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Abstract. We present an overview of recent results for the classic problem of the survival
probability of an immobile target in the presence of a single mobile trap or of a collection of
uncorrelated mobile traps. The diffusion exponent of the traps is taken to be either v = 1,
associated with normal diffusive motion, or 0 < v < 1, corresponding to subdiffusive motion.
We consider traps that can only die upon interaction with the target and, alternatively, traps
that may die due to an additional evanescence process even before hitting the target. The
evanescence reaction is found to completely modify the survival probability of the target. Such
evanescence processes are important in systems where the addition of scavenger molecules may
result in the removal of the majority species, or ones where the mobile traps have a finite intrinsic
lifetime.
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1. Introduction

Since Smoluchowski’s seminal work on diffusion-controlled reactions between two species A and B [38], a
great deal of work on the subject has populated the literature. Smoluchowski’s theory and generalizations
thereof have been widely applied in many other fields to successfully compute rates of encounters driven
by diffusion. To name but a few, examples include fluorescence and luminescence quenching, reactions
between solvated electrons, proton transfer reactions, radical recombination, enzyme-ligand interactions,
protein folding, polymer chain growth, and oxygenation-deoxygenation of red blood cells (see eg. [31]
and references therein).

In its original version, Smoluchowski’s theory deals with two diffusing species A and B which undergo
the reaction A + B — products upon first encounter (infinite reaction rate). In this framework, the in-
stantaneous reaction between the encountering pair can be modeled by an absorbing boundary condition.
The problem of computing the rate of reaction is clearly made difficult because the choice of a specific
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reaction partner B by an A particle out of a number of B particles which are at comparable distances
will affect the chance of reaction and thus the fate of other A particles “competing” for the same B. In
order to bypass the difficulties arising from statistical correlations between reactant pairs, Smoluchowski
assumed that the B species is in vast excess with respect to the A species, implying that the A reactants
to a good approximation behave as though they are statistically independent. Under these conditions,
the mean concentration of the majority species B can be considered to be constant; the decay of the
concentration of the A species is then described by the survival probability Q1 of a single A particle
(“the target”) surrounded by a constant number of B particles (the “traps”), i.e., ca(t) = ca(0) Qr(t).
The rate constant k(t) of the reaction can be expressed in terms of Q7 (t) as follows [6]:

dInQr(t) dQr(t)
O dt - dt

k(t) = = —k(t) Qr(t), (1.1)

thus leading to

Qr(t) = exp [— /Ot k(t’)dt’]. (1.2)

Hence the importance of the survival probability problem from the point of view of Smoluchowski’s
theory.

In the general case, both the target and the traps are assumed to diffuse with diffusion coefficients D 4
and Dp, respectively. The computation of the survival probability of the target in this general case is
difficult [8-10,28] (in fact, despite many efforts, the full exact asymptotic solution in dimensions d > 3 is
still elusive, see e.g. the conclusions section in [7]). However, it is possible to gain insight into this general
problem by considering the limiting cases of an immobile target (D4 — 0) or of immobile traps (Dg — 0),
because they provide bounds on the more general case, bounds that may meet in some situations. These
cases are easier to handle analytically. The case Dy — 0 is usually called “the target problem” in the
literature, whereas the case Dp — 0 corresponds to the so-called “trapping problem”. In the latter case,
it can be rigorously shown that the long-time decay of the survival probability of a target surrounded by
a sea of uncorrelated traps in a d-dimensional Euclidean space follows a stretched exponential law, i.e.,
In Qr(t) oc —t/(d+2) [14].

In what follows, we shall focus on the target problem and discuss some recent results which extend
available solutions for the case of normal diffusive traps to the case of subdiffusive traps [7,15,16,18,32,40—
43]. The motivation for considering subdiffusive motion of the traps stems from the fact that deviations
from ordinary diffusion are likely to occur in crowded or complex environments. Such environments
frequently arise in biological systems. In our route to the solution, we shall also provide results for the
single-trap problem, i.e., the problem of computing the survival probability of the target in the presence
of a single trap. We do this for two reasons, namely (i) the solution for the many-trap problem can
be constructed from that for the single-trap problem, and (ii) the single-trap system is also interesting
in its own right, especially for the study of the geminate recombination problem (for experimental and
theoretical studies of this problem see e.g. chapter 6 in Ref. [31] and references therein, as well as Ref. [34]
for a recent theoretical study). We shall assume that the motion of the traps is described by a continuous
time random walk (CTRW) with a long-tailed waiting time distribution and a jump length distribution
of finite variance. In the long time limit this version of the CTRW is equivalent to a fractional diffusion
equation [26].

We shall consider two different situations for both the single-trap and the many-trap problems, namely,
one where the traps can only die upon interaction with the target, and one where an additional evanescence
process is at play [2,10,19,44], that is, the traps may die at a specified rate before reaching the target
(in the present work, the evanescence reaction is assumed to take place independently of the CTRW
jumps performed by the traps, as opposed to a recently introduced model where disappearance may only
take place at the time of each jump [36]). For instance, the presence of scavenger molecules C' may
result in the removal of B particles before they can reach the target A [22,31,33]. Another interesting
example is the relaxation of frozen dipoles via collision with diffusing defects [17,37], as the latter may

101



E. Abad, S. B. Yuste, K. Lindenberg Target problem: subdiffusion and evanescence

coalesce and, consequently, their concentration may decrease in time by mechanisms independent of the
interaction with the dipoles. More generally, any process that turns off the interaction between the traps
and the target can also be thought of as an evanescence or death process of the traps for the sake of the
computation of the survival probability of the target and the associated rate constant of the reaction.
As we shall see, the evanescence reaction is found to profoundly modify the survival probability of the
target.

The paper is organized as follows. In Sec. 2 we present some recent results for the survival probability
of the target in the absence of the evanescence reaction. This presentation includes the case of a partially
absorbing target. This is a generalization to a CTRW of Smoluchowski’s theory for the case of a finite
reaction rate [13]. Next, restricting ourselves to the case of a fully absorbing target, in Sec. 3 we consider
the case of evanescent traps. Finally, we conclude with a brief summary in Sec. 4.

2. The target problem with non-evanescent traps

2.1. The single-trap problem

We start by considering an immobile target of radius R centered at the origin r = 0 and a point trap
located at an initial position rg. At time ¢ = 0 the trap starts moving, and if it ever hits the surface
of the impenetrable target both the trap and the target disappear. The trap performs a CTRW whose
long-time motion is described by the fractional diffusion equation

Ow(r,t|ry;0)
ot

where w(r, t|rg; 0) is the probability density of finding the trap at location r at time ¢ given that it started
at position ro at ¢ = 0. The constant K is the anomalous diffusion coefficient, and VZ stands for the
Laplacian operator with respect to the position r. The initial condition is

w(r,0lrg; 0) = d(r — rp). (2.2)

=K., oD, " VZuw(r,t|rp;0), 0<y<1, (2.1)

The Griinwald-Letnikov operator thl 7 is defined via the equation
Lo {oDI T FO) ) = w0 L (£} (2.3)

where L¢,, {f(t)} fo e “tf(t) dt denotes the Laplace transform (the function and its Laplace
transform are clearly dlstlngulshed by the argument and so we use the same designation for both). Instead
of OD% ~7 we consider the more commonly used Riemann-Liouville fractional derivative ODtl_V, defined
as follows [30]:

1 0 tdt’ f(rt)
ry)ot)y — (t—t)=
When applied to sufficiently smooth functions, the operator O’D)} ~7is equivalent to the Riemann-Liouville

derivative [30]. The propagator solution of the fractional diffusion equation (2.1) yields a mean square
displacement with the long time behavior

oD f(r,t) = (2.4)

((r —ro)?) ~ K417, (2.5)

resulting in subdiffusive behavior when = is less than unity and in normal diffusive behavior when v = 1.
To complete the calculation of the probability density w(r,0|rg;0) we complement Eq. (2.1) with the
boundary conditions

w(R, tlr; 0) =0, (2.6)

rlggo w(r, t|re; 0) = 0.
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The boundary condition (2.6) implements the fully absorbing property of the target.

We wish to use the solution of this problem to calculate the survival probability Q1 r(ro, t; R) of the tar-
get. Note that the survival probability of the target is identical with the survival probability Q1 (ro,¢; R)
of the trap, as we have assumed that both the target and the trap disappear instantaneously upon en-
counter, i.e., there is only one (shared) decay channel for both particles. Either survival probability is
related to the probability density w(r, t|rp;0) via the equation

Q1(ro,t; R) = /w(r,t|r0;0) dr. (2.8)

Note that Q1(rg,t; R) depends only on the initial distance 7y between the target and the trap because
of the spherical symmetry of the former, and so we can drop the vectorial bold notation. We will also
drop the subindex 0 of 1y and use the simpler notation Qq(r,t; R). Taking into account Eq. (2.8), the
boundary value problem stated directly in terms of Q1(r,¢; R) then is [42]

w =K, oD, "V2Q:(r,t;R), (2.9a)
Q(r,0;R) =1, (2.9b)
Q1(R,t;R) =0, (2.9¢)

rhﬁnolo Q1(r,t; R) = 1. (2.9d)

The above problem can be solved exactly in Laplace space [42],

1-¢ Kgja 1 (\/W)
Ko (\/W) 7

where the K’s stand for modified spherical Bessel functions of the second kind [3]. In d = 1 and d = 3
dimensions the Laplace transform of (), can be expressed exactly in the closed form [42]

(2.10)

u@Qq(r,u; R) =1— (%)

Q1(r,u; R) , (2.11)

- 1 (R>a e(R=m)\/uT /Ky
= e

T ("

where a = 0 for d = 1 and o = 1 for d = 3. The inverse Laplace transform of @1(7‘, u; R) can be expressed

as [24, 26]
(1,7/2)
0.1 |

r—R

JEL T

At = Qurtrtsi) =1 - (1) g (2.12)

where
r—R

VRO

stands for a Fox H-function [24]. The Fox H-function reduces to a complementary error function when
~v =1, and in this limit we recover the correct result for ordinary diffusion (see, for example, Refs. [4]

and [6)), )
Qur(rt;R)=1- (R) erfe <TR> , (2.14)

1 (1,7/2) . = (_1)j r—R J
i (0,1) ] _ZJ!F(I +37/2) ( K7t7> (2.13)

=0

r 2v/ Dt

where we have adopted the usual notation for the normal diffusion coefficient D = K. In d = 2, there is
no exact expression for the inverse Laplace transform of ;. For long times, the use of the appropriate
Tauberian theorem yields

2 In(r/R)

Qi(r 6 R) = Qur(r,t; R) v In(ayt)’

(2.15)
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where a., = (4K, /R?)/7.

The asymptotic long-time behavior of the survival probability depends strongly on dimension. Ind =1
one easily checks that one has a power-law decay, Q1,7 (r,t) ~ (r—R)/ t7/2; in two dimensions, one has a
slower inverse logarithmic decay, Q1 7(r,t) o ln_l(avt). Finally, for d = 3 the target has a finite survival
probability, Q1 7(r,t — 00) ~ 1 — R/r. Asymptotically, the subdiffusive character of the particle is thus
relevant only in the one-dimensional case and has only a marginal effect in d = 2.

2.2. The many-trap problem

Let us now consider the problem where the target centered at » = 0 is surrounded by Ny randomly
distributed independent point traps in a hyperspherical volume V. At time t = 0 the traps begin to move
according to Eq. (2.1). If any of them hits the surface of the target, both the target and the trap are
instantaneously annihilated (fully absorbing target). We aim to compute the survival probability of the
target Qr at time ¢, i.e., the probability that no traps have collided with the target up to this time. The
solution of this problem can be obtained from the single-trap problem discussed in 2.1.

We take the thermodynamic limit Ny — oo, V' — oo while keeping a fixed global initial trap density
po = limpn, v_oo No/V. Integrating over the volume exterior to the target, one then has

N
: 1 0
Qr(t; R) = NO}%/H;OO {V - Qi.r(ro,t; R)dro| = exp{—poR(t,R)}. (2.16)

We have introduced the auxiliary quantity

.

PN In Qr(t; R). (2.17)

1
ot R = g [ 1= Quirtro.ti R dro = -
0>

Setting Q1,7 (ro,t; R) = Q1(ro,t; R) and using the results of 2.1, we can use Tauberian theorems to find
the long-time behavior in the many-trap problem [42]:

/2, d=1,
o(t;R) o< ¢ t7/In(ayt), d=2, (2.18)
7, d=3

The survival probability of the target thus goes to zero in one, two and three dimensions, in contrast with
the single-trap problem, where the survival probability of the target goes asymptotically to zero only in
one and two dimensions, while in three dimensions the target may survive forever.

2.3. The many-trap problem with a partially reflecting target

Let us now consider how the behavior in the many-trap problem changes when the target is no longer
fully absorbing. The starting point is once again the single-trap problem. The boundary condition Eq.
(2.6) must now be replaced with the more general condition

d
w(r,t|rg; 0) = —A%w(nt\ro;O), r e oV. (2.19)

Here Ow/0On is the component of the gradient of w perpendicular to the boundary and pointing away
from the hyperspherical volume V of the target, and A > 0 is a reaction rate parameter (one recovers the
case of a fully absorbing target when A = 0). The case A > 0 corresponds to a partially reactive target
surface that permits contact with a trap without reaction. That this is in fact the correct mathematical
description of a partially reactive surface is not immediately obvious, cf. [15,23, 35].
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In the Laplace representation the boundary value problem for a single trap now becomes

u@l(r,u; R)—1= ulfVK,YVZCNQl(T,u; R), (2.20)
Qi(r=R,u;R) = —A 2él(r, wR)| (2.21)
on R
.= 1
TIHEO Qi(r,u; R) = " (2.22)

where we again denote the initial distance rg by r. The result is

(2.23)

~ r\1-d/2 Kd — (TZ)
qu(r,u):1—< ) T /2—1

R _1(Rz) 4+ AzK 45 (Rz)’

where we have set z = (u7/K,)'/2. The many-trap problem can now be solved along the same lines as
in the case of a fully absorbing target. The solution was first given by Grebenkov [18]. The long-time
result for the survival probability of the target can be expressed as follows:

(Kt )1/2}

exp [ 77?;;73

(2.24)

d

K t”
Qr(t) ~ { exp [ F(1+'y) 1n(4K /R +2A/R} d
d

2,
Kt } 3.

exp { T7T$§WT17W?5

It is interesting to note that for long times t the partially reflecting nature of the surface is not relevant
for d <2 as o(t; R) x oz,l/2/F(1 +7/2) for d = 1 and o(t; R) < ma/[I'(1 4 v)In(e,)] for d = 2, both
independent of A. However, for d = 3, the value of A appears explicitly in the characteristic decay

function, i.e., o(t; R) o< may /[I'(1 4+ 7)(1 + A/R)].

3. The target problem with evanescent traps

The behavior of the survival probability of the target changes completely if an evanescence reaction is at
play, i.e., if the trap or traps disappear in the course of their motion via a process which is independent of
the reaction with the target. The decrease of the global trap density p(t) due to the evanescence process
is described by the rate equation

)

o) = 229 — 3 o(0), (3.1)

where A(t) > 0 is a rate coefficient which in general depends on time. The solution py exp ( fo N dt’ )

describes the decay of the trap density with time in the absence of the fully absorbing target. When \ =
constant this decay is purely exponential.

In what follows the addition of a star will distinguish these survival probabilities and associated quan-
tities from their counterparts in the absence of trap evanescence.

3.1. The single-trap problem

We proceed as in the previous section and consider the situation where there is only a single trap. In
order to study the survival probability of this trap, we need to combine the effects of Egs. (3.1) and (2.1)
in a reaction-subdiffusion equation [1,25,39,40]. A rigorous derivation starting at the level of the CTRW
leads to [1,2]

Qule,tire.0) _ ) s o oo 1)
5 = K, oD, p(t)er(Iyt\ro,O)—ﬁ—p(t)w(r,t|r070). (3.2)
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It is straightforward to show that the survival probability Q7 (ro,¢; R) = [w(r,t|ro; 0) dr of the trap then
obeys the equation
2Qi(r,t; R) _ p(t) - ( Po > p(t)
o BV K, oD SR V2 ) Qi R) + SLQ5 (s R), 3.3a
ot 00 v 0¢ ,O(t) Ql( ) p(t)Ql( ) ( )
where we have again dropped the subindex from r( for notational convenience. The above equation must
now be supplemented with the conditions

Qi(r,0;R) =1, (3.3b)
QI(R,t; R) =0, (3.3¢)
i Qi) = 22, (3:3)

Note that the last equation is substantially different from the corresponding equation in the absence of
evanescence.

At this stage, one can easily check that the transformation Q3 (r,t; R) = [p(t)/po] Q(r, t; R) in Egs. (3.3)
leads to equations for the transformed function Q identical to the boundary value problem (2.9) for Q1.
Because of the uniqueness of the solution, we thus conclude that Q = @)1, and further, to the intuitively
clear relation

iy P ,
Qi(r,t;R) = KQl(r,t,R). (3.4)

Because of the evanescence of the trap, the survival probability of the trap and that of the target are
no longer the same. The target has a greater survival probability than the trap, which may decay not
only by interaction with the target, but also via the evanescence process. However, there is a relation
between both probabilities. One can show that [2]

t (4!
Qirlrti®) = Qi R) -~ [ @it ar. (35)

Recall that p(t)/p(t) <0, and hence Q7 r(r,t; R) > Q7(r,t; R), as it should be. The above equation can
be used to quantify the difference between the survival probabilities.

Let us consider the particular case of an exponentially decaying trap density, p(t) = poexp(—At),
where the characteristic time scale of the decay is given by 7 = A~!. This could represent a unimolecular
decay if this were the only decay channel, which it is not in the presence of the target. Equation (3.5)
for exponential decay becomes

t
Qi r(rtR) = e MQy(r,t; R) + )\/ e MQi(r,t'; R)dt . (3.6)
0
Taking the Laplace transform of Eq. (3.6) and using Eq. (2.10), we get
-0 Ko )

w Qi r(ru R) =1 ( K r (VP s VK,

R
Equation (3.7) can be used to obtain the long-time behavior of Q’{yT(r,t;R) in arbitrary Euclidean
dimension via the final value theorem for the Laplace transform. One has

(3.7)

- 1-(d/2) Kg/o 1(y/m?N/K
QT’T(r,oo;R) = lim uQ*{’T(r,u;R) =1- (1) da/2—1( ’1”2 /K5) . (3.8)
u—0 R Kqjo—1(v/R*N/K)
In one and three dimensions, Eq. (3.7) becomes
- 1 R\ ¢~ (r—R)WV(utN)/K,
Qi r(ruR) = u (r) " (3.9)
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with @« =0 for d =1 and o = 1 for d = 3. Multiplying this equation by the Laplace variable u, taking
the limit v — 0 and applying the final value theorem we get the asymptotic survival probability

R (e}
Q?T(ﬁ 03 R) =1- (7") e_Q(T_R)/éwv (310)
where
0, = (4K, 72 (3.11)

is directly related to the typical distance travelled by the trap during its mean survival time 7 in the
absence of the target. Thus, for any non-zero value of A = 7! the survival probability of the target is
finite. However, for d = 1 this survival probability vanishes as A — 0 because of the recurrence properties
of one-dimensional random walks [21]. The probability 1 — Q] 1(r,00; R) that the target is eventually
annihilated is seen to decrease exponentially with the separation distance r — R between the trap and
the surface of the target.

In the normal diffusive case v = 1, one can find the inverse Laplace transform of the right hand side
in Eq. (3.9). The result can be expressed as follows:

1 “ 2 — 2
Q’{,T(nt;R):1—2(1:) e\/merfc< (7«4D}?+m>

_% (R)a e~ VAT—R?Z/D g ( r—Re \/E) . (3.12)

r 4Dt

When v < 1, no exact expression for the integral in (3.6) is available. However, using the appropriate
long-time expansions one finds that for large ¢

R (0%
Q1 r(r,00; R) — Qf 1(r, t; R) ~ — () i

1 r—R —1=F oAt

_ 3.13
P A o

r

For d = 2 the inverse transform of the right hand side of Eq. (3.7) can no longer be reduced to elementary
functions. However, one can obtain the stationary survival probability by setting d = 2 in Eq. (3.8),

Ko(2r/ty)
Tr(rt—o0;R)=1— ——12. 3.14
Ql,T( ) Ko(QR/E,Y) ( )
Taking into account the fact that
Qi r(rt;R) = Qf p(r,00; R) + e MQ1(r,t; R) — A/ e M Qi(r,t'; R) dt’ (3.15)
t
and using the long time expansion given by Eq. (2.15) one gets
QF p(r £ R) ~ Q p(r,00; R) + 21 (T)/oodt’ew o (3.16)
rt; R) ~ T, 00; —In{—= , 00 .
1,7 1,7 v R ‘ t 1n2(a7t/)
~ Qi r(r,00iR) + - In (%) . [1 )y (3.17)
BT AR M n®(ayt) N In(an t) ’ :

where we have repeatedly applied partial integration to go from the first to the second line. To leading
order, the approach to the steady state is dominated by an exponential multiplied by a slowly decreasing
second-order logarithmic correction.
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3.2. The many-trap problem

In the presence of a collection of evanescent traps, the statistical independence of the traps is not affected
by the evanescence reaction. The survival probability Q%.(t; R) of the target at time ¢ can therefore be
computed by following the same strategy as in the absence of evanescence. Equations (2.16) and (2.17)
are now respectively replaced with

. . 1 . No )
Qr(tR) = No,hvﬂioo {V o Qir(rt;R)dr| =exp{-poRc*(t,R)}, (3.18)
where
1 1
& — Qi r(rntR)]dr = ——— Q5 (t; R). 1
( R) Rd/ [ QLT(T? 7R)] r poRd nQT( 7R) (3 9)

We have now clarified the relation between Q7 (r,t; R) (survival probability of a single evanescent trap)
and Q1 (r,t; R) (survival probability of a single non-evanescent trap) and between Q7 (r,t; R) (survival
probability of the target in the presence of a single evanescent trap) and Qi (r,t; R) (survival probability
of a single evanescent trap). We can now use these relations and proceed to the many-trap problem. In
Ref. [2] we showed that starting with Eq. (3.18) and using the fractional equation Eq. (3.3a) together
with Eq. (3.4) and Eq. (3.5) we arrive at

. K, [* _, 0Q:(r,t'; R)
o*(t; R) :Sd#/o [thl, U 5

p(t') .
T R] o ar', (3.20)

where Sy = 21%/2/I"(d/2) denotes the surface of a d-dimensional hypersphere of unit radius. The formula
(3.20) relates the logarithm of the survival probability of the target, now in the presence of a collection
of evanescent traps, to the survival probability of the target in the presence of a single non-evanescent
trap. If the trap density p(t) decays sufficiently rapidly, then we can conclude that Q7 1(t — o0, R) >0
and o*(t — oo; R) < oo, which allows us to refer to Eq. (3.20) to arrive at the large-t result

K, [~ 0 t;R
o*(o0o;R) — o™ (t; R) = Sd#/t { )Dl K 7621((;" )

t/
]p( ) ar. (3.21)
r=R Po

We next need to specify the dimensionality as well as the explicit time-dependent form of the trap
density. Using the one-dimensional form of @1 (Eq. (2.12) with @ = 0) in Eq. (3.20) we get after
evaluation of the corresponding fractional derivative

* (4, 1 2F t 1v/2—=1 341
o*(t; R) = WE T ) p( )t dt'. (3.22)

Similarly, in the three-dimensional case we find from Eq. (2.12) (with a = 1) and Eq. (3.20) [2]

47/ 47K, t
*(t; R V2l gt 4 7”/ Yt tar. 3.23
o R) = poRrwz)/ ot o2l () Jo ") (32%)

Let us further assume that the trap density p(t) decays sufficiently rapidly to ensure that o*(oo; R) is
finite. From Eq. (3.21) and Eq. (2.15) we find that for d = 2,

. el 47K, *pH)trt
7 (0t R) = (1 ) ~ s / Hexaste (3.24)
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3.2.1. Fxponential evanescence

For a trap density decay of the form p(t) = pge~**, the computation of the final value of o*(¢; R) in
arbitrary integer dimensions is readily obtained from the Laplace transformed quantity o*(u; R) [2]. The
Laplace transform of Eq. (3.19) immediately leads to

Saky? Kap(/R2(u+ \)1/K)

c"(u; R) = . 3.25
( ) UR(U+)\)’Y/2 Kd/2—1( R2(U+)\)’Y/KFY) ( )
The final value theorem then gives
Kgy2(2R/E
o (003 R) = lim uo™(u; R) = S, b _KapQR/L) (3.26)

u—0 dﬁ Kd/271(2R/€7)'

For odd dimensions, Eq. (3.26) can be conveniently rewritten as rational functions of the argument R//,.
For example, 0*(00; R) = ¢4 /R for d =1 and 0*(o0; R) = (2mly/R) (1 + £, /2R) for d = 3.

Obtaining exact expressions for the survival probability at finite times is more difficult. For d = 1 one
can get an exact expression due to the simplification of the Bessel functions appearing in the Laplace

transform,
14 F(v/Z,At))
a*t;R:”(l— . 3.27
CO=2\'"T6m 20
Eq. (3.27) is equivalent to Eq. (15) in Ref. [44]. For d = 3 we find
¢ r(v/2, At)) & (7, \t)
o*(t: R :27r”<1— frx S 3.28
G =2y e ) TR ) (3:25)

resulting in a smaller survival probability than in d = 1. As noted already, there are no simple, closed-
form solutions valid for arbitrary times for d = 2, although we are able to extract some limiting behaviors
for this case as well (see below).

The explicit asymptotic results for the approach to the final values for d = 1 and d = 3 respectively
follow from Eqs. (3.27) and (3.28), and for d = 2 the result can be inferred from Eq. (3.24). The results
hold for v < 1, that is, also for normal diffusion:

/2= et d=1,
0*(00; R) — o (t; R) oc { In~H(ayt) 7 Te™ M, d=2, (3.29)
e At d=3.

The decay of the survival probability to the final state shown in Eq. (3.29) is seen to be faster as the
dimensionality increases. It is also straightforward to show that the long time behavior prescribed by
Eq. (3.29) for the d = 3 case remains valid for d > 3 with a d-dependent prefactor.

Interestingly, the limit A — 0 (no evanescence) turns out to be singular. Indeed, taking this limit in
Eq. (3.29) does not yield the correct result displayed in Eq. (2.18). We conclude that the evanescence
reaction completely changes the physics of the problem, affecting both the steady state and the decay
form of the survival probability.

3.2.2. Power-law evanescence

We next focus on a power-law decaying density,

__ P
(14t/7)8’

One might think of this time dependence as arising from some higher-order kinetics associated with the
linear differential equation (3.1) together with a proper choice of the exponent 5. The survival probability

p(t) = 8> 0. (3.30)
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of the target in this case depends not only on dimensionality but on the relative values of the power-law
decay exponent 3 and the subdiffusion exponent ~.

In one dimension, d = 1, the outcome follows directly from Eq. (3.22), and can be summarized as
follows [44]:

r(B—v/2
&W, B>1/2
o*(t; R) ~ 7/2[) In(t/7), B=7/2, (3.31)

WWTW2 A, B</2

where £, is defined as in the exponential case, i.e., £, = (4K, 77)/2,

Next we consider the two-dimensional system. We shall distinguish three different cases. Additional
details of the calculations can be found in [2].

Case 1 (8 > ). In this case the target has a finite probability of eternal survival. Using the explicit
form of p(t') in Eq. (3.24) we find

" (t/r)="

7S ) ) G P A DR na, )

(3.32)

Unfortunately, it does not seem possible to find an explicit exact expression for o*(oco; R) due to the lack
of an exact expression for Qi (r,¢’; R) valid for the whole time domain.

Case 2 (8 = 7). In this marginal case the target also eventually disappears, but with a different
analytic approach to the empty state:

Wﬁ%
ThT R In(In(a4t)). (3.33)

o*(t; R) ~
Thus, the target is eventually killed with certainty, in agreement with the result given in Ref. [10] for the
special case =y =1 (normal diffusive traps).
Case 3 (8 < ). In this case the long time behavior is given by

AT (o
o*(t; R) ~ at . 3.34
G~ =B+ D R InfasD) (3:34)
Hence when § < « the target eventually disappears with certainty.
We next turn to the three dimensional case. There are again three relevant subcases [2].
Case 1 (8> 7).
72 (1))
o*(t;R) ~ 0" (00} R) — —f " 3.35
1)~ T ) = e (5T 339
with > p
LITB—v/2) 5 T(B-7)
0" (00} R) =2 = ————— , 3.36
R =MR T TR I 0

leading to a non-zero survival probability Q4 (0co; R) = exp [—poR*0*(o0; R)].

Case 2 (8 = ). In this case, the survival probability Q%.(¢; R) goes to zero as (t/T)_”pORzi/F(V), that
is, o*(t; R)  In(t/7).

Case 3 (8 < 7). In this case one has Q4(t; R) « exp (—Ct"~7) with C > 0, that is, o*(¢; R) oc t77F.
Thus, in two and three dimensions the target has a finite probability of eternal survival only for g > ~.
For comparison, in the one-dimensional case it was found that the target has a chance of eternal survival
only when 8 > 7/2 [cf. Eq. (3.31)]. We thus see that the interplay between subdiffusive transport and
the evanescence reaction in higher dimensions also determines whether the target can ultimately survive.
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4. Summary and Outlook

We have presented some recent results on the survival probability of an immobile target in the presence
of a single diffusive or subdiffusive trap and also in the presence of noninteracting diffusive or subdiffusive
point traps. We have considered both the case where the traps are non-evanescent and also when they
are subject to the evanescence reaction.

Our conclusions can be summarized as follows. In the single-trap problem without evanescence, the
subdiffusive character of the trap is of relevance for the long-time survival probability only in the one-
dimensional case; its influence in the two-dimensional case is marginal, whereas in the three-dimensional
case it does not affect the asymptotic value of Q; 7.

In the many-trap problem without evanescence, the decay of the survival probability of the target at
long times is slowed down with respect to the case of normal diffusion in one, two and three dimensions. In
all three cases, one has a stretched exponential form which depends on the anomalous diffusion exponent
~ (the usual logarithmic correction appears in d = 2). In the many-trap problem with a finite reaction
rate, the reflecting nature of the target manifests itself mainly in three dimensions. In all cases, the
behavior of the rate constant k(t) describing the velocity of the reaction between the target and the traps
can be easily obtained by comparing Eq. (1.2) with Eq. (2.16). This comparison leads to the relation
k(t) = poRdo(t, R)/dt.

The evanescence reaction was found to completely modify the behavior of the single-trap and the
many-trap problems, both at the level of the steady state and of the decay of the survival probability
to a finite steady state or to zero. In the single-trap problem with exponentially decaying trap density
p(t) = po e~ the target has a finite survival probability in all dimensions. The general expression of this
probability involves a ratio of modified Bessel functions, which reduces to exponential functions in one
and three dimensions. In these cases, the approach to the steady state is given by an exponential times
an inverse power of ¢ with a y-dependent exponent. In two dimensions the decay is even more complex,
as it also involves the square of an inverse logarithm. In particular, our results hold also for the normal
diffusion case v = 1.

In the many-trap problem with evanescence, general expressions for the characteristic decay function
o*(t; R) as a function of the time dependent trap density p(t) can be obtained. In the special case of
exponential evanescence, we find like in the single-trap problem that there is a finite survival probability
of the target in all dimensions because the traps die sufficiently quickly in their search of the target.
By way of contrast, the target has a zero survival probability in all dimensions when the traps do not
evanesce. The long-time approach to the final value of the survival probability turns out to be more
complex than in the case of non-evanescent traps, and in the subdiffusive case 7 < 1 it involves powers
of t as well as exponential factors e”*! (with a logarithmic correction in d = 2). On the other hand,
when the density decays as a power law, p(t) o< t=# with 8 > 0, the behavior depends on the relative
values of 8 and the anomalous diffusion exponent ~y of the traps. In one dimension, the target has a finite
asymptotic survival probability if 5 > 7/2, whereas in two and three dimensions the target only has a
finite chance of eternal survival when 5 > ~.

As already mentioned in the Introduction, the general case where not only the traps but also the target
moves (either diffusively or subdiffusively) is difficult to deal with, even in the absence of the evanescence
reaction (the case of a normal diffusive target and normal diffusive evanescent traps has been considered
in Ref. [20]). The main difficulty is that in such a case the respective distances between the target and
each of the traps no longer evolve as independent variables. In some cases, the most useful approximations
are based on the fact that at long times the dominant contribution to the survival probability comes from
the subset of trajectories where the target remains immobile [7,9,28,41,43]. Ultimately, this behavior
finds its roots in what has been labeled the “Pascal principle”, apparently first formulated for the process
of migration-accelerated quenching of incoherent excitations in Ref. [11] and widely used in the literature
on diffusion-controlled reactions ever since (see e.g. [12,27,41]). The Pascal principle states that a target
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placed in a symmetric initial distribution of traps survives longer on average if it remains immobile.! It
is reasonable to assume that approximations based on this fact might also work in the presence of the
evanescence reaction.

Finally, it should be clear from the discussion in the Introduction that any process disabling the
interaction between the target and the traps can be regarded as an evanescence reaction in the framework
of the target and the trapping problems. However, in real systems such processes are often reversible,
thus making extensions of the theory to account for reversible evanescence processes interesting both from
a theoretical and a practical point of view. In particular, Refs. [5] and [6] consider models where either
the target or the traps can switch between an active state, which enables the interaction between the two
particle species, and an inactive state where such interaction is precluded. Many of the arguments used
should remain applicable to the case of subdiffusive motion, thereby making the extended problem with
subdiffusive species amenable to analytical solution.
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