN as large as
106. However, the inclusion of the first corrective asympto
term ~especially for some suitable selections of the subdo
nant parametersA andm) leads to a noticeable improvemen
The log-periodic structure is observed both forN5103 and
N5106 but in the latter case this structure is richer and str
ingly similar to that ofV(r ) as shown in Fig. 3~b!. We at-
tribute this fact to a better mapping of the lattice structure
more and more random walkers are involved in the explo
tion. We have plotted the solid line in Fig. 4 with the aim
showing to what extent the oscillatory behavior ofSN(t) as
shown in Fig. 5 can be interpreted as a consequence o
oscillatory behavior ofV0 shown in Fig. 3~b!. The line is
generated in the same way as the dotted line, i.e., by me
of the first-order approximation of Eq.~13! with A51.61 and
m53/2, but, instead of using the averaged valueV052.93
~as in the dotted line!, we use the actual oscillatory value o
V0 taken from the last oscillation~from maximum to maxi-
mum! shown in Fig. 3~b!. The way in which the solid line
runs alongside the simulation results supports the view
the log-oscillatory behavior ofSN(t) mainly comes from the
log-oscillatory behavior ofV0.

B. Case„ii …

We also study the effect onSN(t) of choosing other lattice
sites, besides the point O, as starting sites for the rand
walkers. To this end we performed simulations where all
N random walkers start on a site randomly selected wit

i

t-

-

FIG. 5. The ratioR between theoretical and numerical values
SN(t) for the two-dimensional Sierpinski lattice withN5103

~dashed line! and N5106 ~solid line!. The asymptotic approxima
tions considered are~from bottom to top! the zeroth-order approxi-
mation, the first-order approximation withm51/2 and A50.61,
and the first-order approximation withm53/2 andA51.61.
5-6
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the shaded area of Fig. 2 in order to avoid the finite s
effects. As expected, the fractal volumeV(r ) and the aver-
age number of distinct sites visitedSN(t) are smooth func-
tions in this case. An estimate ofV0 by numerical fitting
gives V0.3.6. The analysis of the simulation results (14

runs for 103 randomly selected starting sites! for the mean-
square displacement of a single random walker is compa
with 2D'0.8 when the fit is carried out inside the tim
interval (t550,t5400). Simulation results forSN(t) ~five
runs for 103 randomly selected starting sites! until t5200 for
N51024 are shown in Fig. 6. They are compared with
theoretical prediction of the zeroth- and first-order appro
mations of Eq.~13! for m53/2 andA51.61, and with the
corresponding simulation results when the origin is at
@case~ii !#. Again, we find a relatively poor performance
the zeroth-order approximation, as well as substantial
provement when the first-order approximation is used,
though there is still room for further enhancement. It sho
be noted that the performance of the two asymptotic appr
mations is completely analogous to that obtained for Euc
ean lattices@7#. In these Euclidean media we found that t
second-order asymptotic approximation gives rise to a
nificant improvement in the estimate ofSN(t) even for rela-
tively small values ofN. It thus seems natural to conjectu
that the same will occur for the Sierpinski gasket, althou
definitive confirmation of this guess must wait until reliab
values forA, m, andh1 are calculated.

Finally, in Fig. 7 we show the dependence onN of SN(t)
for case ~ii !. We have plotted two first-order asymptot
curves: for the first curve we take the usual valuesm53/2
andA51.61, and the new valuesm51.75 andA51.75 are
used for the second curve. Again, one sees the great im

FIG. 6. The average number of distinct sites visited in the S
pinski lattice forN528 ~filled circles! andN5213 ~filled squares!
until t5200 when the common origin is randomly selected from
shaded area of Fig. 2. The open symbols represent the corresp
ing values when the origin is the point O. The solid lines are
zeroth-order approximation and the dashed lines are the first-o
approximation withm53/2 andA51.61 for, from top to bottom,
N5213 andN528.
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tance of the asymptotic corrective terms as they substant
improve the zeroth-order~main term! asymptotic prediction.
We have used the new pair of parameters simply as ano
example to illustrate the gross effect of the subdominant f
tors of the survival probabilityG t(r ) on the theoretical pre-
diction of SN(t). The excellent agreement reached withm
51.75 andA51.75 should not, however, be considered
an indication that they are the correct subdominant par
eters of the survival probability@21#.

V. NUMERICAL RESULTS FOR TWO-DIMENSIONAL
PERCOLATION AGGREGATES

We have carried out simulations for the number of d
tinct sites visited byN independent random walkers on
typical stochastic fractal: the percolation aggregate emb
ded in two dimensions. The percolation aggregate has b
used to characterize many disordered systems@2,12,13#. This
aggregate is constructed by filling a regular lattice with ‘‘o
cupied’’ sites with a certain probabilityp. Nearest-neighbor
occupied sites are supposed to be connected and form
ries of clusters. At a certain critical concentrationpc an in-
finite cluster appears, which is called the incipient perco
tion aggregate or percolation cluster at criticality. In o
simulations every random walker makes a jump from a s
to one of its nearest neighbors placed at one unit distanc
each unit time. The incipient percolation aggregates w
constructed by the standard Leath method@12,22# on a
square lattice with side 400 using the valuep5pc

50.592 746 0 corresponding to site percolation in the squ
lattice @12#. Our simulations were carried out over 2000 a
gregates generated in this way.

r-

e
nd-
e
er

FIG. 7. Dependence onN of the fractal territorySN(t) explored
by N random walkers by timet5100 ~circles! andt5200 ~squares!
when the common origin is randomly selected from the shaded
of Fig. 2. The solid lines are the zeroth-order approximation, a
the dashed lines~dot-dashed lines! correspond to the first-order ap
proximation withm53/2 andA51.61 (m51.75 andA51.75) for,
from top to bottom,t5200 andt5100.
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A. Survival probability, diffusion coefficients,
and fractal volume

In order to compare the simulation results forSN(t) with
the predictions of our theoretical approach, Eq.~13!, we
must check that the survival probability or, equivalently, t
mortality function,h(l ,t)512G t(l ), really behaves in the
form conjectured in Eq.~10!. Moreover, we must confirm
first that, for a given chemical distancel , the distribution of
h(l ,t) over different realizations of the incipient percolatio
cluster is narrow because our theoretical analysis@cf. Eq.~8!#
relies on this assumption@cf. Eq. ~7!#. The numerical evalu-
ation of this quantity as well as the propagatorP( i,t) ~i.e.,
the probability of finding a single random walker at sitei at
time t) is performed by the Chapman-Kolmogorov meth
~also called the exact enumeration method@2,12#!. The trap
is simulated by a special site belonging to the cluster t
absorbs all the probability density that enters it without g
ing back any probability to its neighbors. In the simulation
the mortality function, we located a trap at a chemical d
tance l 530 in each of the 2000 percolating clusters. W
repeated the experiment for traps located at a fixed Euclid
distance, r 580. The resulting histogram fort51000 is
shown in Fig. 8~to be compared with the histogram of th
propagator shown in Fig. 4 of Ref.@15#!. One observes tha
the distribution corresponding to fixedl is very narrow
whereas the Euclidean version is broad and exhibits a l
tail.

Figure 9 shows the chemical mean-square displacem
L2[^l 2&5^(sitesl

2P(l ,t)& as a function of time. The
propagator in the chemical spaceP(l ,t) is obtained by sum-
ming P( i,t) over all cluster sitesi on the chemical shel
situated at distancel from the origin. The result is compat
ible with the Einstein relation Eq.~11! with 2D l 51.20
60.1 anddw

l 52.4060.05. This value fordw
l coincides with

that obtained in Ref.@15# and is in agreement with the valu
reported in Refs.@2,23#.

FIG. 8. Plot of the histogramN(ln h) versusu ln hu in the two-
dimensional incipient percolation aggregate for fixedr andt ~dotted
line! and for fixed l and t ~solid line!. The values arer 530, l
580, andt51000.
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In Fig. 10 we plot ln@2ln h(l ,t)# versusĵ[l /t1/dw
l

with
l 580 and, according to the previous discussion,dw

l 52.40.
If the conjecture in Eq.~10! is right, we can takeh(l ,t)
;exp(2ĉĵ v) as a first approximation, and hence should o
serve the linear behavior ln@2ln h(l ,t)#; ln ĉ1vĵ with ĵ

5A2D l j and ĉ5c/(2D l )v/2. Certainly the plot seems lin
ear except for a portion in the rangeĵ*2.2. This is a finite
size effect ~already analyzed in the case of the tw
dimensional Sierpinski gasket in Ref.@17#! associated with

FIG. 9. Plot of ln̂l 2& versus lnt, ^l 2&[L2 being the chemical
mean-square displacement of a single random walker calcul
over 2000 two-dimensional percolation clusters at criticality. T

line represents the functionL252D l t2/dw
l

with 2D l 51.2 anddw
l

52.4.

FIG. 10. Plot of ln@2ln h(l ,t)# versus lnĵ averaged over 2000
two-dimensional incipient percolation clusters. The trap was alw
placed at a site at distancel 580 from the origin. The lines repre

sent the functionsh(l ,t)5Âĵ2mv exp(2ĉĵv) with Â51.1,m

50.8,ĉ50.9,v51.7 ~solid line!, Â51,m50,ĉ51.2,v51.6 ~dashed

line!, andÂ51,m50,ĉ50.9,v51.7 ~dotted line!.
5-8
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TERRITORY COVERED BYN RANDOM WALKERS ON . . . PHYSICAL REVIEW E63 011105
the existence of a minimum arrival time corresponding to
random walker who travels ‘‘ballistically’’ along a chemica
path from the origin to the trap, which in turn implies

maximum available value ofĵ in the simulations~in our

simulations this maximum value is 80/801/dw
l

.12.9). A reli-
able interval for numerical fits should exclude this very sh
time regime. A linear fit in the interval 1.6< ln ĵ<2.17, cor-
responding to 200<t<1000, gives the valuesĉ51.260.1,
i.e., c51.360.1, andv51.660.05. The dashed line in Fig
10 corresponds to these values. The good agreement
numerical values in the above interval seems to assure
correctness of the approximationh(l ,t);ha(l ,t)
5exp(2ĉĵ v) with the values ofc andv given above. How-
ever, the solid line in Fig. 10 is a challenge to this interp
tation: one sees that the functionhb (l ,t)5Âĵ2mv exp
(2ĉĵ v) with v51.70, ĉ50.9 ~i.e., c51.05), m50.8, and
Â51.1 is as good asha(l ,t). Indeed,hb (l ,t) is more con-
sistent from a theoretical point of view thanha(l ,t) because
the expected theoretical value ofv corresponding todw

l

52.40 is v5dw
l /(dw

l 21)51.71, which is in better agree
ment with the exponentv51.7 of hb (l ,t) than with the
exponentv51.6 of ha(l ,t). Finally, it should be noticed
that the valuesc51.05, v51.70 are also in agreement wit
the corresponding parameter values of the propagator@15#,
thus supporting the guess made in Sec. III@see below Eq.
~11!# that the dominant exponential term of the propaga
and of the mortality function are the same. This leads us
consider that the set of parametersĉ50.9,v51.7,m50.8 is
more reliable thanĉ51.2,v51.6,m50. Obviously, further
intensive~and extremely time consuming! computer simula-
tions for the mortality function would be required in order
reliably determine the values of the parameters that appe
Eq. ~10! and in the asymptotic corrections ofSN(t).

We have also evaluated numerically the fractal volume
terms of the chemical distanceV(l ), i.e., the number of
lattice sites inside a circumference~in chemical space! of
radius l . The results are shown in Fig. 11. A good fit
dV(l )5dl V0l dl 21dl is found withV051.160.2 anddl

51.6560.05. Taking into account thatdf591/48, we de-
duce thatdmin 5df /dl 51.1560.05, which agrees with pre
vious estimates@2,12#.

B. Simulation results: Territory covered by N random walkers
on the percolation aggregate

In our simulations we calculatedSN(t) by averaging over
100 runs per cluster over 2000 percolation clusters. T
maximum time considered wast51000.

According to Eqs. ~13! and ~14!, the quotient
SN(t)/(ln N)g with g5dl /v is only a function oft. In Fig.
12 the logarithm of that quotient is plotted versus lnt for
several values ofN. The data collapse and the slope close
0.66 seems to support Eq.~1! with g5dl /v50.97, which is
in agreement with similar recent results for the thre
dimensional percolation aggregate@8#. The collapse is, how-
ever, slightly poorer when the exponentg5df /u51.24 (df
591/48 anddw52.87 @2,12#! proposed by Havlinet al. @4#
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@see Eq.~5!# is used, as Fig. 12 shows. So, one might be
to the conclusion that the correct value ofg as defined above
is dl /v. But in this analysis there was no consideration
the relatively large logarithmic corrections predicted by t
asymptotic analysis presented in Sec. III, so that the relia
ity of the above conclusion is seriously affected by this om
sion.

To illustrate this point, let us now carry out the same ki
of analysis with the simulation results ofSN(t) when the
substrate is a three-dimensional Euclidean lattice. For
case it is well known@7# thatSN(t) is given by an asymptotic

FIG. 11. Plot of lndV(l ) versus lnl in the two-dimensional
incipient percolation aggregate withdV(l )5V(l 11)2V(l ) be-
ing the average number of sites in the chemical shell at distancl .
The line represents the functionV0dl l dl 21 with V051.1 anddl

51.65.

FIG. 12. Plot of ln@SN(t)/(ln N)g# versus lnt for N522 ~dia-
mond!, 25 ~down triangle!, 28 ~up triangle!, 211 ~circle!, and 213

~square! in the two-dimesional percolation aggregate withg
5dl /v.0.97 andg5df /u.1.24. The values corresponding t
g5dl /v.0.97 have been shifted up by 3/2. The line has a slo
equal tods/2.0.66.
5-9
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L. ACEDO AND S. B. YUSTE PHYSICAL REVIEW E63 011105
expression with the form of Eq.~13! in which the logarith-
mic corrective terms are very important even for very lar
values ofN. Indeed, the main asymptotic term leads to ve
poor predictions forSN(t), whereas the second-order a
proximation (n52) gives excellent agreement with nume
cal simulation results. The exponentg of the main logarith-
mic term inN and the time exponentdl /dw

l 5ds/2 are equal
to 3/2. We have plotted in Fig. 13 the quotientSN(t)/ lng N
versus lnt for several values ofN taking into account that the
rigorous value ofg is 3/2. We see that the collapse is f
from being perfect because the logarithmic corrections h
been ignored. Nevertheless, an effective~but incorrect! value
of g52.75 yields a much better data collapse and a sl
close to the theoretical valueds/251.5. We thus conclude
that the analysis of data collapse plots based on the form
the main term of quantities such asSN(t) ~which typically
exhibit large corrective terms! should be performed with cau
tion. The values of the exponents estimated in this way
untrustworthy because the existence of logarithmic corr
tions to the main term cannot simply be ignored. The va
of g52.75 obtained before is then only an effective way
including all these corrective terms together but the true
pression involves a main term of the form (t ln N)3/2 times a
series similar to that given in Eq.~13!. These consideration
should prevent us from drawing hasty conclusions from
simple view of plots such as Figs. 12 and 13.

Finally, in Fig. 14 we show the dependence ofSN(t) on N
and compare simulation results with the zeroth- and fi
order asymptotic prediction given by Eq.~13!. When the
parameter setĉ50.9,v51.7,m50.8,A51 ~see Sec. V A! is
used, we get results with a very familiar aspect as they
quite similar~although, perhaps the first-order approximati
is too good! to that already found for Euclidean@7# and Si-
erpinski lattices~Sec. IV!. This is indeed encouraging. How
ever, when the parametersc51.3 andv51.6 are used, we
obtain a surprising and strikingly accurate zeroth-order

FIG. 13. Plot of ln@SN(t)/(ln N)g# versus lnt with N528 ~dia-
mond!, 210 ~down triangle!, 212 ~up triangle!, 214 ~circle!, 216

~square! for the three-dimensional Euclidean lattice withg53/2,
andg52.75. The line has a slope equal to 1.4.
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proximation. At this point, we again suspect that this last
of parameters are only effective parameters that include
influence of the true logarithmic corrective terms in the ran
of N simulated. Hence, Fig. 14 illustrates again, but from
different perspective, how the omission of important corre
tive terms could lead to finding effective parameters th
although providing excellent approximations in the~rela-
tively short! range under consideration, are really erroneo

VI. SUMMARY

In this paper the average fractal territory covered up
time t by N independent random walkers all startin
from the same origin on fractal lattices is calculat
in terms of an asymptotic series expansio
(n50

` (m50
n snm(ln N)dl /v2n(ln ln N)m @see Eq.~13!#, which is

formally identical to those obtained for Euclidean lattice
Equation~13! is obtained by assuming that~i! the average
fractal volume inside a ‘‘hypersphere’’ of chemical radiusl
grows asV0l dl , ~ii ! the distribution of the short-time sur
vival probability of a single random walker in the presen
of a trap is narrow, so that Eq.~7! holds, and~iii ! this short-
time survival probability is asymptotically given by Eq.~10!.
We performed numerical simulations for the Sierpinski g
ket and two-dimensional percolation aggregate at critica
which support the validity of the above assumptions. T
mathematical method used to derive such a result had
ready been successfully applied to Euclidean lattices@7# and
the fractal case is a fairly straightforward generalizati
when the previous conditions are fulfilled.

In order to check the goodness of the approximation,
carried out numerical simulations on a standard determini
substrate~the two-dimensional Sierpinski gasket! and on a

FIG. 14. Plot ofSN(t)/tdl /dw
l

versus lnN in the two-dimensional
incipient percolation aggregate forN520,21, . . . ,213. The circles
~squares! are the simulation results fort51000 (t5500) averaging
over 2000 aggregate realizations. The dashed~dotted! line is the
zeroth-order theoretical prediction withc51.05 and v51.7 (c
51.3 andv51.60) and the solid line is the first-order approxim
tion with c51.05, v51.7, m50.8, andA51.
5-10
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TERRITORY COVERED BYN RANDOM WALKERS ON . . . PHYSICAL REVIEW E63 011105
standard stochastic fractal~the two-dimensional percolatio
aggregate at criticality! obtaining reasonable agreement w
the theoretical results, especially when theoretical first-or
asymptotic corrective terms are considered. The performa
of the theoretical expressions discussed closely resem
that attained for Euclidean lattices. However, a more defi
tive check of the theoretical expressions forSN(t) that in-
clude corrective terms is hindered by the uncertainty in
value of the parametersv, c, A, m, h1 , . . . that appear in the
survival probabilityG t . The determination of its dominan
and subdominant terms by numerical~or analytical! proce-
dures is a problem for future work which will surely be bes
with the technical difficulties associated with the identific
tion of these faint terms@17#.

For stochastic fractals, the use of the chemical dista
turns out to be fundamental in our procedure because
distribution of the short-time survival probability in th
chemical space is so narrow that we can safely replace
powerN of the mean value of the survival probability by th
mean value of the powerN of the survival probability. This
allowed us to easily translate the theoretical results pr
ously derived for Euclidean lattices@7# to disordered media
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APPENDIX

In this appendix we show that Eq.~10! is reasonable for
those lattices (d-dimensional Sierpinski fractals, Given
Mandelbrot curve, one-dimensional lattice, hierarchical d
mond lattice, . . . ) where the renormalization procedu
implemented in Refs.@19,20# can be set up. The argument
as follows. Letrn

( i ) , n51, . . . ,z with r ( i )5urn
( i )u, be the po-

sition of the z nearest neighbors of the site atr50 in the
fractal lattice decimatedi times~see Fig. 2!, and leth(t,r ( i ))
be the probability that, in the time interval@0,t#, a single
diffusing particle that starts atr50 is absorbed byanyof the
traps located at itsz nearest neighbors placed at the sitesrn

( i ) .
For large values ofj;r ( i )/R, i.e., for relatively short times
the event ‘‘the random walker arrives for the first time at s
rn

( i )’’ and the event ‘‘the random walker arrives for the fir
time at siterm

( i )’’ are ~almost! independent so thath(t,r ( i )) is
ol

m

alk

H

01110
er
ce
les
i-

e

t
-

e
he

he

i-

e
.

-

~almost! the sum of the probability@given by 12G t(r
( i ))# of

each of the z individual events, i.e., h(t,r ( i )).z@1
2G t(r

( i ))#. Of course, the two events are not fully indepe
dent because the random walker could first arrive at siterm

( i )

after passing by the sitern
( i ) . However, this is very unlikely

becauserm
( i ) and rn

( i ) are separated by distances of order
r ( i ) so that the fraction of random walkers that, after arrivi
at rn

( i ) , travel torm
( i ) in the short-time interval@0,t# is of the

order exp(2j u), with j;r ( i )/R@1, because the propagato
or Green’s function is of this order for large values ofj
@19,17#. Therefore, it is reasonable to assume that
2G t(r

( i ))5h(t,r ( i ))/z$11O@exp(2j u)#% for largej. But 1
2h(t,r ( i )) has the form of the right-hand side of Eq.~10!
with u5dw /(dw21), at least for the fractals that we ar
considering@19,20#, so that Eq.~10! for r5r ( i ) follows. In
this discussion we have assumed, in order for the renorm
ization analysis that leads toG t(r

( i )) to work, that the traps
were placed at those sites~such asAg ,Bg , . . . in Fig. 2! that
become the nearest neighbors of the starting site after se
decimations. But, in the calculation ofSN(t), the function
G t(r ) is required for every pair of origin and destination sit
in the lattice. At this point, we shall assume that the survi
probability for rÞr ( i ) and r5r ( i ) are very similar, i.e., we
assume that G t(r

( i )).Gt(r )5Gt(j) when r /t1/dw

5r ( i )/t1/dw5(2D)1/2j for large j, with G t(j) given by Eq.
~10!. To the best of our knowledge this problem has not be
studied and will require a specific and detailed simulat
analysis that is not the object of the present work. Nevert
less, previous simulations on the Sierpinski gasket of ot
statistical quantities closely related toG t(r ), such as the
propagator~or Green’s function! @17#, enable us to affirm
with confidence that the parametersc and u remain un-
changed over the whole Sierpinski lattice whereas the s
dominant ones,A, m, h1 , . . . , donot. In this paper we use
c50.981 @19,17# and u5dw /(dw21).1.756 for the two-
dimensional Sierpinski gasket~values ofc for other fractals
can be found in Ref.@19#! but we must bear in mind that th
actual values ofA, m, andhn , n51,2, . . . will likely differ
from those obtained by renormalization techniques~namely,
A50.61, m51/2, h1520.56) as these latter correspond
the special placing of the traps and origins. We must a
point out that, as shown below, since the parametershn , n
51,2,3,. . . , only contribute to the second- and higher-ord
series terms ofSN(t) and since the real value of even th
first-order asymptotic term is uncertain, the values of th
parameters are not considered in this paper.
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