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Radial distribution functions for a multicomponent system of sticky
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A method to obtainapproximatg analytical expressions for the radial distribution functions and
structure factors in a multicomponent system of sticky hard spheres is introduced. In its simplest
implementation, the method yields the Percus—Yevick approximation. In the next order, only
contact values of the cavity functions and the isothermal compressibility are required. Some
tentative strategies to determine the input values are discussed. Illustrative examples following these
strategies, in which the radial distribution functions and structure factors are computed, are also
presented. ©1998 American Institute of Physids$S0021-96068)52240-4

I. INTRODUCTION multicomponent HS mixture. The same approach was used
. .in a one-component SHS fllfd!® as well as for the square-
The knowledge and understanding of the thermodynamlgve” fluid.X* It is the major aim of this paper to carry out an

and structural properties of model systems play a key role i%xtension of the RFA method to the case of a multicompo-
nent mixture of sticky hard spheres. As discussed below, this

the modern developments of liquid state thebtyis unfor-
tunate, howeve_r, that very few such models have been amg; proach will not only allow us to rederive the results of
nable to analytical solution and therefore progress has be erram and Smithin the PY approximation, but also to go
relatively slow in this area despite a vast amount of Iiteraturebeyond such an approximation in what on,e may refer to as
n approach similar to the generalized mean spherical ap-

devoted to the subject. Other than for hard-sphel®) sys-
tems, the results are rather scarce in the case of pure ﬂu@?oximation(GMSA) for this system, which to our knowl-
?dge has not been derived up to now.

and the situation is even worse in the case of fluid mixtures

These latter systems pose major difficulties to the use o The organization of the paper is as follows. In Sec. Il we
either computer simulation or integral equation methods, WQescribe the SHS mixture and give a brief outline of the steps
of the most important tools of liquid state theoreticidns. involved in the RFA method. The method requires as input
m_odel which has received_ a lot of attention fecef‘“y IS thethe contact values of the cavity functions;(o;;), and the
sticky-hard-spher€SHS fluid introduced by Baxter in 1968 isothermal susceptibilityy. In terms of these quantities, of

l(DRef. 3 an(; 'gtefﬂf xttznde dd to n&ultltcl,‘ombpogentt) gl'Xttt’;?S bythe number densities and the diameters of the spheres of each

er(;a:nﬂ?n Iml Ian. tm ee{en en yb yd ?r g n this species, and of the adhesiveness parameters of each pair,
model, the molecular interaction may be defined via Squareéxplicit expressions are provided for the Laplace transforms
well pgtenUaIs of infinite depth and. vanishing W.Idt'h. These frg;;(r) and for the structure factos; (q). In Sec. Iil and
potentials _embody the two essential characte_nstlcs of re the absence of a reliable equation of state and computer
mole_cular mteractlpns, nam_ely, a harsh repuls_lon an_d an amulation results for SHS mixtures, we adopt a particular
tractive part. In spite of their known shortcomirfgan im-

tant feat £ SHS t i< that th low f strategy to illustrate the possible use of our results. In es-
portant feature o  Systems 1S that they aflow for exactsence, we present two alternative routes to estirpaler;;)
solution of the Ornstein—Zernike equation in the Percus

. . . “andy and compare our approach with the PY approximation.
Yevick (PY) approximatior® Furthermore, they are thought X P ur app 4 bproxima

X - . The paper is closed in Sec. IV with further discussion and

to. be appropriate f_or describing s'FructuraI propernes of col—Some concluding remarks.

loidal systems, micelles, and microemulsions as well as

some aspects of gas—liquid equilibrium, ionic fluids and mix-

tures, solvent mediated forces, adsorption phenomena, poly-

disperse _systems, and fluids containing chainlike RFA METHOD FOR SHS: DEFINITIONS AND BASIC

molecules’™® REQUIREMENTS

In previous work®!! we developed a rational function

approximation(RFA) method to find analytical expressions Let us consider arN-component mixture of spherical

for the radial distribution function of a pure HS fluid and a particles with a number densigy of component. The molar
fraction of specied is x;=p;/p, wheresziN:lpi is the

aE| N total number density, while its diameter ég. Let us also

ectronic mail: andres@unexs.es . . s
bEJectronic mail: santos@UNExs.es assume that the particles interact according to the square-
9Electronic mail: malopez@servidor.unam.mx well potential
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®, >0 whereh;;(r)=g;j(r) —1 is the total correlation function.
(=1 —€;, 0<r<Ry (2.2) We are now in a position to carry out the RFA method
Pij ij ij ij . . . . .
0 I>R. for the multicomponent SHS mixture. As in previous wotk,

) . we define the Laplace transform
Here oi;= (0o + 0})/2 is the distance between the centers of

a sphere of specigsand a sphere of specigsit contacte;; (el— f‘” —
is the square-well depth anB;;—oj; indicates the well Gij(s) dr e"*rg;(r). (2.9

width. We now take the SHS limitnamely - o _ _
The conditiony;;(oj;) =finite translates into the following

1 i i .
O Oij e<i’keT—finite,  (2.2) larges behavior ofG;j;(s),

12 R” - O-ij 1
where ther;; are monotonically increasing functions of the eUistij(S):Uiijij(o'ij)(E+0'i_jls_l +(s7?).
temperaturd and their inverses measure the degree of “ad- (2.10

hesiveness” of the interacting spheresind j. The virial

equation of state for the SHS mixture is then given by ~ ©On the other hand, the conditign *=finite gives informa-
tion about the smak-behavior, i.e.,

N N
_ 1 f d ket 2 _ (0e2 (13
Z= pkBT_1+ 5 p;l Zl xix; | drry;j(r) 5 e it $2Gij(s) =1+ H{Y s+ H{Ps®+- - (2.11
NN with H{?, H{P=finite and
7T
= ? Z Z X]a-ljylj Ulj) ) ® n
=1j= Hij'= . dr(—r)"rhy;(r). (2.12
x| 1o 2 [g4 i ) 23 ixturds |
127, yi (o)) | . The RFA proposal for HS mixturescan be easily ex-

tended to the SHS model. In the former cae@;SG,J(s)
where p is the pressurekg is the Boltzmann constant, ~s-1 for larges, while now e”iisGy; (s) ~ s, Of course, in

yij(r)=gj;(r)e®iV%eT is the cavity functiong;;(r) being  the special case;;— one must recover the pure HS case.

the usual pair distribution function, andw;;  Consequently, our approximation consists of writing
EIimR”_»(rij[dyij(r)/dr](,_?. Sincey;;(r) must be continu- .
. i i)
ous, it follows that Gij(s)= 7 (L(S)'[(1+aS)Jl—A(S)]fl)ij . (213
gij(r)=y;j(r)| 6(r— U.,)+ 12 -0, (r—ojj))|. (2.4  with 1 the identity matrix and
Further, the energy equatlon of state for this system Lij(s) =LY +L{Vs+L{Ps?+L{7s®, (2.14
reads
NN Aij(8)=pil ¢o(aiS)oiLi) + py(ois) ofL i
1
Ue=5 P2 2, XX f dry;j(r)e;;(r)e” ek + po(0iS)aiL{P —e” L], (2.19
NN .3 where
— P2 2 xixe; — Yijoy), (2.9 ST
s i pn(x)=x" ("D ——e (2.16
m=0 M

whereu,, is the excess internal energy per particle. Another
usual route to the thermodynamic properties is through thare the modified incomplete gamma functions. We note that,

isothermal susceptibility, by construction, Eq(2.13 complies with the requirement
1 3 1N p limg_.. €%i°Gj;(s)=finite. Further, in view of Eq(2.11),
I P_ X, P the coeff|C|ents o8? ands in the power series expansion of
kBT 3P kBT i=1 09. 2G,J(s) must be 1 and 0, respectively. This yieldsZ2con-
ditions that allow us to expreskéo) andL® in terms ofL(?,
_ ~ L®, anda. To do so, it is convenient to expar(s) as
_1—,3;1 > XX (0) (2.6 a. park(s)
whereg;; (q) is the Fourier transform of the direct correlation ~ A(s)= >, A™s", (2.17
function, which is defined by the Ornstein—Zernike equation n=0
B N where
hij (@) =T (a) + 2, pehi(@)Tii(a), 2.7 n+3 n+2
k=1 A= (—1)n,, L0 _ LD
with ! ' (n+3)' g (n+2)! L

(2.18

_ ' o_n+1 O_I"I
hij(a) = f dre”"9"hy(r), 2.8 T Lff)}-
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Substitution of Eq(2.17) into Eq.(2.13 leads, after simple 127L; L2 1 1 N 2
algebra, to U—H=)\Uij+§?\ Uiffj—z?\kgl prow(Lii o
1
—LO=1— E A, (2.19 N
27 i ] +L<k§>ai)+k21 pLiSLiS . (2.27
N N
1 . 2)
> Li(,-l)=01+0ij—§=: A(k%)_z UikA(k?)- (2.20 T.h|s closes the problem. Ondg(j is known, Eq.(2.29
k=1 k=1 gives the contact values.
Equations(2.19 and (2.20 constitute alinear set of 2N? This first-order approximation obtained from the RFA

equations whose solution is readily obtained. The result is Method turns out to coincide with the exact solution of the
N PY theory for SHS'

LiP=N+N oj+ 20 am )\2 pr(ondid' L) B. Second-order approximation

N A more flexible proposal is obtained by keepiagand,
prop y keep
-\ 2 peol Y, (2.2)  consequentlyl () different from zero. In that case,
k=1
0 P A Y E
1) 1 , 2me”iSGj(s)=—— | 1+ | —z— —|s |+ (s ).
L, =\ojj+ 5 N oo+ (AN o)) a LY «
(2.29
N .. .
This implies
3202 pdadid - L) "
k=1 67'”' L'l
% yij(oij)= 7TUi2j o (2.29
——()\+)\ o) o L3 (2.22
i PkOk k] lZTijLi(js) L(2) LI(]?’) 23
where A=27/(1—17) and N'=72{,/(1—75)?, with ¢, o 0 a 30

§EiN=1piai”, n=(m/6){; being the volume packing frac- | \ve fix vy (), Es.(2.2D, (2,22, (2.29, and (2.30 al-
tion. , o) 1) et low one to expres&(®, LY, L@ andL® aslinear func-
EquaF'O”S(Z-Z(?) ar1((31)(2.22) give L™ andL™ as linear  {jons of o, Thus, only the scalar parameteremains to be
combma(tg())ns oL, L (é)gnd . We have the freedom 10 fiyeq One possibility is to choose this parameter in order to
choosel™ and a, but L** is constrained by the condition ye,6qyce a given thermodynamic property. Following the
(2.10, i.e., the ratio second term to first term in the expan-., e of our previous work?! we take the isothermal sus-

sion of expf;S)Gj(s) for large s must be exactly equal 1o cenyinility y. To do so, one needs first to find the coefficients

1270 - H{ andH{" appearing in Eq(2.11). Performing a power
series expansion @;;(s), as given by Eq(2.13, and com-
A. First-order approximation paring with Eqg.(2.11), one gets
The simplest approximation consists of makimg 0. In HO=BO.(1-A0)~1 (2.3)
view of the conditiore”ii*G; (s) ~ s? for larges, this implies R On -1
L(J3)—0 In that case, the Iargsabehawor that follows from HH =B (1-A7) 7, (232
Eq.(2.13 is where
2me”i5G;;(s)=L{P+[L{V+(L?.D);Is 4+ A(s7?), . N )
(2.23 B'('>: g +2 A= 2, ot = A
where Ny
Lo -2 5 oh(8q= A, (2.33
D”'Epi 2 L _0'||_|l +L . (224)
Comparison with Eq(2.10 yields B(l)— 34 E AS+ E TiA)
7ij
ylj(o-lj)_ 2 LIJ ) (2.29 N 1
7i -2 (Eo'izk-{_Hi(I?))(agkj_A(k:}))
127;,L(2 N -
LG
A:nglug LDy - (2.26

N
N 1
o ) (5 o?k+oikH§£))<5k,-—A(k?>>. (2.34
Taking into account Eqg2.21) and(2.22 (with L{?=L{? -
and of course also wite=0 andL(®=0), Eq. (2 26 be- Equation (2.32 gives H® in terms of o H(l)

comes a closed quadratic equation &%), = P,J(a)/[Q(a)]2 whereP;;(«) denotes a polynomial i m
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of degree A and Q(«a) denotes a polynomial of degréé

In order to express the isothermal susceptibility in terms of
H®, it is convenient to introduce the matricds;(q)

= \pip;hij(a) and&;;(a) = Vpip;Gi;(a). Then the Ornstein—
Zernike equation(2.7) may be rewritten asl—c(q)=[1
+h(q)]" L. Therefore,

N N
X_lzi:l P Vxixj[ 6 —C;;(0)]
N N
=2, 2, Vxx[1+h(0)]; (2.39 , ) ,
=ji=1 1.0 15 2.0 2.5
Finally, hy;(0)=—4p;p;H{P.. It turns out then that, seen r

as a funCtlor! ofa, x is the ratio of two polynomlal_s of FIG. 1. Cavity correlation functiog4(r) for the binary sticky-hard-sphere
degree A. Given a value ofy, one may solve for USINg  mixture defined byr,= =0, X;=X,= 0.5, 7= 0.4, 71,= 5= 1, andr,

Eq. (2.39. It turns out that the physical solution, which has =10. The value ofx for this mixture is 0.0202. Distances are measured in
to fulfill the requirement thaGiJ— (s) is positive definite for  units of . The dashed line corresponds to the PY approximation while the
positive reals, corresponds to the smallest positive real root.5°d Ine represents the RFA result

Once « is known, the scheme is complete; HG.29
glves L), 'E)hen L(Z)_|s obtained from Eq(2.30, and finally  regionl® It is not unreasonable therefore to expect that simi-
L™ and L are given by Eqs(2.2]) and (2.22, respec- |ar drawbacks of the PY approximation will be present for

tively. Explicit knowledge ofGj;(s) through Eq.(2.13 al-  sHs mixtures. Nevertheless, we conjecture that the main
lows us to determine immediately the Fourier transformsqyce of such limitations, especially for high temperatures,
hij(a) through the relation comes from the poor performance of the PY in the purely HS
5 szGi,-(s)— 1 system and that &easonableorder of magnitude estimate
hij(q)= —47-roi3} ReT . (2.36 of the differences between the structural and thermodynamic
s=iq properties of the sticky system and those of the purely HS
The structure factoS;(q) may be expressed in terms of System may be obtained from the PY approximation. Thus,
hij (@) ads we will now consider the following approximation
sij(q)zxigij+pxixjﬁij(q)_ (2.37 yij(ai) =yi ") +yE e v o))
Finally, inverse Laplace transformation @;;(s) yields CHY
g;j(r).*° and
X~ 1= XancsLt (Xpy-shs™ Xpyang)- 3.2

Il ILLUSTRATIVE EXAMPLES
o The labels PY-SHS and PY-HS refer to the PY result for
Up to here, the presentation is rather general. HowevergHs mixture$ and the PY result for HS mixturéS respec-
the practical implementation of the method requiygéaij)  tively. Here Xemcs, IS obtained from the Boul-

and « (or equivalentlyy). In this case and in contrast with Mansoori—Carnahan—Starling—LelaMCSL) equation of
the one of the multicomponent HS mixturewe have nei-  gate?! and yEMCSL(g) is the contact value of the cavity
ther an approximateanalytica) equation of state nor com- fnctions for HS mixtures compatible with such equation of
puter simulations to guide us in their choice. Therefore, ingite2? They are given by

order to proceed further, we will adopt a particular strategy

. . . R . . . ’ 2 2
in which the main aim will be to illustrate the possible use of BMCSl( )= L N+ 1 N J9 1 )\_2 g0
our formulation and its likely connection with realistic sys- Vil i) o 2 oij 18 A a'izj ’
tems such as colloidal systems. (3.3
We start by recalling that in the case of a one-component 1 ¢
fluid, the comparison between the Monte Carlo data and the ) -1 _ == P - £1é2
. . .y . BMCSL (1_ )2 (1_ )3
PY approximation indicates that the latter fails to perform P 7 7

well at low temperatures even at low densities. This applies w2 9—An+ P
both to structural as well as thermodynamic propertie€lt e R Y
should be expected that as the temperature increases, the 36 (1=7)
performance of the PY results for the one-component SHIhe underlying philosophy is that one should start from a
system should become close to the ones of the well-knowgood description of the purely HS mixtu¢ this case given
HS case, which are known to deviate from simulations aby the BMCSL resultsto get an improvement of the PY
high densities® In the case of HS mixtures, similar limita- results via the procedure indicated above.

tions of the PY approximation have been found, particularly  For the sake of illustration of these ideas, in Figs. 1 and
for the radial distribution functions around the contact2 we present the results for the cavity functigngr) for a

(3.9
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FIG. 2. The same as in Fig. 1 but for the cavity correlation funcyigfr). . .
FIG. 3. Structure factorsS;4(q) and S;,(q) for the binary sticky-hard-

sphere mixture defined byri=o0,=0, X;=X,=0.5, n=0.4,7,=79
=0.5,1,—%, andy=0.05. In this casey=0.1343. The wave numberis
. . . . . . measured in units af "1, The solid line represents the RFA result while the
pamCUIarly S|mple b'nary SHS mixture defined bM_ 02 dashed line corresponds to the PY approximation for the effective mixture
=0, X1=Xo= 05, n= 04, T11= T22= 1, and T12= 10. For (?]:0,424,7—11:7-22:0,9}12_>oc)_
comparison, in the same figures we have included the corre-
sponding results using the PY approximation. We find that
the behavior of these functions is similar to the one we 0bihe  yalues V11(0)=Y,0(0)=2.0, y;5(0)=1.75 and y

served in the case of the the HS mixtutésyhich is not  _( 05 and then computed the correspondhiig with X,
surprising in view of the fact that the values of thg are  _j 5 e then determined the effective parameters of the
relatively big, but not so as to make the discontinuities at Amokrane and Regnaut approximation that leads to the same
=20 disappear completely. In the absence of simulation,orgination numbem,, and isothermal compressibility,
data to compare with, it is not possible to ascertain Whethe\}ielding 7=0.424 andry,=7,,=0.9. In deriving these re-
the RFA results are better or worse than _the PY yalues. Ongits, we have assumed for simplicity that the effective pa-
would expect however that, for this particular mixture andrameter7,, retains the character of the HS interaction be-
given its closeness to a pure HS mixture, our results shoulfyeen the two species. The results for this effective mixture
be the better ones. _ in the PY approximation are also plotted in Fig. 3. Since
We now turn to a second example. In this case we argce again there are no simulation data to compare with, no
motivated by an approach already used for colldi@on-  ¢oncusions can be directly drawn from the numerical differ-
sider a given real fluid mixture in Wh|c_h, by whatever means,qnces. It must be emphasized though that in the RFA method
we knew the total density, the adhesiveness parameters Ofyye (o nothave to determine effective parameters and so both
the equivalent SHS systelfr;} (for whose determination ¢ gensity and adhesiveness in our case would be the ones

different strategies have been suggested in the literattire obtained through the standard mappifitof the real poten-
the sizes of each speci¢s;}, the molar fractiongx;}, the g5

isothermal compressibility, and the coordination numbers
at a prescribed distancg;o;; defined by

IV. DISCUSSION

Nij=47rpifhugudr r2gij(r). (3.5 In this paper we have presented a rational function ap-
i proximation method for the computation of the the radial

distribution functiongin Laplace spageand structure factors
Then, in order to make use of the RFA method, we deterof a SHS mixture. In its simplest implementation the method
mine the values of;;(o;) anda of the SHS mixture in such yields the PY approximation for aN-component SHS mix-
a way as to reproduce the given valuesNyf and x. This  ture. The next order, which we may refer to as a kind of
procedure has some parallels with the one of Amokrane an@MSA for this system and which follows rather closely the
Regnauf in which the roles played by ow;j(cjj) ande  development that we introduced eartfefor purely (addi-
would be played by “effective parameter§i’j and7 inthe tive) HS mixtures, provides analytic expressions in Laplace
PY approximation. To illustrate the kind of results that onespace for the radial distribution functiorg;(r) and the
would get through this path, we have taken again a simplstructure factors;;(q) in terms of the number densitigg; },
binary SHS mixture defined by, =0,=0, X;=X,=0.5, the diameterdo;}, and the adhesiveness parameters}.
7=0.4, 711= 79,=0.5, 71,2, N{;=N,,=5.67,N;,=3.9, As input, we require the knowledge of the contact values
\ij=1.5, andy=0.05. In Fig. 3 we present the partial struc- y;;(o3;) and the isothermal susceptibility (although other
ture factorsS;; and S;, as functions of the wave numbgr different quantities could also be employe@iven the val-
obtained with the above procedure. As a matter of fact, whaties of those quantities, the formulation involves a single pa-
we actually did for the sake of simplicity was to start from rametera which obeys an algebraic equation of degréé 2
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In the one-component case, i.N=1 or o;=0 and 7 1T., 1. Nezbeda, and K. Hlavattatistical Thermodynamics of Simple
= 1, our approach reduces to the earlier redtifisr the SHS Liquids and Their Mixture¢Elsevier, Amsterdam, 1980J. S. Rowlinson

fluid, as it should. A similar comment can be made regarding "[‘c”,ﬁdf,ﬁ'lfsvg”m”“q“'ds and Liquid Mixtures3rd ed. (Butterworth,

the purely HS mixture, in that in the limit;; —o we also  2p_Gazzillo, A. Giacometti, and F. Carsughi, J. Chem. Phy¥, 10141
recover the results reported in Ref. 11. (1997.

It is worth pointing out that, as mentioned in the Intro- ZR.\‘/]\/. ‘i}aXTerv J. %hgméphﬂghzzﬁo(lgg’-z- 136167
duction, we are not aware of the availability of the GMSA s5 fpor o o o B S e e e oot 38,
for a multicomponent mixture of sticky hard spheres. Never- 369 (1979.
theless, the analytical solution to the Ornstein—Zernike equaZ®G. Stell, J. Stat. Phy$3, 1203(1991); B. Borgnik, C. G. Jesudason, and
tion for a multicomponent adhesive hard-core Yukawa fluid G. Stell, J. Chem. Phy406, 9762(1997). The reader should bear in mind

. . L that, as discussed in depth in these two papers, the sticky-hard-sphere
by Ginoza and Yasutorffi could be used for its derivation, interaction presents some limitations. To begin with, sticky spheres of

in much the same way as Giunta, Abramo, and Cacéamo equal size in the Baxter limit are not thermodynamically stable. This de-
carried out the connection of the GMSA solution for mix- ficiency, whose origin is also indicated in the former references, may be
tures of hard spheres with the Yukawa closure to the multi- '€Medied by including some degree of polydispersity in the system. An-

. iginall ted by Blum and other separate difficulty with the sticky-sphere model, which somewhat
comngnent HS 'm'lxture, as originally suggeste y u a_ restricts its applicability especially when trying to approximate square-
Hdye = We anticipate, however, that the algebraic compli- well results, lies on the fact that it is unable to wholly capture the depen-
cations involved in such a connection and that we discusseddence of critical-point location on well width.

; - ; i wie 'B. Barboy, J. Chem. Phy$1, 3194(1974.
at length in Ref. 11 will also manifest themselves in this ;"\ /%o 2 - = "o Smith, Chem. Phys. L8&, 328 (1975; P. T.

case. ~ Cummings, J. W. Perram, and E. R. Smith, Mol. P18%5.535(1976; E.
It could be argued that our method presents a limitation R. Smith and J. W. Perram, J. Stat. PHy&.47 (1977); J. W. Perram and

as compared with the PY approximation in that the latter E. R. Smith, Proc. R. Soc. London, Ser.3583 193(1977; C. Regnaut

. . .. and J. C. Ravey, J. Chem. Phyd, 1211(1989; G. Stell and Y. Zhou,
does not require any external input. However, that such is ;. o1 35151989’ 3. N. Herrera and L. Blunibid. 94, 6190(1991): A.

not strictly the case can be judged by the following. On the jamnik, D. Bratko, and D. J. Hendersabid. 94, 8210(1991); Y. Zhou
other hand, the problem of the absence of thermodynamicand G. Stelljbid. 96, 1504(1992; E. Dickinson, J. Chem. Soc., Faraday
consistency in the PY theory may be in principle tackled Trans.88 3561(1992; K. Shukla and R. Rajagopalan, Mol. Phyd,

. 1093(1994); C. Regnaut, S. Amokrane, and Y. Heno, J. Chem. P1Q3.
with our approach, or at least reduced, as was shown for the6230 (1995 C. Regnaut, S. Amokrane, and P. Bobola, Prog. Colloid

multicomponent HS mixtur&! On the other hand, one could  polym. Sci98, 151(1995:; Y. Zhou, C. K. Hall, and G. Stell, Mol. Phys.
expect that in some instances, as the second example of Sed6, 1485(1995; J. N. Herrera-Pacheco and J. F. Rojas-Rpui, ibid.
Il suggests, the availability of adjustable quantities as our 86 837(1995; Y. Hu, H. Liu, and J. M. Prausnitz, J. Chem. Phy84,
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