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Order statistics of the trapping problem
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When a large numbeN of independent diffusing particles are placed upon a site dfdimensional
Euclidean lattice randomly occupied by a concentratiai traps, what is thenth moment(tTN) of the time
t; n elapsed until the first are trapped? An exact answer is given in terms of the probaldijfft) that no
particle of an initial setoM=N,N—1, ... N—| particles is trapped by time The Rosenstock approximation
is used to evaluatéd(t), and it is found that for a large range of trap concentrationsrittemoment oft;
goes ax~ ™ and its variance as 2, x being Ir?®(1—c)In N. A rigorous asymptotic expressigdominant and
two corrective termkis given for(t}*fN> for the one-dimensional lattice.
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. INTRODUCTION the otherN—j have survived, by time. In this paper we

consider that all the particles start from the same origin that

Statistical problems related to the diffusion of a singlejs free of traps. The moments of the timg at which thejth
random walker in a medium with traps have been subject oparticle of the initial set ofN particles is trapped will be
intense research during the last decades8]. Usually itis  calculated fron; . This probability®; y will be given in
assumed that the statistical properties of this sinble=()  terms of the survival probabilityby (t)=®y(t) that no
random walker are representative of the statistical ensembl@article of an initial set oM (M=N,N—1,... N—j) has
However, there are multiparticleNC>1) problems that can- been absorbed by tinte This last quantity will be estimated
not be analyzed in terms of the single walker theory. Anby means of the Rosenstock approximation using expres-
example is the numbesy(t) of distinct sites visitedor ter-  sjons for Sy(t) calculated in Refs[12—14. It should be
ritory explored up to timet by N independent random walk- noted that our approach to the order statistics of the diffusion
ers all starting from the same origi@—14]. Another multi-  process in the presence of randomly placed traps is different
particle problem of interest, that as we will see is closelyfrom that used15-1§ for a fixed configuration of traps.
related to that of the territory explored, is the description ofwhat makes the two problems completely different, and
the order statistic of the diffusion processes, i.e., the estimatgence the way of solving them, is that for the case with a
of the time at which thgth particle of an initial set oN  given configuration of traps the probability thisitparticles
particles all starting from the same origin is trapped. are trapped by timé is simply theNth power of the prob-

The order-statistic problem when the traps are arrangedbility for a single particle. This simplifying result does not
on a(hypep sphere(i.e., an absorbing boundary at a fixed hold when many configurations of randomly placed traps are
distance has been thoroughly studi¢@i5—18. In this paper considered.
we consider the more difficult problem in which the traps are  This paper is organized as follows. In Sec. Il we deduce
arranged randomly (“the trapping problem) in a the main formulas that describe the order statistics of the
d-dimensional Euclidean medium. A related problem, intrapping process: we relatd;  to dy(t) and (tTN> to

which theN .part.iCleS are placed on the left -Of a One-'Sided(I).’N(t)' In Sec. Il we ShOW that the ratio between the Vari_
random distribution of traps on a one-dimensional lattice, hagnce of Sy(t) and (Sy(t))2 goes roughly as (IN)~2 for
been investigated in Ref19]. It is interesting to note that |argeN. This suggests that the Rosenstock approximation for
recent advances in optical spectroscpp] make it possible ¢ (t) can lead to good results even whdris large. This is
to monitor this kind of multiparticle dynamic process. In- checked in Sec. IV, where we also obtain asymptotic expres-
deed, the simultaneous tracking N1 fluorescently la- sjons(the main termfor (t7) and the variance. The proce-
beled particles and the analysis of the diffusive motion of they ;e pased on the Rosenstock approximation, does not pro-
particlesindividually is a useful recent technique for charac- iqe analytic asymptotic corrective terms f® 2, although
terizing heteroge_neous mlcr(_)env_|ronme(lthanCWar_a for_ we show that numerical integration is feasible leading to
samples dynamically changing in time such as biologicakycellent results. However, in Sec. V, for the one-
samples [21]. A useful feature of the order-statistics ap- gimensjonal lattice we are able to find a rigorous asymptotic
proach is that it allows one to infer properties of the d'ﬁus'veexpressior(up to the second-order corrective terfor (t™)

j,N

system(dlffu3|on constant, npmbgr of ¢ffusmg par_tlcle's, for largeN. Some remarks and the conclusions are presented
concentration of traps, effective dimension of the dlffuswein Sec. VI

substrate. . .) from only the analysis of the behavior of
those particles that are first trapped. This could be an advan-
tage when it is impractical or impossible to wait until all the |, HrpER STATISTICS OF THE TRAPPING PROCESS
reaction is over.

The order statistics of the trapping process will be de- Let us first show how to obtaifp; \(t) from @y (t) with
scribed by means of the probabilith; y thatj particles of M=N,N—1,... N—j. LetW; \(t) be the probability that
the initial set ofN diffusing particles have been trapped, andrandom walkers of the initial set & have been absorbed by
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time t by a given configuration of traps and le¥(t)

=W,n(t) be the probability that no single random walker (=) + (= 1))
has been absorbed by timéy this configuration of traps.

Taking into account that’) is the number of different o ) ] )
groups ofj particles that can be formed from a set\yfone  Thus, the order statistics of the trapping problem is described
finds from (7)) only. However, whemN andj are large, Eq(10)

is hardly useful numerically because the quantitigy,_,),

N
)AJ(t ). (10)

N N that are added and subtract@ihd almost cancelledo ob-
Win(t)= i (1=w)re, D tain thejth difference derivative\!(t])) have to be calcu-
lated, then, with extraordinary accura@yhich is not easy;
or, using the binomial expansion, see Secs. IV and Mn order to get a reasonable estimate for

_ the small quantlty(—l)l((tHlN> (t]"\) from the multipli-
N\ 4 i cation of the tiny quantityA!(t) by the huge binomial
‘P;,N<t>=( J. ) 2 (- he

g

m)q' =, 2 coefficient. In Sec. IV we will show how one can surmount,
at least partially, this difficulty.

Averaging over different configurations of traps and taking

into account thatby(t)=(W¥N(t)) and ®; (t)=(F; (1)), Ill. MOMENTS OF THE NUMBER OF DISTINCT SITES
we get VISITED BY N RANDOM WALKERS

N The main purpose of this section is to show that for large
Qi n(D)=(— 1)'< )AJ(DN(U (3 N one can approximats?(t)) by (Sy(t))2. In other words,
we will show that the ratio Vay)/(Sy)? is small for large
where the backward difference formula for tfta derivative N and that it decreases whéhincreases. In fact, we will
show that the simulation results are compatible with the con-
jecture made in Ref[19] that [Var(Sy)1¥%(Sy)~ 1/InN.
<I>N m(t), (4)  These results make it very plausible that the Rosenstock ap-
proximation of order zero is a reliable method for estimating
the survival probability®y(t) for not too long times and
small concentrations. This will be analyzed in Sec. IV.
The problem of evaluatingSy(t)) for N=1 has been
N\ g intgnswely studied since it was posed by Dvoretzky and
D, N(t)z(_l)j( _ )_-(I)N(t) (5  Erdos[1,2,23. In 1992, Larraldeet al. [9,10] addressed the
’ J/dN problem forN>1 andm=1 on Euclidean media. They dis-
closed the existence of three time regimes: a very short-time
when j<N. Let h; \(t) be the probability that thgth ab-  regime[t<t, ~In(N)/In(d)], or regime I, in which there are
sorbed particle of the initial set dfl disappears during the so many particles at every site that all the nearest neighbors
time interval ¢,t+dt]. This quantity is related t&®; \(t) by  of the already visited sites are reached at the next step, so
that the number of distinct sites visiteddgrows as the volume
of an hypersphere of radias (Sy(t))~t% a very long-time
NN =h = G Pin="5 2: (), (6) regime ¢ <t), or regime Ill, that is the final stage in which
the walkers move far away from each other so that their trails
with hyy=0. Then, themth moment of the time at which the (almos} never overlap andSy(t))~N(S,(t)); and an inter-
jth particle is trapped is given by mediate regime t(, <t<t!), or regime IlI, in which there
exists a non-negligible probability of the trails of the par-

Alcha)—E (—m

has been used. The difference formula in E8). can be
approximated by the derivative

j

()= fmtmh- (Hdt ) ticles overlapping. Of course, regime Ill does not exist for

PN TN ’ d=1 (t,=«). For d=2, t, =exp(N), and for d=3, t/
=N?=2) |n the simulations carried out in this paper and

or, using Eq.6) and integrating by parts, by for the values oN we are interested inN>1), the particles

spend most of the time inside regime II, and regime Il is

<t;n+ 1,N>:<tTN>+mf:tmfl(pi,’\'(t)dt' ® ne\I/:%rr r:;zcirf:]zdil it has been found thpt2,13
with (Su(D)=Su(D)(1-4), (11)
(T = mf:tm*q),\,(t)dt. (9)  with
Using Eq.(3), Eq. (8) becomes Sy(t)=vo(4Dt InN)Y2, (12)
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TABLE |. Parameters that appear in the asymptotic expressio
of Sy(t) [Eq. (12)] for the one-, two-, and three-dimensional simple
hypercubic lattices. The paramefeis [ 2(6D )3/3]¥%p(0,1) [23],

where p(0,1)=\6/(327°)T (1/24)[ (5/24)[ (7/24) (11/24)
~1.516 386[1].
Case A o h,
One-dimensional V2lT 1/2 -1
Two-dimensional 1/In 1 -1
Three-dimensional 1(pt) 1 —-1/3
1< .
A=AN,t)== > In""N> s inminN, (13
n=1 m=0
and where, up to second ordear=2),
siV=—dow, (14)
siV=dp, (15
@_ql1 d\ (7 ? q dh; 16
Sy = SNt 7 - kol (18
(2) d 2
s;'=—d[1-5|pw—du’, 17)
d d
2)_"|1_2|,2
S5 5 ( 1 2) Mme (18

Herew=y+In A+ In(d/2), wherey=0.577 215 is the Eu-
ler constantp is the volume of the hyphersphere with unit
radius, andA, u, andh, are given in Table | fod=1, 2, and
3. The diffusion constant is defined by means of the Einstei
relation

(r?y~2dDt, (19
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FIG. 1. (S2)/t? versus IrN for the two-dimensional lattice when
t=400. The circles are simulation results averaged ovércbd-
figurations forN=22, ... 22 and over 16 configurations forN
=213 ., 2% The lines representSy(t))? when the main term
(dotted ling, first-order approximatioridashed ling and second-
order approximatiorgsolid line) for (Sy(t)) are used.

approximation( S (t))=(Sy(t))? in which the zeroth-, first-,
and second-order asymptotic approximation f®y(t))
given by Eq.(11) is used. The large difference between the
performance of the three asymptotic approximations is quite
noticeable as well as the excellent result obtained with the
second-order approximation. Similar resuit®t shown are
found ford=1 andd=3. Figure 2 shows simulation data for
the ratio VarGy)/(Sy)? for the two-dimensional lattice. We
see that for largd\ this ratio decays roughly as predicted by
Eq. (20).

IV. ORDER STATISTICS OF THE TRAPPING PROCESS
BY MEANS OF THE ROSENSTOCK APPROXIMATION

The extended Rosenstock approximationtruncated cu-

ulant expansionfirst proposed by Zumofen and Blumen
7] is a well-known procedurgl—3] for solving the Rosen-
stock trapping problem for a single particld€ 1). Its gen-
eralization for estimating thésurvival) probability ®(t)
that no particle of the initial set dfl diffusing particles has

for larget, with (r?) being the mean-square displacement ofbeen trapped by time is straightforward(details can be
a single random walker. All the numerical results that appeafound in Ref.[19]) and we will only quote here those results

in this paper are calculated usiig=1/(2d).

However, the calculation of higher-order moments of
Sn(t) poses a problem of completely different order of mag-
nitude that still remains unsolved. In R¢fL.9], it was con-
jectured that the functional form &fSy) for Euclidean lat-
tices has the same asymptotic structure fonalhamely, the
asymptotic structure of Eq.l1). Moreover, it was conjec-

Var(Sy) 1

tured that
(S\?  In®N O( )

for largeN, where VarGy) =(S3)—(Sy)? is the variance of
Sy(1). Note that Eq.(20) implies (S3)=(Sy)? up to the
first-order asymptotic corrective term, as well as &)X
~t9(In N)4~2 for largeN.

Simulation data fofSi(t)) for the two-dimensional lat-

IN3InN
InN

(20

that are useful for our objectives.
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FIG. 2. Simulation results for the rati@y)/[ Var(Sy) ]V for the
two-dimensional lattice witiN=22,23, ... 26 and t=400. The

tice are compared in Fig. 1 with results obtained from theconfigurations employed were the same as in Fig. 1.
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FIG. 3. Thejth survival probability®; y(t) versus time for 5 ’_._;.'--"{'b
(from top to bottor) j=0,1,2,3,4, withN=1000 andc=4x10"* o ° T
for the two-dimensional lattice. The lines represé}‘fﬂﬁ)(t), ie., . . . . . . . .
the zeroth-order Rosenstock approximation wisiy(t)) given by 2 3 4 5 6 7 8 9 10 11
the second-order asymptotic approximation. The circles are simula- In N

tion results averaged over & @onfigurations. Insetdop(t).
FIG. 4. The function 1®/(t;\) versus INN for the one-
The zeroth-order Rosenstock approximation for estimatdimensional lattice with concentration of traps8Xx 102 andN
3

ing dy(t) is given by =232% ..., 25 We plot simulation results averaged oveP tOn-
figurations(circles and the asymptotic approximations of order 0
¢§u0)(t) _ e—x(s,\,(t», (22) (dotted ling, order 1(dashed ling and order 2solid line). The two

last approximations are calculated by means of (86).

whereh=—In(1—c) andc is the concentration of traps. We Notice th ith thi o ing that. i
will write ®©M(t) to indicate that theth-order approxima- otice that with this approximation we are assuming that, in

tion for (Sy(t)) [see Eq(11)] is used. The first-order Rosen- the integration of Eq/(9) that leads to(t7y), the relevant
stock approximation is contribution comes from the time interval in which the

Rosenstock approximation works. Next, the expression for
(Sn(t)) corresponding to théntermediatetime regime is
(220  used in Eq(24) for all times. This approximation is reason-
able if the integrals omt™ 1d(t) on the intervalg 0t ]
c%nd [t) ] are negligible versugtTy). As t,~InN, the
approximation concerning the first interval is good as long as
(INN)"<(t7y), i.e., [see Eq.(25 below], as long as\
By (1) =DO(1){1+ O[N2Var(Sy) ]} 239 <(n N) ¢ For t?t'x . one has(Sy(1))~N(Sy(1)), so that
the approximation regarding the intervi’, ,»] is good
Thus, the condition\2Var(Sy)<1 guarantees the good per- WhenAexp(N)>1 for d=2 andAN®*>1 for d=3. Inserting
formance of the zeroth-order Rosenstock approximation. W€ main asymptotic _term of Sy()), namely, (Sy(t))
have found in Sec. IIl that Vagy)~t9(InN)¢"2 so that the ~ ~Vo(4DtINN)™%, into Eq.(24) one gets, after a simple in-
zeroth-order Rosenstock approximation works well wherf€9ration, a zeroth-order approximation for iméh moment
A2t9(InN)¥2<1. This means that the approximation im- O tin,
proves slightly ford=1 and worsens slightly fod=3 when
N increases. For long times, the Rosentock approximation m I'(1+2m/d) 1
eventually breaks down, the Donsker-Varadhan regime (tin)= (Avg)2™d (4D InN)™
settles in, and the survival probability decays in a distinct vo
\[/\é?y known in the literature as Donsker-Varadhan behawotl_he correctiv_e terms ofSy(1)) are not used in Eq(24)
Figure 3 shows the survival probability; \ for the two- because their time dependence for the two- and three-
dimensional lattice obtained from computer simulations anodlmensmnal cases impedes analytical integration.

from Eq. (3) when the zeroth-order Rosenstock approxima- . In Figs. 4_6’<t.1vN> ca}lculated from Eq(25) is compared
tion ®2(t) given by Eq.(21) is used. The agreement is with numerical simulation results. For the two- and three-
N . .

excellent. dimensional Iattices_ we also s_how the results obta_ined by
Now, we evaluatét™ ) by means of Eq(9) approximat- means of the numerical integration of E@4) when the first-

. ' . 1N/ DY q PP and second-order asymptotic approximations{&(t)) [cf.

ing the survival p.robgblh%)(l)N(t) by .the zeroth-order Eq. (11) with n=1 andn=2, respectively are used fort

Rosenstock approximatioty;’(t) for all times >t,,=(4/D)InN. For t<t,, the expressiorSy(t))=uv,t?

corresponding to the short-time regime is used.d=etl, the

<tTN>szwtm’lexq—MSN(t))]dt. (24) first— and se(;ond—order results.are analyticsde Sec. V. .
’ 0 Figures 4—6 illustrate the great importance of the asymptotic

N Var( SN))

(D(1) = &
o (t)—ex;{(SN(t)Nn p(1+ 2 (Su(0)

Then, the error made by using the zeroth-order Rosensto
approximation can be estimated

(25
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FIG. 7. The ratioo; y/(t; n), j=1 (circles, j=2 (square} j
. i,NAN
_ FIG._ 5. The_ fungtlon 1e7<t1,_N4> versus I3rN for the6 two- =3 (up triangle$, j=4 (down triangley N=23,2%, ... 2 for
d_lmens_lonal lattice withc=4x10"* and N=_2 24 R 21 The d=1 with c=8x10"2 (hollow symbols at the top of the figure
simulation results are averaged over® dbnfigurations(circles. d=2 with c=4x10* (filed symbol§ and d=3 with c

The dotted line represents the asymptotic approximation of order 0= 4 105 (symbols with a bar at the bottom of the figur@he
We also plot results obtained by means of the numerical integratiogjmulation resulis are averaged over® nfigurations ford=1
of Eq. (24) when the first-ordedashed ling and second-order anqq=2 and over 16 configurations fod=3. The lines represent
(solid line) asymptotic approximations fdiSy(t)) are used. the (main ordey asymptotic theoretical results, namelys for d

. . . . =1, 1 ford=2, and 0.678 968 - for d=3.
corrective terms in the order-statistics quantities. The way in

which the lines corresponding to the zeroth-order approximag, 1<j

. : : e <N one gets
tion run almost parallel to the simulation results indicates

that the corrective term goes essentially asN)int. This is I'(1+2m/d) y+Inj
confirmed in Sec. V where it is found that the rigorous <tJT‘jN):<tT’N)+m i - Trm (28
asymptotic expression fdt["y) for the one-dimensional lat- (Nvg)™5(4D)™ (InN)

tice exhibits corrective terms that decay logarithmically with . . .
N because)(j) = In(J)+Q(1/J)2and ngl): y [24;.. .
From Eq.(10) and approximating the difference operator ~ 1herefore, the variance; = (tj ) — (t; n)* is given by

A’ by the derivative of ordef, one finds
e I'(1+4/d)—[T(1+2/d)]?

r'(1+2m/d) (InN)~t™™ TN LN T 5 ) M(4D InN)2
()\vo)Zm/d(4D)m J !

(29

(=" +m
(26)  Thus, the main asymptotic term of the ratg n/(t; n) IS
independent of andN for large N,
for j<N, or, in terms of the psfdigamma function[24]
oin  [T(1+4/d)—T2(1+2/d)]¥2 30
r(i+2m/d j)— (1 N :
(P =(tT)+ m ( ) )=y 27 (tjn) I(1+2/d)
' ) ()\UO)Zm/d(4D)m (In N)1+m

In Fig. 7 we plot this ratio for the one-, two-, and three-

—— dimensional lattices for several valuesj@ndN. The simu-
145 lation results follow closely the theoretical predictions.
2t Finally, note that Eqs(25)—(30) are valid for a giverd
whenN—o. For a givenN andd— o, time regimes | and ||
- 10t shrink, i.e.,t{, —0, so that{Sy(t))~Nt becaus€ S;(t))~t
é 8l for d=3. Introducing this relation into Eq24) one gets
S ol (tT\)~(AN) "™ for d—o, as expected.
4 V. ORDER STATISTICS OF THE ONE-DIMENSIONAL
5l - 1 TRAPPING PROCESS. RIGOROUS RESULTS
ok &0 In this section we obtain the order statistics of the trap-
23 45 6 7 8 9101 ping process for the one-dimensional lattice from the order

In Ny statistics of the diffusion process in the presence of two fixed

FIG. 6. The same as Fig. 5 but for the three-dimensional latticd"aps. Lett??,\,(r) be themth moment of the trapping time of
with c=4X 10"°. The first-order approximation is out of scale. The the jth particle out of a total oN particles that were initially
simulation results are averaged ovef bdnfigurations. placed at distancefrom a trap in a given direction and at a
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distance greater thanfrom another trap in the other direc- have just discovergdand to almost the same first corrective

tion on a line. This quantity is given byl 6] term. For example, using E¢L1) up to first-order corrective

_ r2 2m terms, one gets for=1 andm=1 that

m = —— .

() (4D In KN) 7iN(m), (3Y) Inm—2y+a+ininN

(=77 1+ AN + ...,
where 7 (M) = 71 y(M) + 8 y(M), 2\"4D In &N -
m (1 m
Tin(M=1+ =g 5 ininaN=y T I RN with «=0. This expression differs from the rigorous

asymptotic formula(36) in the value ofa only: the exact
1 value isa=In 2. Finally, from Eq.(36) one can also obtain
5+ (1+ m)y for (1%, ;) —(t') the formula(26), which was obtained in
Sec. IV ford-dimensional media.
Finally, from Eq.(36) one gets the variance

TG 72~ T*3) (1)

2

an

X — 472
4

1+ y+(1+m)

1
XInin kN-+7(1+ m)In?In «N

2

o’ , 38
In%In kN N (20)*(4D In kN)? =8
+0 ﬂ s (32
o« - whose main-order asymptotic term reproduces(E§). when
5 _om S 8y(m) a3 d=1.
iN(m =0 kNZ&L n (33
ma 1 i S.(2) 1 VI. CONCLUSIONS
Sn(m) =1+ =51 (— n—1)1 InIn(«N) The problem addressed in this paper is easy to formulate:
When a set oN> 1 diffusing particles are placed on a site of
1 In?In kN 34 a d-dimensional Euclidean lattice occupied by a random dis-
" 2(mt1y 7 2 kN |’ (34 tribution of static traps, how long is the survival timygy of

the jth trapped particle? The answer to this order-statistics
and k= 1/\/. o problem is given in Eq.8) in terms of the probability

In order to gett"y), tjy(r) is averaged over the differ- &; \(t) thatj particles have been trapped aNé-j survive
ent positions on which thi particles can be initially placed by time t, which, in turn, can be expressédf. Eq. (3)]

in an interval free of traps of size, exactly in terms of the survival probabilit§,=® ), that
no particle of an initial set oM (M=N,N—1,... N—j)
T(L):EfmdrtT(r) has been trapped by tinte
IN LJo I.N For the evaluation ofb(t) we resorted to the Rosen-

M/ om stock approximation generalized to the caseNof1 par-
_ 1 ( 1 ) (E) (M), (35 ticles. This approximation is good for small concentrations
2m+114DInkN/ |2 LNV of traps and small times. Its range of applicability depends
logarithmically onN, improving slightly ford=1 and wors-
Next, this quantity is averaged over the size distributionening slightly ford=3 whenN increases. Analytical expres-
7(L)=\’L ex{ —\L] of the intervals that are free of traps sjons for the main asymptotic term aith moment oft;j

(p. 217 of Ref[2]) to get the final result and its variances?  for d-dimensional Euclidean media
m e — F(1+2m) 75 n(m) have been found by assuming that the density of traps is such
<tJ,N>:f0 dL »(L)tj (L) = (20)2™ (4D In kN)™ (36)  that the contribution ofb(t) to () is negligible in the
time regimes | and Illl. It was found thatty)

for largeN andd=1. In Fig. 4, the theoretical results given ~(\**InN)™™ and that the ratiar; \/(t; y) is not at all

by Eq. (36) are compared with simulation data. A behavior negligible. In facto; \ is larger than the differencé; , 1 n)
very close to that found for traps arranged ovethgpey  —(tjn), Which implies that it is not possible to infer with
spherical surfacd16] is found: the asymptotic corrective certainty the ordej of a trapped particle from the time at
terms are not at all negligible even for very large valuellof Which it is trapped. However, this ratio discriminates clearly
and the second-order asymptotic expression is an excellefiie dimension of the Euclidean media in which the particles
approximation even for not too large values Mf(say, for  diffuse. This leads us to consider the possibility that this ratio
N=100). could serve to estimate the dimension of fra¢tisordered

Notice that the approximate result obtained in E2p)  mMedia in a dynamical way.

agrees, for the one-dimensional case, with the main term of For the one-dimensional lattice, the previous solution of
Eq. (36). This prompts us to investigate to what extent thethe order-statistic diffusive problem for a given configuration
approximate procedure of Sec. V is able to reproduce théno randomly distributedof traps has been used to obtain
results of the rigorous asymptotic approach. The answer isecond-order asymptotic rigorous expressions(ffix) and
that the two approaches lead to the same main {@smwe the variancarf’N. Ford=2 we resorted to numerical inte-
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gration to obtain higher-order estimates. This numerical prothe trapping problem for a trap concentration small enough
cedure leads to excellent results, but it is limited to not todfor the trapping process to take place mainly inside the
large values o andj because otherwise the binomial term Donsker-Varandhan time regime. The recent analysis of
that appears in Eq3) [or in Eq. (10)] becomes intractably Barkemaet al. [6] on the crossover from the Rosenstock
large. In all the cases studied, there became clear the grela¢havior to the Donsker-Varandhan behavior should facili-
importance of the corrective terms in the asymptotic exprestate this task. Finally, it would be desirable to extend the
sions of the moments of the order-statistics quantities sinceesults of the present paper to fractal substrates. To this end,
the mth corrective term decay mildly as roughly tmeth  the recent results obtained in R¢L4] on the territory ex-
power of the logarithm of. This characteristic behavior is plored by a set of random walkers in fractal media should be
shared with other cases with different configurations of trapsery useful.

(e.g., fixed trapsand substrateg.g., fractal media
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