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Abstract. Anomalous diffusion, in particular subdiffusion, is frequently invoked
as a mechanism of motion in dense biological media and may have a significant
impact on the kinetics of binding/unbinding events at the cellular level. In this
work we incorporate anomalous diffusion in a previously developed model for
FRAP experiments. Our particular implementation of subdiffusive transport is
based on a continuous time random walk (CTRW) description of the motion
of fluorescent particles, as CTRWs lend themselves particularly well to the
inclusion of binding/unbinding events. In order to model switching between
bound and unbound states of fluorescent subdiffusive particles, we derive a
fractional reaction—subdiffusion equation of rather general applicability. Using
suitable initial and boundary conditions, this equation is then incorporated
in the model describing 2D kinetics of FRAP experiments. We find that this
model can be used to obtain excellent fits to experimental data. Moreover,
recovery curves corresponding to different radii of the circular bleach spot can
be fitted by a single set of parameters. While not enough evidence has been
collected to claim with certainty that the underlying transport mechanism in
FRAP experiments is one that leads to anomalous diffusion, the compatibility
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of our results with experimental data fuels the discussion as to whether normal
diffusion or some form of anomalous diffusion is the appropriate model and as
to whether anomalous diffusion effects are important to fully understand the
outcomes of FRAP experiments. On a more technical side, we derive explicit
analytic solutions of our model in certain limits.

Keywords: driven diffusive systems (theory), stochastic particle dynamics
(theory), chemical kinetics, diffusion
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1. Introduction

In this work we address the dynamics underlying fluorescence recovery after
photobleaching (FRAP), a widely used experimental method to explore binding
interactions in cells both in vitro and in vivo. There are of course myriads of papers on the
subject, but we will focus on a question that seems not to have been researched. Our focus
will be on binding reactions extensively considered both theoretically and experimentally
by Sprague et al in [1].

To reveal our particular question, we begin by pointing out a contradiction. On the one
hand, anomalous diffusion (in the form of subdiffusion) is the most common understanding
of motion of constituents in crowded media such as, for example, biological cells.
Anomalous diffusion is usually established by considering the mean square displacement
of the component of interest, which may, for instance, be a protein or a portion of a DNA
strand or any other component in the crowded cell. The mean square displacement of a
randomly moving constituent starting from an initial location r( is understood to be an
average (indicated by brackets) over repeated realizations (measurements) of the motion.

doi:10.1088/1742-5468,/2014/11/P11014 2


http://dx.doi.org/10.1088/1742-5468/2014/11/P11014

A reaction—subdiffusion model of FRAP

If the mean square displacement ((r — r()?) grows with time ¢ as ¢! then the diffusion is
‘normal’. On the other hand, if it grows more slowly, as ¢t with v < 1, then the motion
is ‘anomalous’, specifically ‘subdiffusive’ because the entity moves more slowly than a
normally diffusing one (if v > 1 the motion is ‘superdiffusive’, a case that has received
considerably less attention and that we will not address in this paper). Subdiffusion would
seem to be a natural description of motion in crowded biological media and it is so
pervasive a description that some authors have begun to question this universal view.
A quote from this latter camp, taken from [2], goes as follows: ‘We conclude that the
notion of universally anomalous diffusion in cells as a consequence of molecular crowding
18 not correct and that slowing of diffusion in cells is less marked than has been generally
assumed.” Still, in most situations crowding in cells leads to subdiffusion.

The contradiction arises because at the same time that subdiffusion is the model of
choice when it comes to motion, theoretical models of FRAP experiments almost always
rely on normal diffusion of the binding—unbinding components! This is the problem we
wish to address in this work: we propose a complete model in which the reacting species
move subdiffusively and compare the predictions of this model with the experimental
results of Sprague et al [1] and with their model which assumes normal diffusion.
They study the problem of transcription factor mobility. In particular, they measure
the FRAP recovery curve of a GFP-tagged glucocorticoid receptor within nuclei of mouse
adenocarcinoma cells and compare it extensively with their reaction—diffusion model.

A word about modeling subdiffusion and also including reactions in such models
is in order. There are a number of different models of subdiffusion in the literature.
Two very recent reviews can be found in [3] and [4] and a brief discussion of the
difficulties in choosing one particular model can be found in [5]. The different ways
of modeling subdiffusion lead to clearly distinct macroscopic results for some quantities,
but to equivalent results for others. In the latter case there is therefore no macroscopic
basis to distinguish among models. In addition, in many situations one has insufficient
knowledge of the microscopic details of transport. All of these issues lead to ongoing debate
about which model to use. It is quite possible that even in a given environment different
components move in different ways, or that the description of the motion of a given
component is different on different time scales, so that each model may be appropriate
under appropriate circumstances. The inclusion of reactions in the various models brings
with it an additional set of uncertainties and issues that lead to even more heated debate.

Our model of choice is based on a continuous time random walk (CTRW). It is a model
that lends itself to the inclusion of chemical reactions in the framework of subdiffusive
transport and as such may be useful to describe the binding/unbinding kinetics of particles
diffusing in a complex medium. We do not claim that this is necessarily the correct model,
but it is a model of subdiffusion that allows the inclusion of chemical reactions. More force-
fully in support of this model, in [6] Barkai et al cite a number of papers that confirm the
validity of a CTRW model to explain anomalous diffusion results in a number of biological
systems. We stress that the inclusion of reactions in reaction—subdiffusion models is far
from trivial and much more difficult than in normal diffusion, where reaction terms are
simply added to the diffusion equation. Simple addition is not appropriate in a subdiffusive
model, a point that is central to our discussion presented in detail in the next section.

CTRW-based reaction—subdiffusion equations with non-additive reaction and
transport contributions are indicative of complex kinetics in biological media, including
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FRAP experiments. Among the latter are the binding reaction experiments of Sprague et
al [1]. We choose this system to analyze because the work of Sprague et al also includes
an extensive theoretical analysis based on a reaction—diffusion model that we can now
extend to the case of subdiffusion described by a CTRW model. In section 2 we present a
number of necessary definitions and construct a reaction—subdiffusion equation following
the approach of [7,8], but now reformulated for the inclusion of a chemical reaction
that causes the loss and gain of a species A, A = 0. Both death (A — 0) and birth
(0 — A) contributions are necessary if the model is to include both binding and unbinding
reactions. In section 3 we use this as a starting point to derive an equation to describe the
FRAP recovery. In section 4 we solve the equation for the time Laplace transform of the
FRAP recovery curve and find the time-dependent solutions by numerical inversion. We
compare our curves with experimental results obtained by digitalizing the results in [1]
and also with the results of their reaction—diffusion model. For these comparisons it is
necessary to make decisions about which parameters to optimize, a choice we discuss in
that section. A simplified model initially studied by Sprague et al [1] and subsequently
extended by Lubelski and Klafter [9] to the CTRW case is formally equivalent to the so-
called ‘pure-diffusion dominant model’. This is appropriate when most of the fluorescent
molecules are free, so that the equation to deal with is a diffusion or subdiffusion equation
without a reaction. We implement the same approximation in section 5 and show that
in this limit it is possible to obtain an analytic time-dependent solution for the FRAP
recovery curve, albeit a solution difficult to deal with because it is a complicated function
(a Fox H-function, [10]). However, we are able to obtain more transparent expressions for
short times and for long times. Finally, in section 6 we conclude with some final remarks.

2. Subdiffusion—reaction equation

As already mentioned, the interplay of reaction and transport terms in reaction—
subdiffusion systems is complex and non-intuitive [11]. Furthermore, the specific model
used to describe the subdiffusive motion profoundly affects how reactions enter the
problem and, in fact, for most models (fractional Brownian motion, percolation, etc) this
combination has not been considered analytically. The most extensive work on the problem
has been carried out for subdiffusion described as a CTRW and even here the form of the
subdiffusion—reaction equation depends on the microscopic description of the way that
walkers appear and disappear as they move. Several extensive references have discussed
the problem [8, 11-25] and in them one can see that there is no single equation at the
mesoscopic description level, as there is for a normal reaction—diffusion problem.

We have focused on a particular description in our work [8] (model B in [11,21]) and it
is this description that we use here. We do not claim that this is ‘the correct description’
for any particular physical system (although it may hopefully be correct for some), but
we are able to offer a complete reaction—subdiffusion model for the FRAP problem that
may provide useful insights because it is, to a large extent, analytic.

Before stating the principal features of this model, we recall that in a CTRW there
is a waiting time at each location, chosen from a distribution (), at the end of which
a walker takes a step. Waiting time distributions that give rise to subdiffusion have long
time tails that imply that there are often long waiting times between steps. Typically, the
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long-time behavior of ¢ (t) is of the form

O(t) ~ g ), (1)
where tg is a constant that has the dimension of time. The small p behavior of the Laplace
transform ¢ (p) is then

w(p) ~1—(mp), (2)
where 7, = [['(1 — 7)]"/7¢; and T is the Gamma function. When v = 1 the mean time
between jumps, foootw(t)dt, is finite and the walk is diffusive (normal). Subdiffusion
is associated with an exponent 7 < 1, which yields an infinite mean time between
jumps. Although equation (1) is physically unrealistic for arbitrarily long times [3], the
appropriate point here is to assume that equation (1) holds at least for times of the
order of the times involved in the diffusion phenomenon under consideration (this is
sometimes called intermediate asymptotic behaviour [3]). For longer times the waiting
time distribution might have a cutoff leading to normal diffusion (which yields so-called
tempered anomalous diffusion, see chapter 6 by del-Castillo-Negrete or chapter 11 by
Meerschaert in [26]). On the other hand, the fact that the same waiting time is used for
each step means that a clock carried by a walker to measure these events is reset to zero
at each step. When reactions are also present, decisions must be made about the timing
of birth and death events (only while waiting? only while stepping? at any time?) and
about setting the clock at the time of birth of a new particle. Different assumptions lead
to different equations. There is also a distribution w(r) that governs the jump lengths and
directions. We restrict ourselves to jump length distributions with finite moments.

The model to be used here has three main features:

(i) The reaction rate of particles at a given location is proportional to their number at
that location. This is the usual assumption associated with the local law of mass action
and is the one used here whether the diffusion is normal or anomalous.

(ii) Reactions occur at any time, independent of the status of the particles (still or
stepping).

(iii) Newborn particles as a result of a reactive event are assigned a clock set to zero at
the time of birth. As a result, this model does not distinguish between a particle’s
appearance at a location by a jump or by a reaction.

This subdiffusion—reaction model has been adopted by a number of authors in a variety
of contexts. In [7,8] we constructed the associated reaction—subdiffusion equations when
there are no birth events. However, the inclusion of these events is essential if we are to
describe FRAP. We thus present here our construction of the corresponding reaction—
subdiffusion equations for our model augmented by such birth events.

To construct our reaction—subdiffusion equation based on the CTRW with the features
mentioned above, we need to introduce a number of quantities;

e ¢(r,t) = concentration of particles,

e k(r,t) = reaction rate coefficient or reactivity, later taken to be independent of position
and time,
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e jp(r,t) = rate at which the reaction gives birth to new particles,
e j(r,t) = incoming flux of particles due to the CTRW,

e i(r,t) = outgoing flux of particles due to the CTRW,

e jr(r,t) = j(r,t) + jp(r,t) = total flux of incoming particles.

When normally diffusive particles react, the standard reaction—diffusion equation that
describes the space-time evolution of their concentrations is given by the normal diffusion
equation plus a reaction term, say F'(c), that takes into account the rate of change of
¢(r,t) due to reactions,

Ec(r, t) = DV?c(r,t) + F(c). (3)
However, when particles that diffuse anomalously react, the corresponding subdiffusion—
reaction equation for the concentration is no longer a simple sum [12-21]. An extensive
and recent discussion of this general topic can be found in [11].

We start with a general description of the gain and loss of particles due to the reaction:

e The loss of particles at location r due exclusively to reactions is given by

c(r,t) = —k(r,t)c(r,t). (4)

ot

loss—reaction

e The gain of particles at location r due exclusively to reactions is

c(r, 1) = jp(r,1). ()

gain—reaction

ot

We will use these relations in constructing an evolution equation for the concentration of
particles as a function of position and time.

To arrive at this evolution equation we build it by carefully combining all the
contributions due to jumping and reactions. We start by using equation (4), that is,
by first considering the situation where the only ongoing process is the loss of particles
due to the loss reaction. For the moment we set aside the gain due to the reaction as well
as the walk. Integrating equation (4) leads to

(fgtt)) — exp <— /t t k(r, ") dt”) , (©)

which describes the time evolution of the concentration at location r as time proceeds
from ¢’ to t due to the reaction loss. This exponential function plays a relevant role in
what follows and we will denote it by A(r,t,t'), that is,

A(r,t,t') = exp (— /t/t k(r,t") dt”> . (7)

Note that A(r,t,t") = [A(r, ', t)] 7L
Next we set aside the reaction for a moment and consider the incoming and outgoing
fluxes of jumping particles at location r at time ¢. These two fluxes are related by the
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equation

i, t) = /i(r—r’,t)w(r/) dr, (8)

which simply states that the incoming flux of jumping particles at r at time ¢ arises from
the outgoing fluxes of jumping particles at all other locations r — r’ at that time.
We are now ready to include all of the contributions to the change in the concentration:

%c(r,t) = j(r,t) —i(r,t) — k(r,t)c(r,t) + jp(r,t)
= jr(r,t) —i(r,t) — k(r, t)c(r, t). 9)

This is simply a descriptive statement of the fact that the changes in the concentration at

r are due to the incoming and outgoing fluxes and to the reaction process, both gain and

loss, at that location. It is not yet in the form of an equation to solve for the concentration.
An additional relation connecting the fluxes and concentrations is

i(r,t) = (t)A(r,t,0)c(r,0) + /Otw(t —t"YA(r, t, ") jr(r,t") dt, (10)

which states that the outgoing flux from r at time ¢ arises from two sources. One is the
contribution of the particles that started out at r at time ¢t = 0, did not react or move
anywhere up to time ¢ and then took a step away from r at time ¢. The other is from those
particles that arrived at r by a jump or by birth from the reaction at some earlier time
t', waited there up to time ¢ without degradation and then stepped away. Note that as
featured above in point (iii), we make no distinction between particles that arrive at a site
at a given time due to a jump or due to a reactive gain event. Equations (8)—(10) together
provide a full mathematical description of the problem. We now proceed to combine them
into a single equation. To do so, we need to introduce some additional definitions that
will allow us to combine these equations into a convenient form.

We denote the Fourier transform with respect to r by the symbol F and the inverse
Fourier transform by F~!. The Laplace transform with respect to t is denoted by £ and
the inverse Laplace transform by £7'. The Fourier transform of w(r) is w(q) and the
Laplace transform of () is ¥(p). Next we introduce the Griinwald—Letnikov fractional
time derivative oD; " whose Laplace transform is [27]

LoD, f(t) =P f(p). (11)

When operating on sufficiently smooth functions f (functions f(¢) for which

lim;_o fot dr(t — 7)'=7f(7) = 0), this operator is equivalent to the Riemann-Liouville
fractional derivative [27]

_ 1 0 [ f(t)

DITf(t) = ——— [ dtf . 12

0 f() F(’y)@t/o (t—t/>1_7 ( )

Finally, we introduce the Riesz fractional spatial derivative V# whose Fourier transform is

FVtg(r) = —¢"g(q) (13)

for sufficiently smooth functions g [28]. In this work we set ;1 = 2. In this case the jump
length distribution has a finite second moment and V* is then the Laplacian.

doi:10.1088/1742-5468,/2014/11/P11014 7
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We now return to our effort to combine our three equations into a single one for
¢(r,t). Defining ¢*(r,t) = ¢(r,t)A(r,0,t) and taking into account that 0A(r,0,t)/0t =
k(r,t)A(r,0,t), one gets

0

3¢
Multiplying this equation by A(r,t¢,0) and using A(r,¢,0)A(r,0,t) = 1, we can write
equation (9) as

*(r,t) = A(r,0,1) %c(r,t) + k(r,t)e(r,t)| . (14)

Alr, t, 0)%0*(1‘,15) = jr(r,t) —i(r,t)
= j(r,t) —i(r,t) + jp(r,1). (15)
From equation (8) it then follows that
0 . » :
Afr,,0) e (r,6) = 7 {[o(a) — 1]ia,t) } + jn(r, ). (16)

In the diffusive limit (¢ — 0) and for symmetric step-size distributions ({(w) = 0), one has
&o(q) — 1 = —0%¢? and then
0
Alr,t,0) 3¢ (x,1) = 0*Vi(r, 1) + js(r,t), (17)

where 20? is the variance of the step length distribution. Upon Laplace transforming
equation (10) with respect to time one finds that

L[A(r,0,)i(r,t)] = ¥ (p)c"(r,0) + D (p)L [A(r, 0,1)jr(x, 1)]. (18)
Taking into account that, from equation (15),

LA(r,0,)jr(r, )] = £ [iﬂ + LIA(r,0,4)i(r, 1)] (19)
equation (18) can be rewritten as

i(r,t) = A(r,t,0)L? {%e*(r, p)} . (20)

Using the Laplace transform expression of the fractional derivative operator, this
expression can be reformulated as

i(r,t) = A(r,t,0)777 D} (x, t). (21)

Finally, inserting equation (21) into equation (17) and expanding the abbreviated
notation, we arrive at the general reaction—subdiffusion equation that is the starting point
of our analysis:

9 e, ) = D,V {em B DI [l o )]} ke the(r 1) + jne, ), (22)
where D, = o2 /7]. In this equation it can clearly be seen that the reaction and
subdiffusion contributions are not simply added. The last two terms would be those
included in a normal diffusion—reaction equation as a death process (penultimate term)
and a birth process (last term). But the first term on the right is not simply a subdiffusion
contribution. It contains the contribution of subdiffusion enmeshed in a complex way
with the loss reaction, a way that could not easily have been predicted from pure
phenomenology at this level.

doi:10.1088/1742-5468,/2014/11/P11014 8
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In this work we do not consider a time-dependent reactivity. Our starting equation
therefore is

9 ee,1) = D,V oK (DI [ K elr, )]} — k(r)elr, 1) + jis(r. 1)
= D, Vic(r,t) — k(r)c(r,t) + jp(r, 1), (23)
where we have introduced the subdiffusion—reaction operator
V2 e(r,t) = V2 {e F0t ;D [e"®ie(r, )]} (24)

Finally, in order to solve equation (23) it is convenient to work with a new function v(r,t)
whose Laplace transform is

o(r,p) = [p+ k(r)]' 7 &(x, p). (25)

Taking into account equation (11) and the shifting property of the Laplace transform, one
finds that

L[ DI (Me(r, )] = {£ [ D) (e’““”c(ra )]} s

={p'L [ K c(r, )] }pHerk(r
={p'7er,p = k),
= [p+ k()] 7e(r,p), (26)
so that equation (23) becomes
pé(r,p) —c(r,0) = D,V* {[p + k(x)]' "e(r, p)} — k(r)é(r, p) + jp(r,p) (27)
or, equivalently,
[p + k(x)]"0(r, p) — e(r, 0) = D, V*0(r, p) + jo(r, p). (28)

This, then, is a variant of our starting equation that describes subdiffusion as well as a
reaction that depletes and gives birth to particles.

3. Subdiffusive FRAP model

The FRAP system considered here is that studied by Sprague et al [1] (and extended by
Mueller et al [29] to a variety of geometries not considered here), but we generalize their
normal diffusion model to the subdiffusive case described by the CTRW.

Freely subdiffusing proteins undergo transient binding events with immobile nuclear
structures. As a result, there is a concentration ¢(r,t) of bound proteins, a concentration
s(r,t) of vacant binding sites and a concentration f(r,t) of free proteins. The reaction
then proceeds according to the scheme

kon
F+S — C
koff

Here F' represents free proteins, S denotes vacant binding sites and C' represents bound
[F'S] complexes. The rate coefficients k., and kg are for binding and unbinding,
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respectively. This scheme in principle requires us to write three reaction—subdiffusion
equations, one for each of the three concentrations.

However, the complexity of the problem is considerably reduced by implementing
simplifying assumptions. The first is that the biological system has reached equilibrium
before photobleaching. Now, FRAP recovery occurs on time scales of seconds to minutes,
while GFP-fusion expression takes much longer, a time scale on the order of hours.
Furthermore, the GFP fusion proteins have typically reached a constant level by the time
the FRAP experiments begin. We therefore assume that before the bleach the system is
at equilibrium, with the concentrations of free and bound proteins and of vacant binding
sites at their uniform steady-state values Fy, Ceq and Seq. It should be pointed out here
that an equilibrium state is incompatible with a CTRW model if a power-law waiting time
distribution as in equation (1) were valid for arbitrarily long-times [3]. Here we consider
simply that, without specifying a mechanism to achieve this, the system is in equilibrium
before the bleaching [1] and that, after the bleaching, the CTRW model with a power-law
waiting time provides a reasonable description of the diffusion of the particles for times
smaller than, or of the order of, the duration T" of the FRAP experiment. Finally, we note
that bleaching changes the number of visible free and complexed molecules, but it does
not significantly change the number of free binding sites [1]. We therefore need not include
an equation for s(r,t): this concentration is equal to Se, throughout the experiment. This
reduces the number of equations from three to two. Reaction rate contributions of the
form ko, f(r, t)s(r, t) can therefore be replaced by konSeqf(r,t). The product ko, Seq is then
a pseudo-first-order rate constant that we denote as k?,. The concentrations of proteins
are normalized so that Foq + Ceq = 1.

This would then leave us with two subdiffusion-reaction equations, one for ¢(r, t) and
another for f(r,t¢). The reaction terms are all of first (or pseudo-first) order. A further
simplification can be made by noting that the binding sites are part of a large complex.
This complex is relatively immobile on the time scale of the FRAP experiment. We
can then eliminate the subdiffusion part of the equation for ¢(r,¢) and assume that this
component is physically stationary. That finally leaves us with one subdiffusion-reaction
equation for f(r,t¢) and a pure reaction equation for ¢(r,t).

Our starting equations are then similar to those of [1], but complicated by the fact
that normal diffusion is now replaced by subdiffusion:

9 fe.t) = D,V {7 [ £ (2. 0)]} — Koy S(2.0) + oz, ),
9 ele,) = ki Fr.1) — ks clr, ). (20)

As said earlier, the system is at equilibrium before the bleach, so that initially df/dt =
de/dt = 0. As a result,

Feq koff
Zeq _ oft 30
Ceq kgn ( )
The normalization Feq + Ceq = 1 leads to the values
kot k*
Fop=———, Cog = —2—. 31
S A Ok + ko (31)

Next, at the site of the bleach the concentration of fluorescent molecules is reduced by
photobleaching and the return to equilibrium is dictated by equations (29). The measured
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FRAP recovery data is then the sum of free and bound fluorescence averaged over
the bleach spot: frap(t) = (f(t)) + (c¢(t)), where the brackets (---) denote the spatial
average. The steps involved in averaging the experimental results are discussed in [1]. The
assumption that the initial concentrations are indeed the equilibrium concentrations relies
on the fact that the photobleach is fast. If the bleach spot is small relative to the total cell
volume, particle depletion in the nonbleached zone as particles move to fill the bleached
spot can safely be neglected. Finally, we assume, along with most other theoretical FRAP
work, that diffusion takes place only in two dimensions, in the plane of focus. This is
appropriate when the bleaching area forms an essentially cylindrical shape through the
cell, as is usually the case [1]. The axial terms in the equations of motion then do not
need to be included in the Laplacian V? and only the radial components remain. We
finally note that, for the sake of simplicity, we assume that ageing effects [3,9] associated
with the difference between the bleaching time and the times of first jump of the particles
after bleaching can be neglected in the present reaction—diffusion system. We recall that
our purpose here is only to develop a simple model of a complex cellular experiment
descriptive only in the time regime after photobleaching until the time 7" at which the
FRAP experiment ends. We therefore do not pretend to describe via this model how the
particle distribution achieved a pre-existing equilibrium at the start of the experiment.
We introduce the transformation

u(r,t) = Foq — f(r,1), v(r,t) = Coq — (1, 1). (32)
It is straightforward to establish from the above initial conditions that

U(I‘, 0) koﬂ"

= ) 33

or.0) K, %)
The evolution equations for u and v are directly found to be

0

au(r, t) = D, Vxu(r,t) — kX, u(r, t) + kog v(r, 1), (34)

0 )

Ev(ru t) = kon U(I‘7 t) - koﬂ U(I‘, t) (35>

These equations are similar to equation (12) in [1] except for the important replacement
of V% in the case of normal diffusion by our considerably more complicated operator V%
defined in equation (24).

The evolution equations are most readily solved by first Laplace transforming them
with respect to time:

pi(r,p) = Dy (p+ k2)' 77 V2a(r, p) — Ka(r, p) + kogd(r, p) + u(r, 0), (36)

po(r,p) = kX a(r,p) — kogv(r,p) + v(r,0). (37)

From the second equation it immediately follows that
kX a(r,p) + v(r,0)

N P+ Ko .

When this is substituted back into equation (36), we obtain an equation for the single
remaining as yet unknown function a(r,p). Subsequently we recognize that the radially

o(r, p) (38)
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symmetric initial condition means that the solutions as time evolves are also radially
symmetric, that is, all r dependences are in fact dependences on r = |r|.

Since the FRAP recovery is the sum of the free (f = F.q — u) and bound fluorescence
(¢ = Ceq—v) , we must compute the Laplace transform for this sum, f4+c¢ = 1—u—wv. This
yields the Laplace transform of the fluorescence intensity as a function of radial position
within the bleach spot as

— 1

fluor, (r,p) = i a(r,p) — o(r, p). (39)
Substituting equation (38) into equation (39) then yields
— 1 K C
f p) =~ —a(r,p) (1+—o ) _Fea 40
wor, () = 3~ alrp) (14 ) Lo (a0

To obtain the measured FRAP recovery, we must compute the average fluorescent intensity
within the measurement region of radius w:

frap, (p) = (fluor, (r, p)) (41)
- }9 — (i(r,p)) — (5(rp)), (42)

that is,
o, () = 5 = Galrp) (14 42 ) Lo ()

To determine the Laplace transform of the FRAP function recovery it is thus only
necessary to calculate (@(r,p)):

2 w w

(a(r,p)) = % i d@/0 drra(r;p) = %/0 drra(r;p). (44)

As noted earlier, substitution of equation (38) into (36) yields a closed equation for @(r, p):

0=D,(p+ k)" V(r,p) —p (1 + &) a(r,p) + <1 + &) u(r,0) (45)
P+ Kog P+ kog

or, equivalently,

szL(T,p) - qiil(r,p) = V7<7’,p), (46>

2 p k;n
= 1+ —— 47
ST D+ k) ( p+ koff) (47)

u(r,0) k:
V,=— 1+ —== ) 48
! ]-)v(p"i_kgn)l_7 < p+koff> (48)

Our task is then to find the solution of equation (46) that also satisfies the boundary
conditions. We proceed to do so in the next section.

where
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4. Uniform circular disk model

The equations and simplifications introduced and discussed above are appropriate for an
initial bleach spot that can be considered to be a 2D region with radial (i.e. cylindrical)
symmetry. In particular, they are appropriate for a uniform circular disk model of the
bleach region in which the initial condition is

| Feqy T<SW
u(r,0) = { 0. r>uw (49)
As noted earlier, this is the geometry discussed by Sprague et al [1].

The difference between our equation for the Laplace transform a(r,p) of u(r,t) as
given in equation (46) and Sprague et al's equation (15) lies in the functions ¢2 and
V.. Normal diffusion corresponds to the choice 7 = 1, which simplifies these functions.
However, this simplification does not enter in a practically significant way until we
carry out the inverse Laplace transform. In other words, the solution for the Laplace
transform @(r, p) of Sprague et al is transferable to our problem with the substitutions
g — ¢y and V. — V., where ¢ and V in their notation are ¢; and V; in ours. We
therefore refer the reader to the details in [1] (appendix). Here we just mention the main
steps.

This system is of the form seen as far back as the previous mid-century to describe
heat conduction, with well-established solutions [30]. One finds

~ _ (Vy/qg/) - 041[0(%7’) r g Weq,
a(r,p) = { a2 Ko(g,7) r>w, (50)

where I and K, are modified Bessel functions of the first and second kind, respectively.
The constants «; and as are determined by requiring that @ and its first derivative
with respect to r be continuous across the boundary r = w. This condition leads to
a1 = (V4/¢2)g,wK, (gyw), the important constant for our purposes. Following the sequence
of steps presented in the last section then directly leads to

. 1 F ks C.
f = -] - 2K I 14— ) - —1 51
rap, (p) = = =71 1(ayw) (g w) ( p+ k’oH) P+ kot oy

This agrees with equation (22) of Sprague et al with the substitutions ¢, — ¢ = ¢ and
V, =WVi=V.

Equation (51) can be simplified using the normalization condition Fiy + Ceq = 1
together with equation (31). One easily sees that
1 Fy kX Ceo
- 14 —on )~ —q 52
p p ( s+ koff) P+ koff ( )
so that
— 2F, kx
f ="9IK 1 1+ —=. 53
rap, (p) » [K1(gyw) 11 (gyw)] ( o koﬂ) (53)

This is the result we will continue to use in the remainder of this section. However,
it is worth noting that equation (22) of Sprague et al for normal diffusion can also be
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simplified to

2Feq k;n

S g (eo)] (145 (54)
Neither equation (53) nor even equation (54) can be Laplace inverted analytically. To find
the time-dependent FRAP curves requires numerical inversion.

To determine whether subdiffusion is as good a model to describe the FRAP process
as is ordinary diffusion, or perhaps even better, it is helpful to compare both models to
experimental measurements. Experimental results for the uniform circular disk geometry
are presented in figure 5 of Sprague et al [1], obtained for FRAP recovery to nuclear
mobility of a green fluorescent protein (GFP)-tagged glucocorticoid receptor (GFP-GR)
in nuclei of both normal and ATP-depleted cells. In some of these figures the data is
shown relatively cleanly and can therefore be digitalized fairly easily.

It is particularly helpful that Sprague et al adjusted a number of parameters to
optimize the fit of results obtained from a normal diffusion model. We can use some
of the same parameters in testing subdiffusion instead of attempting to readjust all the
parameters. We could of course attempt to optimize all the parameters, but that would
be an extensive task and not necessary to make our point. We use the same values for £
as obtained by Sprague et al [1]. We can of course not directly translate their diffusion
coefficient to our subdiffusion problem, so we choose our v-dependent D, as follows. A
characteristic time 7, for a normally diffusing walker to cover a disk area of radius w
is often defined via the relation w? = 4D;7;. Similarly, in anomalous diffusion models
a characteristic time 7, to cover the disk area is frequently defined via the relation
w? = 4D, 77 /T(1 + ) (which reduces to the one above when v = 1). We choose the
times 7, and 7, to be equal. This seems to us a reasonable way to scale the times with
respect to one another in the two problems, given the fact that the radius w of the region
and the characteristic time to cover this region, 7 = 7, are easily measurable quantities.
This then implies a relation between D; and D, for arbitrary v < 1. In the end we test
several values of 7. Once having chosen 7, the only parameter that we fit so as to optimize
the agreement of our model to the experimental results is kog. Our optimal values change
with changing v but are in the same range as those obtained by Sprague et al [1] in the
fit of the normal diffusion curves. We note that we could just as well have chosen the
same value of k.g as found by Sprague et al and proceeded to optimize the choice of £,
or optimize with respect to both, but our final conclusions would not change.

Sprague et al use a ‘full model” (in their terminology, this means that they solve the
full reaction—diffusion equations without further approximations than those introduced
above) for comparisons with experimental results. When the radius of the circular disk
is w = 1.1 ym, the experimental results shown in figure 5(e) of Sprague et al are best
reproduced by the parameter values k*, = 500s™! and k.g = 86.4s7!. In figure 5(f)
the results are shown for a radius w = 0.5pum and the best fit is obtained with
kr, = 400s™' and k., = 78.6s7!. The diffusion constant is estimated for both radii
to be D; = 9.2 um?s™!. In their notation, D; = Dy.

In figures 1 and 2 we show the experimental results and the results of the full reaction—
diffusion model of Sprague et al [1], along with results obtained from our CTRW
formalism. The Sprague et al results are shown in both figures by dots (experimental
results) and by a black curve (full reaction—diffusion results).

%1(?) =
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Figure 1. Figure 5(e) of Sprague et al [1]. Circular disk radius: w = 1.1 ym.
Dots: experimental results. Dashed red curve: normal diffusion (y = 1). Solid
blue curve: CTRW (anomalous diffusion) with v = 0.8. Dashed black curve:
CTRW (anomalous diffusion) with v = 0.5. See text for parameter values.

In figure 1 we show CTRW curves for the radius w = 1.1 um. The parameters are
as follows:

o kX = 500571, ko = 86.4571, Dy=D, = 9.2 um?s™t, v = 1.
o kr =500 s kog = 42.457 1, D,=43 pm?s™7, v = 0.8.
L k;n = 500 Sil, kfoﬁ‘ = 20.3 Sil, D'Y =1.5 um2 S*'Y’ v = 0.5.

In figure 2 we show CTRW curves for the radius w = 0.5 um. The parameters are as
follows:

b k:)kn - 4008_17 koff - 7868_1, _Df = Dl prmnd 92Mm2 S_l, 7 — 1
i k:)kn =400 S_17 ko = 68 S_l, D'y =3.2 /ng s77, v=0.8.
o k%, = 40057, kog = 54757, D) = 0.7 pum?s™7, 4 = 0.5,

The fact that the lines corresponding to each set of parameters fall on top of each other
and capture the experimental points shows that the CTRW provides as compatible a
description of the experiments as does normal diffusion. There is thus no way at this
point to choose one over the other. Note that the fits are very good even for the rather
strongly anomalous case v = 0.5.

It was already noted by Sprague et al and we note again here, that one would not
expect k%, and k.g to change with changing radius w of the bleach area. However, we see
that the optimal fit in each case does involve a change in k.g when we keep k., fixed.
We see that the ratio kog/kZ, decreases when ~ decreases. It is interesting to note that a
similar qualitative behavior has been recently predicted by Shkilev [24] in the framework
of a random trap model. On the other hand, we find that it is in fact possible to choose
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Figure 2. Figure 5(f) of Sprague et al [1]. Circular disk radius: w = 0.5 ym.
Dots: experimental results. Dashed red curve: normal diffusion (y = 1). Solid
blue curve: CTRW (anomalous diffusion) with v = 0.8. Dashed black curve:
CTRW (anomalous diffusion) with v = 0.5. See text for parameter values.
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Figure 3. Experimental results for w = 1.1 um (black) and w = 0.5 ym (inset,
red). Curves are for v = 0.8 in both cases. The common values of the parameters
for both figures are D., = 4.0 um?s™7, k% = 500s~! and kog = 60s7 1.

common parameters as w changes and this is shown in figure 3. Here we show experimental
results and curves for the anomalous diffusion case with v = 0.8, with common parameters
for the radii w = 1.1 um and w = 0.5 um. The common values used in the figure, which
shows the results for w = 1.1 ym in red and w = 0.5 ym in blue, are D, = 4.0 pm?s™7,
k. =500s"! and kg = 60s7L.

In spite of the excellent fits for two different values of w exhibited in figure 3 with
a single set of parameter values, we wish to stress that the theoretical results are quite
sensitive to parameter choices. It should also be noted that there exist other different
pairs of k* | kog that lead to similarly good fits. This behavior is in fact also found for

on?’

normal diffusion [29].
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5. Reduction of the full model to the pure-subdiffusion dominant model

The full model, even in the case of normal diffusion but also in the case of anomalous
diffusion, reduces to simpler forms in some limiting cases. Three particular cases are
considered by Sprague et al [1]. The first is called ‘pure-diffusion dominant’ and arises
when most of the fluorescent molecules are free. FRAP then measures mainly free diffusion
of these fluorescently tagged molecules. The second, called ‘effective diffusion’; arises when
the reaction is much faster than diffusion. The third is the ‘reaction dominant’ case,
when diffusion is very fast compared to both binding and to the timescale of the FRAP
measurement. We briefly discuss the first of these cases for the CTRW problem. In the
case of normal diffusion, the second leads to an equation similar to that of the first, but
with a modified diffusion coefficient, D ¢ = D1/ [1 + (k%,/kot)]. We conjecture a similar
result for subdiffusion, with the appropriately modified subdiffusion coefficient. The third
leads to a FRAP recovery given by frap(t) = 1 — Coqe ™', Again, we conjecture that
the same is seen in the case of subdiffusion provided the subdiffusion is again very fast
compared to binding and to the timescale of the FRAP measurement.

In the pure-(sub)diffusion dominant limit we need to solve equations (29) when k¥,
and kog are set equal to zero. The second equation then trivially gives c(r,t) = Ceq. In
the case of normal diffusion (v = 1) this leads to the ordinary diffusion equation

%f{r, t) = DIV f(r, 1), (55)

whose solution in closed form for our geometry is well known. The FRAP recovery curve
obtained as a result by Soumpasis is [31]

o= [ (3) 1. (2) :
rap; pp(t) =e 05 + 1 5t )| (56)
where the I; are modified Bessel functions and

T = w2/D1. (57)

In their notation 7 = 7p and, as always, D; = D;. The additional subscript PD stresses
that this is the pure-diffusion dominant solution. Sprague et al [1] further discuss how
this solution provides helpful information for the more general situation where the full
model is appropriate.

In the subdiffusive case, v < 1, the situation is more complex and without showing
every step we exhibit the important results. The relevant time scale for FRAP recovery
is now

7, = (w?/D,)"" (58)

in place of equation (57). One has to solve the subdiffusion equation, the first equation
in equations (29) when £ and k.g are set equal to zero. Proceeding through the Laplace
transform process that led us to equation (53), we now arrive at the somewhat simpler
form

— 2F,
frap%pD(p) = p LK (pry) L (pry).- (59)

The result (59) can be rewritten in terms of a Fox H-function [10], which can then be
analytically Laplace inverted to yield the FRAP recovery curve as a function of time.
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The Fox H-function itself can be exhibited in terms of a variety of equivalent forms, one
of which is
— z

_ 2 20
frap%PD(p) B \/7_TH173 |:p7_’y (1 -z, Z)? (_27 Z)7 (_1 -z, Z)

where z = y~1. This form can be inverted analytically to another Fox H-function that can

again be written in a variety of ways [32]. The simplest form yields the CTRW analog of
the Soumpasis result for normal diffusion [31], namely,

1 oy w? 1/2,1), (1,
frap. pp(t) = ﬁﬂz,a {W El,/l), 20,(1)7()—1,1) } ' o

For v = 1 this result reduces to equation (56). We note that this result for our circular

initial condition is formally obtained from the subordination argument of Lubelski and
Klafter [9] using their expression

frap., pp(t) :/0 dtl'A(tI?t)frapl,PD(D’Yt//D1>7 (62)

where A(t',t) is the one-sided Lévy function

Ll AR
A1) = t Z IF'l—~—~n)'(1+n) (5) ' (63)

n=0

(1/2 —z,2) } 7 (60)

At this stage a remark concerning the difference between the pure diffusion limit of our
model and the approach used by Lubelski and Klafter in [9] is in order. While the resulting
fractional equation in both cases is formally the same, the microscopic interpretation
is different. In our case the pure diffusion limit arises exclusively from transport in the
complex disordered cell medium and only takes into account the slowing down of diffusion
not ascribable to binding/unbinding events. The latter events in our fractional diffusion
equation are only accounted for once we explicitly include birth and death reaction
contributions. In contrast, the long-tailed waiting time distribution used by Lubelski and
Klafter accounts for slowing down due to all sources. As a consequence, we anticipate
that the exponents of the waiting time distributions would have to be different in the two
models to fit a given value of the anomalous diffusion exponent observed in experiments.

The solution (61) is difficult to analyze in this general form. It is, however, possible with
considerable work to find analytic expressions for the long-time and short-time behaviors
of this function. Here we only present the final results. For long times we find

w?  In(D.,t7/w?)
A'(1—~)  Dytv

1 w
A=) 2yl —7) +4yp —4In(2) — 1] K0

+0 <ﬁ%> +0 (%ﬂ”) , (64)

where 9(-) = I"(-)/T'(-) is the Digamma function, the logarithmic derivative of the
Gamma function, and 'y = 0.57721... is the Euler number. Note that when v — 1
the logarithmic term in frap, pp(t) vanishes since lim,_;- [['(1 — )]™' = 0. Using the
fact that lim,_; ¢(1 —v)/I'(1 — ) = —1, we arrive at the result

. 71 71\ 2
Plyl_)ﬂ%fl“ap%PD =1- P +0 {<7> ] . (65)

frap, pp(t) ~ 1 —

2
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This same result is also obtained when equation (56) is expanded for smalll 7 /t. The
limit v — 1 is therefore not singular.

For short times it is more convenient to return to equation (59) and expand it for large
p7y. Term by term inversion then leads to the small-t expansion

1 (D)2 3 (Dt7)?
v/2+ 1) w 8'(3y/2+1) w?

When v — 1 this yields the same result as does a direct expansion of equation (56).

+ O3, (66)

frap.pp(t) ~ I(

6. Conclusions

We have presented a model for FRAP recovery for proteins that might move subdiffusively
and that bind and unbind in the cell nucleus. This has required the construction of a
reaction—subdiffusion equation that models not only motion, but also a reaction that
describes both losses and gains (binding and unbinding). We have constructed this
equation based on a CTRW version of subdiffusion and have suggested that this may
be the first analytic model for FRAP recovery curves where reaction and transport are
considered explicitly and the motion of the binding and unbinding entities is subdiffusive.

The motivation for this work began when we observed a contradiction in the literature.
On the one hand, the vast majority of models of motion of proteins and other entities
in crowded environments such as a cell or a cell nucleus assume that the motion is
subdiffusive. There are a number of different models of subdiffusion in cells and a great
deal of discussion and even argument surrounds the question of which is the ‘correct’
model and even whether there is a single ‘correct’” model. However, on the other hand,
the FRAP theory literature seems to be based entirely on diffusive motion, with very
rare recognition or even mention of the subdiffusive motion paradigms. We wished to
contribute toward filling this gap by generating a model for FRAP based on subdiffusive
motion.

While we recognize that the issue of which model to use for subdiffusion is far from
settled and the discussion rages on, for our purposes we have chosen a particular one of
these models, namely, a CTRW, as noted above. Not only have we done a great deal of work
with CTRWs, but it is the only model that seems to make it possible to include reactions
in the equation that describes the motion. We pointed out that including reactions in
a subdiffusion model is a complicated task because every microscopic situation leads to
a different equation and because in any case, subdiffusion and reactions are not simply
additive as they are in a reaction—diffusion model. The two components are intimately
enmeshed. We derived the appropriate equation for the particular FRAP analysis that
we wished to carry out, stressing that this is a simplified but helpful model of reaction—
diffusion dynamics during a FRAP experiment in a complex cellular environment. We
were then able to solve the problem analytically up to the time Laplace transform of
the recovery curve. From there, to obtain the time dependent curve required a numerical
inversion. This last step was the only one that required numerical work; all the other steps
to this point are analytic. In certain limiting cases we were able to carry out the inversion
analytically.
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Our purpose in carrying out this program was to compare our reaction—subdiffusion
approach to a reaction—diffusion model in capturing the experimental results presented by
Sprague et al [1]. The specific question we wished to address was whether a subdiffusion
model is at least as good as a diffusion model for fitting FRAP data. Both models have a
number of parameters, subdiffusion one more than diffusion (the anomalous exponent )
and optimizing the models with respect to all of them is a fairly extensive task. Sprague
et al did this for the reaction—diffusion model. We set some of our parameter values to
be equal to those of the diffusion-based model and optimized with respect to only one or
two. In any case, the bottom line is that subdiffusion captures the experiments as well as
does diffusion. It is therefore appropriate to use a subdiffusion approach when working in
a crowded environment where other measures have confirmed this slower motion.

A number of possible tasks remain to be carried out. For instance, we can work
with different geometries, different initial conditions, different inhomogeneities in the
medium and a number of other variations that have been considered in the diffusion-
based literature [1,29,33]. In section 5 we conjectured that results for subdiffusion when
the reaction is much faster than subdiffusion and when subdiffusion is very fast compared
to both binding and to the time scale of the FRAP measurements would be similar to
those found by Sprague et al [1] for normal diffusion. These conjectures remain to be
demonstrated. An extension of our one-binding-state model to an n-binding-state model
when there are more than a single type of binding site is also possible. We continue to
work on these and other extensions of this work.
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