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Order statistics of the trapping problem
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When a large numberN of independent diffusing particles are placed upon a site of ad-dimensional
Euclidean lattice randomly occupied by a concentrationc of traps, what is themth moment̂ t j ,N

m & of the time
t j ,N elapsed until the firstj are trapped? An exact answer is given in terms of the probabilityFM(t) that no
particle of an initial set ofM5N,N21, . . . ,N2 j particles is trapped by timet. The Rosenstock approximation
is used to evaluateFM(t), and it is found that for a large range of trap concentrations themth moment oft j ,N

goes asx2m and its variance asx22, x being ln2/d(12c)ln N. A rigorous asymptotic expression~dominant and
two corrective terms! is given for ^t j ,N

m & for the one-dimensional lattice.

DOI: 10.1103/PhysRevE.64.061107 PACS number~s!: 05.40.2a, 66.30.2h
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I. INTRODUCTION

Statistical problems related to the diffusion of a sing
random walker in a medium with traps have been subjec
intense research during the last decades@1–8#. Usually it is
assumed that the statistical properties of this single (N51)
random walker are representative of the statistical ensem
However, there are multiparticle (N.1) problems that can
not be analyzed in terms of the single walker theory.
example is the numberSN(t) of distinct sites visited~or ter-
ritory explored! up to timet by N independent random walk
ers all starting from the same origin@9–14#. Another multi-
particle problem of interest, that as we will see is clos
related to that of the territory explored, is the description
the order statistic of the diffusion processes, i.e., the estim
of the time at which thej th particle of an initial set ofN
particles all starting from the same origin is trapped.

The order-statistic problem when the traps are arran
on a ~hyper! sphere~i.e., an absorbing boundary at a fixe
distance! has been thoroughly studied@15–18#. In this paper
we consider the more difficult problem in which the traps a
arranged randomly ~‘‘the trapping problem’’! in a
d-dimensional Euclidean medium. A related problem,
which theN particles are placed on the left of a one-sid
random distribution of traps on a one-dimensional lattice,
been investigated in Ref.@19#. It is interesting to note tha
recent advances in optical spectroscopy@20# make it possible
to monitor this kind of multiparticle dynamic process. I
deed, the simultaneous tracking ofN@1 fluorescently la-
beled particles and the analysis of the diffusive motion of
particlesindividually is a useful recent technique for chara
terizing heterogeneous microenvironments~in particular, for
samples dynamically changing in time such as biologi
samples! @21#. A useful feature of the order-statistics a
proach is that it allows one to infer properties of the diffusi
system ~diffusion constant, number of diffusing particle
concentration of traps, effective dimension of the diffusi
substrate, . . . ! from only the analysis of the behavior o
those particles that are first trapped. This could be an ad
tage when it is impractical or impossible to wait until all th
reaction is over.

The order statistics of the trapping process will be d
scribed by means of the probabilityF j ,N that j particles of
the initial set ofN diffusing particles have been trapped, a
1063-651X/2001/64~6!/061107~7!/$20.00 64 0611
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the otherN2 j have survived, by timet. In this paper we
consider that all the particles start from the same origin t
is free of traps. The moments of the timet j ,N at which thej th
particle of the initial set ofN particles is trapped will be
calculated fromF j ,N . This probabilityF j ,N will be given in
terms of the survival probabilityFM(t)[F0,M(t) that no
particle of an initial set ofM (M5N,N21, . . . ,N2 j ) has
been absorbed by timet. This last quantity will be estimated
by means of the Rosenstock approximation using exp
sions for SN(t) calculated in Refs.@12–14#. It should be
noted that our approach to the order statistics of the diffus
process in the presence of randomly placed traps is diffe
from that used@15–18# for a fixed configuration of traps
What makes the two problems completely different, a
hence the way of solving them, is that for the case with
given configuration of traps the probability thatN particles
are trapped by timet is simply theNth power of the prob-
ability for a single particle. This simplifying result does n
hold when many configurations of randomly placed traps
considered.

This paper is organized as follows. In Sec. II we dedu
the main formulas that describe the order statistics of
trapping process: we relateF j ,N to FN(t) and ^t j ,N

m & to
F j ,N(t). In Sec. III we show that the ratio between the va
ance of SN(t) and ^SN(t)&2 goes roughly as (lnN)22 for
largeN. This suggests that the Rosenstock approximation
FN(t) can lead to good results even whenN is large. This is
checked in Sec. IV, where we also obtain asymptotic exp
sions~the main term! for ^t j ,N

m & and the variance. The proce
dure, based on the Rosenstock approximation, does not
vide analytic asymptotic corrective terms ford>2, although
we show that numerical integration is feasible leading
excellent results. However, in Sec. V, for the on
dimensional lattice we are able to find a rigorous asympto
expression~up to the second-order corrective term! for ^t j ,N

m &
for largeN. Some remarks and the conclusions are presen
in Sec. VI.

II. ORDER STATISTICS OF THE TRAPPING PROCESS

Let us first show how to obtainF j ,N(t) from FM(t) with
M5N,N21, . . . ,N2 j . Let C j ,N(t) be the probability thatj
random walkers of the initial set ofN have been absorbed b
©2001 The American Physical Society07-1
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SANTOS B. YUSTE AND LUIS ACEDO PHYSICAL REVIEW E64 061107
time t by a given configuration of traps and letC(t)
[C0,N(t) be the probability that no single random walk
has been absorbed by timet by this configuration of traps
Taking into account that (j

N) is the number of different
groups ofj particles that can be formed from a set ofN, one
finds

C j ,N~ t !5S N

j D ~12C! jCN2 j , ~1!

or, using the binomial expansion,

C j ,N~ t !5S N

j D (
m50

j

~21! j 2mS j
mDCN2 j 1 j 2m. ~2!

Averaging over different configurations of traps and taki
into account thatFN(t)5^CN(t)& and F j ,N(t)5^C j ,N(t)&,
we get

F j ,N~ t !5~21! j S N

j DD jFN~ t !, ~3!

where the backward difference formula for thej th derivative

D jFN~ t !5 (
m50

j

~21!mS j
mDFN2m~ t !, ~4!

has been used. The difference formula in Eq.~3! can be
approximated by the derivative

F j ,N~ t !.~21! j S N

j D dj

dNj
FN~ t !, ~5!

when j !N. Let hj ,N(t) be the probability that thej th ab-
sorbed particle of the initial set ofN disappears during the
time interval (t,t1dt#. This quantity is related toF j ,N(t) by

hj 11,N~ t !5hj ,N2
d

dt
F j ,N~ t !52

d

dt (
m50

j

Fm,N~ t !, ~6!

with h0,N50. Then, themth moment of the time at which th
j th particle is trapped is given by

^t j ,N
m &5E

0

`

tmhj ,N~ t !dt, ~7!

or, using Eq.~6! and integrating by parts, by

^t j 11,N
m &5^t j ,N

m &1mE
0

`

tm21F j ,N~ t !dt, ~8!

with

^t1,N
m &5mE

0

`

tm21FN~ t !dt. ~9!

Using Eq.~3!, Eq. ~8! becomes
06110
^t j 11,N
m &5^t j ,N

m &1~21! j S N

j DD j^t1,N
m &. ~10!

Thus, the order statistics of the trapping problem is descri
from ^t1,N

m & only. However, whenN and j are large, Eq.~10!
is hardly useful numerically because the quantities^t1,N2r

m &,
that are added and subtracted~and almost cancelled! to ob-
tain the j th difference derivativeD j^t1,N

m & have to be calcu-
lated, then, with extraordinary accuracy~which is not easy;
see Secs. IV and V! in order to get a reasonable estimate f
the small quantity (21) j (^t j 11,N

m &2^t j ,N
m &) from the multipli-

cation of the tiny quantityD j^t1,N
m & by the huge binomial

coefficient. In Sec. IV we will show how one can surmoun
at least partially, this difficulty.

III. MOMENTS OF THE NUMBER OF DISTINCT SITES
VISITED BY N RANDOM WALKERS

The main purpose of this section is to show that for lar
N one can approximatêSN

2 (t)& by ^SN(t)&2. In other words,
we will show that the ratio Var(SN)/^SN&2 is small for large
N and that it decreases whenN increases. In fact, we will
show that the simulation results are compatible with the c
jecture made in Ref.@19# that @Var(SN)#1/2/^SN&;1/lnN.
These results make it very plausible that the Rosenstock
proximation of order zero is a reliable method for estimati
the survival probabilityFN(t) for not too long times and
small concentrations. This will be analyzed in Sec. IV.

The problem of evaluatinĝSN
m(t)& for N51 has been

intensively studied since it was posed by Dvoretzky a
Erdös @1,2,22#. In 1992, Larraldeet al. @9,10# addressed the
problem forN@1 andm51 on Euclidean media. They dis
closed the existence of three time regimes: a very short-t
regime@ t!t3; ln(N)/ln(d)#, or regime I, in which there are
so many particles at every site that all the nearest neigh
of the already visited sites are reached at the next step
that the number of distinct sites visited grows as the volu
of an hypersphere of radiust, ^SN(t)&;td; a very long-time
regime (t38 !t), or regime III, that is the final stage in whic
the walkers move far away from each other so that their tr
~almost! never overlap and̂SN(t)&;N^S1(t)&; and an inter-
mediate regime (t3!t!t38 ), or regime II, in which there
exists a non-negligible probability of the trails of the pa
ticles overlapping. Of course, regime III does not exist
d51 (t38 5`). For d52, t38 5exp(N), and for d>3, t38
5N2/(d22). In the simulations carried out in this paper an
for the values ofN we are interested in (N@1), the particles
spend most of the time inside regime II, and regime III
never reached.

For regime II it has been found that@12,13#

^SN~ t !&'ŜN~ t !~12D!, ~11!

with

ŜN~ t !5v0~4Dt ln N!d/2, ~12!
7-2



it

te

o
ea

o
g

th

he
uite
the

r

y

n

ts

io
le
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D[D~N,t !5
1

2 (
n51

`

ln2n N (
m50

n

sm
(n) lnm ln N, ~13!

and where, up to second order (n52),

s0
(1)52dv, ~14!

s1
(1)5dm, ~15!

s0
(2)5dS 12

d

2D S p2

12
1

v2

2 D2dS dh1

2
2mv D , ~16!

s1
(2)52dS 12

d

2Dmv2dm2, ~17!

s2
(2)5

d

2 S 12
d

2Dm2. ~18!

Herev5g1 ln A1m ln(d/2), whereg.0.577 215 is the Eu-
ler constant,v0 is the volume of the hyphersphere with un
radius, andA, m, andh1 are given in Table I ford51, 2, and
3. The diffusion constant is defined by means of the Eins
relation

^r 2&'2dDt, ~19!

for large t, with ^r 2& being the mean-square displacement
a single random walker. All the numerical results that app
in this paper are calculated usingD51/(2d).

However, the calculation of higher-order moments
SN(t) poses a problem of completely different order of ma
nitude that still remains unsolved. In Ref.@19#, it was con-
jectured that the functional form of^SN

m& for Euclidean lat-
tices has the same asymptotic structure for allm, namely, the
asymptotic structure of Eq.~11!. Moreover, it was conjec-
tured that

Var~SN!

^SN&2
;

1

ln2 N
F11OS ln3 ln N

ln N D G , ~20!

for largeN, where Var(SN)5^SN
2 &2^SN&2 is the variance of

SN(t). Note that Eq.~20! implies ^SN
2 &5^SN&2 up to the

first-order asymptotic corrective term, as well as Var(SN)
;td(ln N)d22 for largeN.

Simulation data for̂ SN
2 (t)& for the two-dimensional lat-

tice are compared in Fig. 1 with results obtained from

TABLE I. Parameters that appear in the asymptotic express
of SN(t) @Eq. ~11!# for the one-, two-, and three-dimensional simp

hypercubic lattices. The parameterp̃ is @2(6Dp)3/3#1/2p(0,1) @23#,
where p(0,1)5A6/(32p3)G(1/24)G(5/24)G(7/24)G(11/24)
.1.516 386@1#.

Case A m h1

One-dimensional A2/p 1/2 21
Two-dimensional 1/lnt 1 21
Three-dimensional 1/(p̃At) 1 21/3
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approximation̂ SN
2 (t)&.^SN(t)&2 in which the zeroth-, first-,

and second-order asymptotic approximation for^SN(t)&
given by Eq.~11! is used. The large difference between t
performance of the three asymptotic approximations is q
noticeable as well as the excellent result obtained with
second-order approximation. Similar results~not shown! are
found ford51 andd53. Figure 2 shows simulation data fo
the ratio Var(SN)/^SN&2 for the two-dimensional lattice. We
see that for largeN this ratio decays roughly as predicted b
Eq. ~20!.

IV. ORDER STATISTICS OF THE TRAPPING PROCESS
BY MEANS OF THE ROSENSTOCK APPROXIMATION

The extended Rosenstock approximation~or truncated cu-
mulant expansion! first proposed by Zumofen and Blume
@7# is a well-known procedure@1–3# for solving the Rosen-
stock trapping problem for a single particle (N51). Its gen-
eralization for estimating the~survival! probability FN(t)
that no particle of the initial set ofN diffusing particles has
been trapped by timet is straightforward~details can be
found in Ref.@19#! and we will only quote here those resul
that are useful for our objectives.

n

FIG. 1. ^SN
2 &/t2 versus lnN for the two-dimensional lattice when

t5400. The circles are simulation results averaged over 105 con-
figurations forN522, . . . ,212 and over 104 configurations forN
5213, . . . ,216. The lines represent̂SN(t)&2 when the main term
~dotted line!, first-order approximation~dashed line!, and second-
order approximation~solid line! for ^SN(t)& are used.

FIG. 2. Simulation results for the ratiôSN&/@Var(SN)#1/2 for the
two-dimensional lattice withN522,23, . . . ,216 and t5400. The
configurations employed were the same as in Fig. 1.
7-3
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SANTOS B. YUSTE AND LUIS ACEDO PHYSICAL REVIEW E64 061107
The zeroth-order Rosenstock approximation for estim
ing FN(t) is given by

FN
(0)~ t !5e2l^SN(t)&, ~21!

wherel[2 ln(12c) andc is the concentration of traps. W
will write FN

(0n)(t) to indicate that thenth-order approxima-
tion for ^SN(t)& @see Eq.~11!# is used. The first-order Rosen
stock approximation is

FN
(1)~ t !5expF ^SN~ t !& ln pS 11

l

2

Var~SN!

^SN~ t !& D G . ~22!

Then, the error made by using the zeroth-order Rosens
approximation can be estimated

FN~ t !5FN
(0)~ t !$11O@l2Var~SN!#%. ~23!

Thus, the conditionl2Var(SN)!1 guarantees the good pe
formance of the zeroth-order Rosenstock approximation.
have found in Sec. III that Var(SN);td(ln N)d22 so that the
zeroth-order Rosenstock approximation works well wh
l2td(ln N)d22!1. This means that the approximation im
proves slightly ford51 and worsens slightly ford53 when
N increases. For long times, the Rosentock approxima
eventually breaks down, the Donsker-Varadhan reg
settles in, and the survival probability decays in a disti
way known in the literature as Donsker-Varadhan behav
@5#.

Figure 3 shows the survival probabilityF j ,N for the two-
dimensional lattice obtained from computer simulations a
from Eq. ~3! when the zeroth-order Rosenstock approxim
tion FN

(02)(t) given by Eq.~21! is used. The agreement
excellent.

Now, we evaluatêt1,N
m & by means of Eq.~9! approximat-

ing the survival probabilityFN(t) by the zeroth-order
Rosenstock approximationFN

(0)(t) for all times

^t1,N
m &.mE

0

`

tm21 exp@2l^SN~ t !&#dt. ~24!

FIG. 3. The j th survival probabilityF j ,N(t) versus time for
~from top to bottom! j 50,1,2,3,4, withN51000 andc5431024

for the two-dimensional lattice. The lines representF j ,N
(02)(t), i.e.,

the zeroth-order Rosenstock approximation with^SN(t)& given by
the second-order asymptotic approximation. The circles are sim
tion results averaged over 106 configurations. Inset:F0,N(t).
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Notice that with this approximation we are assuming that
the integration of Eq.~9! that leads tô t1,N

m &, the relevant
contribution comes from the time interval in which th
Rosenstock approximation works. Next, the expression
^SN(t)& corresponding to theintermediatetime regime is
used in Eq.~24! for all times. This approximation is reason
able if the integrals ofmtm21FN(t) on the intervals@0,t3#
and @ t38 ,`# are negligible versuŝt1,N

m &. As t3; ln N, the
approximation concerning the first interval is good as long
(ln N)m!^t1,N

m &, i.e., @see Eq. ~25! below#, as long asl
!(ln N)2d. For t>t38 , one haŝ SN(t)&;N^S1(t)&, so that
the approximation regarding the interval@ t38 ,`# is good
whenlexp(N)@1 for d52 andlN3@1 for d53. Inserting
the main asymptotic term of̂ SN(t)&, namely, ^SN(t)&
'v0(4Dt ln N)d/2, into Eq. ~24! one gets, after a simple in
tegration, a zeroth-order approximation for themth moment
of t1,N ,

^t1,N
m &.

G~112m/d!

~lv0!2m/d

1

~4D ln N!m
. ~25!

The corrective terms of̂SN(t)& are not used in Eq.~24!
because their time dependence for the two- and th
dimensional cases impedes analytical integration.

In Figs. 4–6,̂ t1,N& calculated from Eq.~25! is compared
with numerical simulation results. For the two- and thre
dimensional lattices we also show the results obtained
means of the numerical integration of Eq.~24! when the first-
and second-order asymptotic approximations for^SN(t)& @cf.
Eq. ~11! with n51 and n52, respectively# are used fort
>t3[(4/D)ln N. For t<t3 , the expression̂SN(t)&5v0td

corresponding to the short-time regime is used. Ford51, the
first- and second-order results are analytical~see Sec. V!.
Figures 4–6 illustrate the great importance of the asympt

a-

FIG. 4. The function 104/^t1,N& versus lnN for the one-
dimensional lattice with concentration of trapsc5831023 andN
523,24, . . . ,216. We plot simulation results averaged over 105 con-
figurations~circles! and the asymptotic approximations of order
~dotted line!, order 1~dashed line!, and order 2~solid line!. The two
last approximations are calculated by means of Eq.~36!.
7-4
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ORDER STATISTICS OF THE TRAPPING PROBLEM PHYSICAL REVIEW E64 061107
corrective terms in the order-statistics quantities. The wa
which the lines corresponding to the zeroth-order approxim
tion run almost parallel to the simulation results indica
that the corrective term goes essentially as (lnN)21. This is
confirmed in Sec. V where it is found that the rigoro
asymptotic expression for^t j ,N

m & for the one-dimensional lat
tice exhibits corrective terms that decay logarithmically w
N.

From Eq.~10! and approximating the difference operat
D j by the derivative of orderj, one finds

^t j 11,N
m &.^t j ,N

m &1m
G~112m/d!

~lv0!2m/d~4D !m

~ ln N!212m

j
,

~26!

for j !N, or, in terms of the psi~digamma! function @24#

^t j ,N
m &.^t1,N

m &1m
G~112m/d!

~lv0!2m/d~4D !m

c~ j !2c~1!

~ ln N!11m
. ~27!

FIG. 5. The function 103/^t1,N& versus lnN for the two-
dimensional lattice withc5431024 and N523,24, . . . ,216. The
simulation results are averaged over 105 configurations~circles!.
The dotted line represents the asymptotic approximation of orde
We also plot results obtained by means of the numerical integra
of Eq. ~24! when the first-order~dashed line! and second-orde
~solid line! asymptotic approximations for̂SN(t)& are used.

FIG. 6. The same as Fig. 5 but for the three-dimensional lat
with c5431025. The first-order approximation is out of scale. Th
simulation results are averaged over 106 configurations.
06110
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For 1! j !N one gets

^t j ,N
m &.^t1,N

m &1m
G~112m/d!

~lv0!2m/d~4D !m

g1 ln j

~ ln N!11m
, ~28!

becausec( j )5 ln(j)1O(1/j ) andc(1)5g @24#.
Therefore, the variances j ,N

2 5^t j ,N
2 &2^t j ,N&2 is given by

s j ,N
2 .s1,N

2 .
G~114/d!2@G~112/d!#2

~lv0!4/d~4D ln N!2
. ~29!

Thus, the main asymptotic term of the ratios j ,N /^t j ,N& is
independent ofj andN for largeN,

s j ,N

^t j ,N&
.

@G~114/d!2G2~112/d!#1/2

G~112/d!
. ~30!

In Fig. 7 we plot this ratio for the one-, two-, and thre
dimensional lattices for several values ofj andN. The simu-
lation results follow closely the theoretical predictions.

Finally, note that Eqs.~25!–~30! are valid for a givend
whenN→`. For a givenN andd→`, time regimes I and II
shrink, i.e.,t38 →0, so that̂ SN(t)&;Nt becausê S1(t)&;t
for d>3. Introducing this relation into Eq.~24! one gets
^t1,N

m &;(lN)2m for d→`, as expected.

V. ORDER STATISTICS OF THE ONE-DIMENSIONAL
TRAPPING PROCESS. RIGOROUS RESULTS

In this section we obtain the order statistics of the tra
ping process for the one-dimensional lattice from the or
statistics of the diffusion process in the presence of two fix
traps. Lett j ,N

m (r ) be themth moment of the trapping time o
the j th particle out of a total ofN particles that were initially
placed at distancer from a trap in a given direction and at

0.
n

e

FIG. 7. The ratios j ,N /^t j ,N&, j 51 ~circles!, j 52 ~squares!, j
53 ~up triangles!, j 54 ~down triangles!, N523,24, . . . ,216, for
d51 with c5831023 ~hollow symbols at the top of the figure!,
d52 with c5431024 ~filled symbols! and d53 with c
5431025 ~symbols with a bar at the bottom of the figure!. The
simulation results are averaged over 105 configurations ford51
andd52 and over 104 configurations ford53. The lines represen
the ~main order! asymptotic theoretical results, namely,A5 for d
51, 1 for d52, and 0.678 968••• for d53.
7-5



-

-

io
s

n
or

e

lle

he
th
r

e

s

ate:
of
is-

tics

-

ns
ds

-

a
uch

t
rly
les
tio

of
on
in

-

SANTOS B. YUSTE AND LUIS ACEDO PHYSICAL REVIEW E64 061107
distance greater thanr from another trap in the other direc
tion on a line. This quantity is given by@16#

t j ,N
m ~r !5S r 2

4D ln kND 2m

t j ,N~m!, ~31!

wheret j ,N(m)5t1,N(m)1d j ,N(m),

t1,N~m!511
m

ln kN S 1

2
ln ln kN2g D1

m

2 ln2 kN

3F11g1~11m!S p2

6
1g2D2S 1

2
1~11m!g D

3 ln ln kN1
1

4
~11m!ln2 ln kNG

1OS ln3 ln kN

ln3 kN
D , ~32!

d j ,N~m!5
m

ln kN (
n51

j 21
dn~m!

n
, ~33!

dn~m!511
m11

ln kN F ~21!n
Sn~2!

~n21!!
1

1

2
ln ln~kN!

2
1

2~m11!
2gG1OS ln2 ln kN

ln2 kN
D , ~34!

andk51/Ap.
In order to get̂ t j ,N

m &, t j ,N
m (r ) is averaged over the differ

ent positions on which theN particles can be initially placed
in an interval free of traps of sizeL,

t j ,N
m ~L !5

2

LE0

L/2

drt j ,N
m ~r !

5
1

2m11 S 1

4D ln kND mS L

2D 2m

t j ,N~m!. ~35!

Next, this quantity is averaged over the size distribut
h(L)5l2L exp@2lL# of the intervals that are free of trap
~p. 217 of Ref.@2#! to get the final result

^t j ,N
m &5E

0

`

dL h~L !t j ,N
m ~L !5

G~112m!

~2l!2m

t j ,N~m!

~4D ln kN!m
, ~36!

for largeN andd51. In Fig. 4, the theoretical results give
by Eq. ~36! are compared with simulation data. A behavi
very close to that found for traps arranged over a~hyper!
spherical surface@16# is found: the asymptotic correctiv
terms are not at all negligible even for very large values ofN,
and the second-order asymptotic expression is an exce
approximation even for not too large values ofN ~say, for
N*100).

Notice that the approximate result obtained in Eq.~25!
agrees, for the one-dimensional case, with the main term
Eq. ~36!. This prompts us to investigate to what extent t
approximate procedure of Sec. V is able to reproduce
results of the rigorous asymptotic approach. The answe
that the two approaches lead to the same main term~as we
06110
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e
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have just discovered! and to almost the same first correctiv
term. For example, using Eq.~11! up to first-order corrective
terms, one gets forj 51 andm51 that

^t1,N&5
1

2l24D ln kN
S 11

ln p22g1a1 ln ln N

4 lnN
1 . . . D ,

~37!

with a50. This expression differs from the rigorou
asymptotic formula~36! in the value ofa only: the exact
value isa5 ln 2. Finally, from Eq.~36! one can also obtain
for ^t j 11,N

m &2^t j ,N
m & the formula~26!, which was obtained in

Sec. IV ford-dimensional media.
Finally, from Eq.~36! one gets the variance

s j ,N
2 5

G~5!t j ,N~2!2G2~3!t j ,N
2 ~1!

~2l!4~4D ln kN!2
, ~38!

whose main-order asymptotic term reproduces Eq.~29! when
d51.

VI. CONCLUSIONS

The problem addressed in this paper is easy to formul
When a set ofN@1 diffusing particles are placed on a site
a d-dimensional Euclidean lattice occupied by a random d
tribution of static traps, how long is the survival timet j ,N of
the j th trapped particle? The answer to this order-statis
problem is given in Eq.~8! in terms of the probability
F j ,N(t) that j particles have been trapped andN2 j survive
by time t, which, in turn, can be expressed@cf. Eq. ~3!#
exactly in terms of the survival probabilityFM5F0,M that
no particle of an initial set ofM (M5N,N21, . . . ,N2 j )
has been trapped by timet.

For the evaluation ofFN(t) we resorted to the Rosen
stock approximation generalized to the case ofN@1 par-
ticles. This approximation is good for small concentratio
of traps and small times. Its range of applicability depen
logarithmically onN, improving slightly ford51 and wors-
ening slightly ford53 whenN increases. Analytical expres
sions for the main asymptotic term ofmth moment oft j ,N

and its variances j ,N
2 for d-dimensional Euclidean medi

have been found by assuming that the density of traps is s
that the contribution ofFN(t) to ^t j ,N

m & is negligible in the
time regimes I and III. It was found that̂ t1,N

m &
;(l2/d ln N)2m and that the ratios j ,N /^t j ,N& is not at all
negligible. In facts j ,N is larger than the differencêt j 11,N&
2^t j ,N&, which implies that it is not possible to infer with
certainty the orderj of a trapped particle from the time a
which it is trapped. However, this ratio discriminates clea
the dimension of the Euclidean media in which the partic
diffuse. This leads us to consider the possibility that this ra
could serve to estimate the dimension of fractal~disordered!
media in a dynamical way.

For the one-dimensional lattice, the previous solution
the order-statistic diffusive problem for a given configurati
~no randomly distributed! of traps has been used to obta
second-order asymptotic rigorous expressions for^t j ,N

m & and
the variances j ,N

2 . For d>2 we resorted to numerical inte
7-6
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gration to obtain higher-order estimates. This numerical p
cedure leads to excellent results, but it is limited to not
large values ofN and j because otherwise the binomial ter
that appears in Eq.~3! @or in Eq. ~10!# becomes intractably
large. In all the cases studied, there became clear the g
importance of the corrective terms in the asymptotic expr
sions of the moments of the order-statistics quantities s
the mth corrective term decay mildly as roughly themth
power of the logarithm ofN. This characteristic behavior i
shared with other cases with different configurations of tr
~e.g., fixed traps! and substrates~e.g., fractal media!.

We shall finish by mentioning some open problems. Fi
it would be very interesting to estimate the timetN,N by
which all the particles are eventually absorbed. Notice t
the formulas of Secs. IV and V are not suitable for this p
pose as they are valid for estimatingt j ,N when j !N only.
Also, it would be interesting to describe the order statistic
ts

alk
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m
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nd
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J
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e
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the trapping problem for a trap concentration small enou
for the trapping process to take place mainly inside
Donsker-Varandhan time regime. The recent analysis
Barkemaet al. @6# on the crossover from the Rosensto
behavior to the Donsker-Varandhan behavior should fac
tate this task. Finally, it would be desirable to extend t
results of the present paper to fractal substrates. To this
the recent results obtained in Ref.@14# on the territory ex-
plored by a set of random walkers in fractal media should
very useful.
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