
PHYSICAL REVIEW E 104, 024128 (2021)

Structural properties of additive binary hard-sphere mixtures. II. Asymptotic behavior
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The structural properties of additive binary hard-sphere mixtures are addressed as a follow-up of a previous pa-
per [S. Pieprzyk et al., Phys. Rev. E 101, 012117 (2020)]. The so-called rational-function approximation method
and an approach combining accurate molecular dynamics simulation data, the pole structure representation of
the total correlation functions, and the Ornstein-Zernike equation are considered. The density, composition, and
size-ratio dependencies of the leading poles of the Fourier transforms of the total correlation functions hi j (r)
of such mixtures are presented, those poles accounting for the asymptotic decay of hi j (r) for large r. Structural
crossovers, in which the asymptotic wavelength of the oscillations of the total correlation functions changes
discontinuously, are investigated. The behavior of the structural crossover lines as the size ratio and densities of
the two species are changed is also discussed.
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I. INTRODUCTION

The close connection between the thermodynamic proper-
ties and the structural correlation functions of fluids in the
statistical-mechanical formulation of liquid state theory is
well known. In particular, for a fluid mixture of Nc compo-
nents, the virial route to the equation of state leads to [1–3]

Z ≡ p

ρkBT
= 1 − ρ

6kBT

Nc∑
i, j=1

xix j

∫
dr gi j (r)r

∂φi j (r)

∂r
, (1)

where Z is the compressibility factor, p is the pressure, ρ is
the number density, kB is the Boltzmann constant, T is the
absolute temperature, xi is the mole fraction of molecules
of species i, φi j (r) is the interaction potential (assumed to
be spherically symmetric and pairwise additive) between a
particle of species i and a particle of species j, and gi j (r) is
the radial distribution function (RDF), which is a measure of
the probability of finding a molecule of species i at a distance
r from another molecule of species j. In the case of hard
spheres, Eq. (1) reduces to

Z = 1 + 2

3
πρ

Nc∑
i, j=1

xix jσi jgi j (σi j ), (2)

where σi j is the hard-core diameter of the interaction between
a sphere of species i and another sphere of species j, and
gi j (σi j ) is the contact value of the RDF.
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On the other hand, from the compressibility route to the
equation of state one gets the relationship [3]

χ−1 ≡ 1

kBT

(
∂ p

∂ρ

)
T

=
Nc∑

i, j=1

√
xix j[I + ĥ(0)]−1

i j

=1 − ρ

Nc∑
i, j=1

xix j c̃i j (0), (3)

where I is the Nc × Nc identity matrix and the element
ĥi j (k) ≡ ρ

√
xix j h̃i j (k) of the matrix ĥ(k) is proportional to

the Fourier transform

h̃i j (k) =
∫

dr e−ık·rhi j (r) (4)

of the total correlation functions hi j (r) ≡ gi j (r) − 1, ı being
the imaginary unit. Further, in the last equality of Eq. (3),
c̃i j (0) is the zero wave-number limit of the Fourier transform

c̃i j (k) =
∫

dr e−ık·rci j (r) (5)

of the direct correlation function ci j (r). The latter is defined
through the Ornstein-Zernike (OZ) relation, namely,

hi j (r12) = ci j (r12) + ρ

Nc∑
�=1

x�

∫
dr3 ci�(r13)h� j (r23), (6a)

h̃i j (k) = c̃i j (k) + ρ

Nc∑
�=1

x�c̃i�(k )̃h� j (k), (6b)

in real and Fourier spaces, respectively.
Apart from this thermodynamic connection, it has been

further established that abrupt changes in the structural cor-
relation functions of a fluid may also show up in its phase

2470-0045/2021/104(2)/024128(14) 024128-1 ©2021 American Physical Society

https://orcid.org/0000-0002-6874-217X
https://orcid.org/0000-0001-8679-4195
https://orcid.org/0000-0002-9564-5180
https://orcid.org/0000-0002-7002-1128
https://orcid.org/0000-0001-9577-5586
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.024128&domain=pdf&date_stamp=2021-08-23
https://doi.org/10.1103/PhysRevE.101.012117
https://doi.org/10.1103/PhysRevE.104.024128
http://www.unex.es/eweb/fisteor/santos/
http://www.unex.es/eweb/fisteor/andres/


SŁAWOMIR PIEPRZYK et al. PHYSICAL REVIEW E 104, 024128 (2021)

behavior. This is the case of the Fisher-Widom line of sim-
ple fluids [4–11], which distinguishes between the region
where the large-r behavior of the total correlation function
shows damped oscillatory decay (typical of dense and/or
high-temperature liquids) and the region where the nature
of the decay is monotonic (typical of low-density gases,
low-temperature liquids, and near-critical fluids). Structural
transitions such as the one related to the Fisher-Widom line,
including the physics behind them, are clearly of interest but
their study is hampered by the lack of exact results for the
structural correlation functions and, despite the availability of
interesting work on this subject, additional efforts are clearly
required, especially in the case of mixtures.

In a previous paper [12], hereafter referred to as paper I, we
presented a method (denoted as the WM scheme) allowing us
to obtain an accurate representation of the structural correla-
tion functions of additive binary hard-sphere (BHS) mixtures.
The WM method successfully combines molecular dynamics
(MD) simulation data, residue-theorem analysis, and the OZ
relations, additionally taking into account the tail parts of the
structural correlation functions, without using any approxi-
mate closures. In particular, by considering a mixture with a
fixed diameter ratio of 0.648 and a fixed total packing fraction
of 0.5 (which was the system analyzed previously theoreti-
cally and through experimental data by Statt et al. [13]), we
confirmed in paper I the presence of structural crossovers in
such a mixture and examined the role played in the crossover
by the first two poles of the Fourier transforms of the total
correlation functions. We also found very good agreement
between the results of the new WM method and those obtained
from the use of the rational-function approximation (RFA)
[3,14–16] to compute analytically the total correlation func-
tions, as well as an improvement of the agreement between the
RFA and WM results and the ones derived from experimental
data when compared to the analysis performed in Ref. [13].

The aim of the present paper is twofold. On the one hand, to
consolidate the RFA approach as a valuable tool to investigate
asymptotic behavior and structural crossover issues, by testing
such approach against the results of the WM method. On the
other hand, to carry out a more thorough analysis of the role
of the pole structure of h̃i j (k) on the asymptotic behavior
of hi j (r) and the structural crossovers in these functions by
considering various BHS mixtures.

The paper is organized as follows. The system of interest
(BHS mixtures) is briefly described in Sec. II, where also
succinct accounts of the RFA approach and of the WM scheme
developed in paper I, as well as some details of our MD
simulations, are presented. In Sec. III we provide the basics
of the analysis of the poles of the total correlation functions,
while in Sec. IV we provide the results of our calculations and
an illustration of our main findings. The paper closes in Sec. V
with some concluding remarks.

II. STRUCTURAL PROPERTIES OF A BINARY
HARD-SPHERE MIXTURE

A. System

Let us consider a binary (Nc = 2) fluid mixture of “small”
(label s) and “big” (label b) hard spheres. The additive hard

core of the interaction between a sphere of species i and a
sphere of species j (i, j = s, b) is σi j = 1

2 (σi + σ j ), where the
diameter of a sphere of species i is σii = σi. Let the number
density of the mixture be ρ, the mole fraction of species i
be xi = ρi/ρ (where ρi = Ni/V is the partial number density,
Ni and V being the number of particles of species i and the
volume of the system, respectively), and let the size ratio
be q = σs/σb � 1. From these quantities one can define the
partial packing fractions ηi = π

6 ρiσ
3
i and the total packing

fraction η = ηs + ηb = π
6 ρσ 3

b (xsq3 + xb). Note that in this
system there are three characteristic separations between par-
ticles at contact, namely, the small-small particle separation,
σs = qσb, the small-big particle separation, σsb = 1

2σb(1 + q),
and the big-big particle separation, σb.

B. The rational-function approximation method

In order to examine the structural properties, we shall now
sketch the RFA approach to obtain the structural properties
of additive hard-sphere mixtures. The detailed description of
such an approach may be found in Refs. [3,14–16]. First, the
Laplace transforms of rgi j (r) are introduced:

Gi j (z) ≡
∫ ∞

0
dr e−zrrgi j (r). (7)

Next, an explicit form for Gi j (z) in terms of a free parameter
ξ and an Nc × Nc matrix L(z) = L(0) + L(1)z + L(2)z2 is pro-
posed. Then, by imposing certain consistency conditions, the
elements of the matrices L(0), L(1), L(2) are expressed as linear
functions of ξ . In particular, L(2)

i j = 2πξσi jgi j (σi j ).

Interestingly, the simple choice ξ = 0, and hence L(2)
i j = 0,

gives the Percus–Yevick (PY) solution [1,17], which is known
to yield different equations of state via the virial [Eq. (2)] and
compressibility [Eq. (3)] routes. However, by an appropriate
determination of ξ �= 0, the RFA can be made thermodynami-
cally consistent and, additionally, allows one to freely choose
the contact values gi j (σi j ). A convenient choice is provided
by the popular BGHLL expression proposed independently
by Boublík [18], Grundke and Henderson [19], and Lee and
Levesque [20].

Clearly, once Gi j (z) has been determined, inverse Laplace
transformation directly yields rgi j (r) and hence also hi j (r).
On the other hand, explicit knowledge of Gi j (z) also allows us
to determine the Fourier transform h̃i j (k) through the relation

h̃i j (k) = −2π
Gi j (z) − Gi j (−z)

z

∣∣∣∣
z=ık

. (8)

In the RFA (as well as in the PY approximation), Gi j (z)
is obtained from the inner product of the matrix L(z) and the
inverse of another related matrix B(z). Therefore, the Laplace
transforms Gi j (z) for all the pairs i j share the same poles,
namely, the zeros of the determinant D(z) of B(z). In the
particular case of a binary mixture, the functional form of D(z)
is

D(z) =P (0)
6 (z) + P (s)

4 (z)e−σsz + P (b)
4 (z)e−σbz

+ P (sb)
2 (z)e−2σsbz, (9)
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where P (0)
6 (z), P (s)

4 (z), P (b)
4 (z), and P (sb)

2 (z) are polyno-
mials of degrees 6, 4, 4, and 2, respectively. In the PY
case (ξ = 0), the degrees of those polynomials decrease
in two units, i.e., P (0)

6 (z) → P (0)
4 (z), P (s)

4 (z) → P (s)
2 (z),

P (b)
4 (z) → P (b)

2 (z), and P (sb)
2 (z) → const. A basic property

of D(z) is D(0) = 0, which is tied to the physical condition
limr→∞ gi j (r) = 1.

It should be stressed that perhaps the most valuable asset of
the RFA approach is that, apart from ensuring thermodynamic
consistency, it leads to explicit analytic expressions for all the
structural properties of the BHS mixture [21]. Additionally,
the asymptotic long-range behavior of hi j (r) is directly ob-
tained from the roots of Eq. (9).

C. The WM method

The WM method proposed in paper I [12] allows us to
obtain the structural properties of additive BHS mixtures by
combining accurate MD simulation data, the pole structure
representation of the total correlation functions, and the OZ
equation.

In the method, a semiempirical approximation for the
structural properties of additive BHS mixtures is constructed
by considering the following analytic form of hi j (r):

hW M
i j (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1, 0 < r < σi j,
W∑

n=1
b(n)

i j rn−1, σi j < r � rmin
i j ,

M∑
n=1

A(n)
i j

r e−αnr sin
(
ωnr + δ

(n)
i j

)
, r � rmin

i j .

(10)

The parameters {b(1)
i j , b(2)

i j , . . . , b(W )
i j } and {A(1)

i j , α1, ω1,

δ
(1)
i j , . . . , A(M )

i j , αM , ωM , δ
(M )
i j } are obtained by enforcing the

BGHLL contact values and the continuity conditions at r =
rmin

i j , and by a nonlinear fitting procedure based on the
minimization of |hW M

i j (r) − hMD
i j (r)| for each r/σi j ∈ (1, r∗

c ),
where hMD

i j (r) is obtained from our MD simulations, the
details of which will be specified below. In our fitting pro-
cedure, the values of |hW M

i j (r) − hMD
i j (r)| for 1 < r/σi j < r∗

c

were required to be smaller than 10−3. The suitable value of
r∗

c depends on the size ratio q and we took r∗
c = 5, 4, 3, and

3 for q = 0.648, 0.4, 0.3, and 0.2, respectively. This value is
connected with the half-length of the simulation box. Note
that decreasing q causes a decrease of the available space
(smaller simulation box). Therefore, in order to carry out
simulations and increase the simulation box with the assumed
r∗

c values, it was necessary to add more spheres in the cases
q = 0.3 and 0.2. For our calculations an appropriate choice
for rmin

i j was the position of the first minimum of hi j (r). Also,
as in paper I, for the subsequent calculations we will usually
take W = 15 and M = 10.

D. Details of the molecular dynamics simulations

The computation of hMD
i j (r) was performed with the Dy-

namO program [22] for the size ratios q = 0.648, 0.4, 0.3
and 0.2, and different values of the partial packing fractions
(ηb, ηs), which were chosen according to the investigated size
ratio to examine a substantial part of the phase diagram (in-

TABLE I. BHS mixtures investigated by MD in this work.

q ηb ηs

0.648 0.10 0.20, 0.25, 0.30, 0.35, 0.40
0.20 0.15, 0.20, 0.25, 0.30, 0.35

0.4 0.05 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35
0.20 0.05, 0.10, 0.15, 0.20, 0.25

0.3 0.05 0.10, 0.15, 0.20, 0.25, 0.30, 0.35
0.20 0.10, 0.15, 0.20

0.2 0.02 0.25
0.20 0.10

cluding low, moderate, and high total densities) of the BHS
mixture. More specifically, the values of the partial packing
fractions studied by MD are given in Table I and denoted in
Fig. 3 as open yellow circles.

In order to reduce sufficiently finite-size effects and the
statistical errors in the simulations, the data of hMD

i j (r) for
r/σi j < r∗

c must be obtained from long simulations with a
large number of particles (N ∼ 104). It has been checked that
16 384 particles were sufficient to obtain reasonably accurate
data for the size ratios q = 0.648 and 0.4. In the cases q = 0.3
and 0.2, due to the reduction of the size of the simulation
box, the systems were investigated with 48 668 particles. The
histogram grid size of hMD

i j (r) was set to δr/σi j = 0.01, which
was found to be a suitable choice to balance finite-size effects
and statistical errors.

The MD simulations were carried out typically for a total
number of 2 × 109 collisions, and the statistical uncertainty
of hMD

i j (r) was obtained with the block averaging method
[23]. For each density, and in the whole range r/σi j ∈ (1, r∗

c ),
the accuracy of hMD

i j (r) was such that the estimated uncer-
tainty was typically smaller than 10−3, being up to 0.005 near
contact (for the highest densities) and becoming less than
0.0002 at larger particle separations. For large systems, the
finite-size effects in the MD calculations of the RDF arise
mainly from fixing the particle number, i.e., from the rela-
tion between canonical and grand-canonical ensembles. The
corrections required to convert data from the MD simulations
to the canonical ensemble are of O(1/N2) [24,25], which are
negligible here. Also, it was checked for a few densities that
the remaining part of the correction factor involving density
derivatives was smaller than the obtained data accuracy and
therefore could be neglected.

III. POLE ANALYSIS AND STRUCTURAL CROSSOVER

In general, the representation of the total correlation func-
tions of additive BHS mixtures may be expressed as [2,26–
28]

hi j (r) =
⎧⎨
⎩

−1, 0 < r < σi j,
∞∑

n=1

A(n)
i j

r e−αnr sin
(
ωnr + δ

(n)
i j

)
, r > σi j .

(11)

In fact, the functional form of hW M
i j (r) for r > rmin

i j in

Eq. (10) is based on Eq. (11). While the amplitudes, A(n)
i j ,

and the phase shifts, δ
(n)
i j , are specific for each hi j (r), the

damping coefficients, αn, and the oscillation (angular) fre-
quencies, ωn ≡ 2π/λn (λn being the associated wavelengths),
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are common to all the pairs [27]. Although an infinite number
of terms is formally considered in Eq. (11), only a few lead-
ing terms (those with the smallest damping coefficients) are
needed to characterize the asymptotic behavior of hi j (r). Note
that, while each ωn is actually a wave number, we will use
throughout this paper the nomenclature “frequency” with the
proviso that it does not refer here to time but to space.

A successful way to study the asymptotic decay behavior
of the total correlation functions is based on the pole analysis
of their Laplace or Fourier transforms. In Laplace space, the
real and imaginary parts of the complex poles zn = −αn ± ıωn

provide the damping coefficient and the oscillation frequen-
cies, respectively. Similarly, in Fourier space the poles are
kn = −ızn = ±ωn + ıαn. In order to avoid later confusion,
it is convenient at this stage to clarify the nomenclature we
adopt in this work. We will refer to leading, subleading, sub-
subleading, etc. poles to an order in increasing αn, while the
nomenclature first, second, third, etc. poles will refer to an
increasing order in ωn. Apart from that, it must be remarked
that the infinite set of poles includes roots with ωn = 0 (thus
representing contributions decaying monotonically), although
they are generally far from the most dominant ones.

Depending on the values of the parameters of the BHS
mixture, the position of the poles in the complex plane varies.
In the simplest scenario, given a size ratio q, the plane ηs vs ηb

can be split into two main regions such that the leading pole
in one of the regions has an angular frequency ω ≈ 2π/σb,
which corresponds to a wavelength in the oscillatory decay
of the total correlation function comparable to the diameter
of the big spheres (i.e., λ ≈ σb), while in the other region the
leading pole has ω ≈ 2π/σs (i.e., λ ≈ σs) [12,26,27]. The line
separating both regions signals a structural crossover behav-
ior in which the wavelength λ ≡ 2π/ω of the oscillations in
the large-r asymptotic regime changes discontinuously from
approximately σb to approximately σs as the relative amount
of the small spheres is increased. This crossover line in the
ηs vs ηb phase diagram occurs when the corresponding two
pairs of poles have the same α. As will be seen in Sec. IV, this
basic scenario for the structural crossover can become much
more complicated as the total packing fraction increases, giv-
ing rise to the presence of “harmonics” of the “fundamental”
oscillation frequency 1/σb.

Further, we will talk about a first-order, a second-order, a
third-order, etc. crossover to the one involving a change in the
leading, subleading, sub-subleading, etc. pole, respectively. In
particular, for different values of q, ηs, and ηb, the decay of
hi j (r) is determined by different combinations of poles (i.e.,
first and second, first and third, first and fifth, and so on).

As said before, in the RFA the poles are obtained from
the zeros of D(z) in Eq. (9) and as follows in the case of the
WM scheme. Once the total correlation functions hW M

i j (r) [see
Eq. (10)] are known after fitting the parameters to the MD
data, the direct correlation functions cW M

i j (r) are determined
via Fourier transforms and the OZ relation in Eq. (6b), as de-
scribed in paper I [12]. This in turn allows one to find the poles
by the method of Evans et al. [26] [see Eqs. (21) of paper I].

IV. RESULTS

Evidence of the crossover behavior in BHS mixtures was
first pointed out by Grodon et al. [27,29], who used two

different formulations of Rosenfeld’s fundamental measure
theory: the original Rosenfeld functional (which is equivalent
to the PY approximation) and the White Bear version. Such
crossover behavior was later also mentioned in connection
with experiments with colloidal suspensions [13,30].

Let us now turn to the RFA predictions. We begin with the
analysis of the leading pole in the ηs vs ηb plane. The detailed
landscape as one changes the size ratio is rather complex, so
here we provide the most general features [31]. By focusing
on the behavior of the oscillation frequency ω associated with
the leading pole, one can observe that, given a value of q,
the ηs vs ηb plane splits into different regions, in each one
of which the (reduced) natural frequency ωσb/2π ≡ σb/λ is
of order of 1 (region R1) or is of order of n = 2, 3, . . . (region
Rn). The most relevant regions are R1 (where λ ≈ σb) and Rns

(where ns is the integer closest to 1/q, so that λ ≈ σs). Both
regions are separated by a crossover line (hereafter labeled as
C), which is present for any q. Interestingly, as q decreases
(and thus ns increases), one can observe a second crossover
line (C′) separating region Rns from either region Rns+1 or
region Rns−1, and even a third line (C′′) separating region R1

from region Rns−1.
The previous scenario can be observed in Fig. 1, which

shows the evolution of the different regions and crossover
lines as one decreases the size ratio from q = 0.648 to q =
0.250. At q = 0.648 it is quite apparent the existence of the
conventional crossover line C separating the regions R1 (be-
low the line) and Rns = R2 (above the line). Interestingly, the
line C terminates at an “end point,” so that one can move
continuously between regions R1 and Rns = R2 by circum-
venting the end point from the left. Decreasing the size ratio
from q = 0.648 to q = 0.500 (top row of Fig. 1) produces a
downward bending of line C and a left shift of the end point
until it eventually disappears at ηb = 0. Let us now analyze
the middle row of Fig. 1. At q = 0.425, region Rns+1 = R3

starts to compete with region Rns = R2, thus giving rise to the
second crossover line C′, which terminates at a new end point.
At the transition value q = 0.400 (where ns could equally be
taken as 2 or 3) the preceding line C′ has started a tendency
to bend down and the end point has moved to the left. Next,
at q = 0.375, R3 has changed from being the old region Rns+1

to being the new region Rns , while R2 has changed from being
the old region Rns to being the new region Rns−1. Moreover,
the old line C′ has merged with line C producing a “splitting
point” (where three different pairs of poles share the same
damping coefficient α); now, the crossover line C extends to
the right of the splitting point, while to the left it experiences a
pitchfork bifurcation into a line C′ (separating region Rns = R3

from region Rns−1 = R2 and still having an end point) and a
line C′′ (separating regions R1 and Rns−1 = R2). At q = 0.350,
the splitting point has moved to the left, the end point of
line C′ has disappeared, and the residual region Rns−1 has
significantly shrunk. In the bottom row of Fig. 1, we see
that, at q = 0.315, region R2 has almost disappeared, region
Rns+1 = R4 starts to compete with region Rns = R3, and a
new line C′ with an end point appears, in analogy with what
happened at q = 0.425. The rest of the evolution is analogous
to what has just been described in relation with the middle
row: line C′ moves down, it eventually merges with line C
creating a splitting point, a relay from old region Rns+1 to new
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FIG. 1. RFA predictions for the contour plots of the (reduced) oscillation frequency ωσb/2π ≡ σb/λ corresponding to the leading pole for
decreasing representative values of the size ratio (from q = 0.648 to q = 0.250). The colormap in the bottom bar indicates the color code for
the values of ωσb/2π . In each panel, the (black) dashed diagonal line represents the locus ηs + ηb = 0.5. The (colored) stars and circles indicate
the end points and the splitting points, respectively. Note that ns = 2 for q = 0.648, 0.625, 0.600, 0.500 and 0.425, ns = 3 for q = 0.375, 0.350,
0.315, and 0.300, and ns = 4 for q = 0.275 and 0.250.

region Rns and from old region Rns to new region Rns−1 takes
place, and region Rns−1 shrinks until eventually disappearing.

A splitting point is absent in the sequence represented by
the top row of Fig. 1. In the second row, however, a splitting
point (joining regions R1, R2, and R3) is generated and then
it disappears, giving rise to the generation of a new splitting
point (joining regions R1, R3, and R4) and its later disap-
pearance along the bottom row. Thus, we will refer to the
behavior represented by the top, middle, and bottom rows of
Fig. 1 as generations G0, G1, and G2, respectively. As q keeps
decreasing beyond q = 0.250, a new generation G3 appears.
The evolution with q of the end point (generations G0–G3)
and splitting points (generations G1–G3) are shown in Fig. 2.

At this stage we should point out two things. On the one
hand, it is worth mentioning that the presence of a second

crossover line (i.e., the C′ line) was already also reported in
Ref. [27], at least for q = 0.4. Nevertheless, the distinction
between the C, C′, and C′′ lines that we have made here
is important for understanding and/or predicting the struc-
tural crossover behavior, including the appearance of different
branches for different q systems. For instance, without such
assets, neither the reason for the sequence of the crossover
lines in Fig. 5 of Ref. [27] nor the reasons for the appear-
ance of the second crossover in the case q = 0.4 or of the
behavior observed in the case q = 0.65 can be explained. In
any case, the overall view of the structural crossovers becomes
clearer once one realizes that the scenario depicted by Figs. 1
and 2 takes place. Note in particular that, notwithstanding
the theoretical interest of the crossover line C′, it must be
remarked that, as seen from Fig. 1, it generally lies (except
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FIG. 2. The q-evolution of the end point (colored stars) and the
splitting point (colored circles) of the generations G0–G3. The ar-
rows signal the evolution as q decreases. The dashed tie lines connect
end and splitting points at the same q.

for sufficiently asymmetric mixtures) above the region ηs +
ηb = 0.5, where the fluid phase is expected to coexist with a
solid phase [32]. On the other hand, it should also be clear

that the present scenario is only a coarse-grained description
and, while providing a fair picture of what goes on, is not
geared towards addressing all the details pertaining to shrink-
ing regions, the merging of crossover lines, the disappearance
and appearance of end points, and the formation of splitting
points.

To complete the picture advocated in the present paper, let
us now present the results of the RFA and the WM scheme
for both the damping coefficient and the oscillation frequency
associated with the leading pole for q = 0.2, 0.3, 0.4, and
0.648. These results are displayed in Fig. 3. We observe that
the leading damping coefficient smoothly changes with ηs,
ηb, and q, except for the presence of kinks signaling pole
crossings. In general, given a value of ηs, the reduced damping
coefficient ασb decreases with increasing ηb. On the other
hand, ασb exhibits a nonmonotonic dependence on ηs at fixed
ηb. In what respects q, its influence on ασb is rather weak,
although there is a general tendency for a slight decrease
of ασb with increasing q at fixed (ηb, ηs). In contrast to the
behavior of the damping coefficient, the oscillation frequency
can experience discontinuous changes in the ηs vs ηb diagram
at a given q, as discussed above in connection with Fig. 1. The
complexity of the landscape beyond the description of Fig. 1
is exemplified by Fig. 3(e) for q = 0.2, where, apart from the
pitchfork bifurcation at (ηb, ηs) 
 (0.04, 0.26) (giving rise to
an encapsulated region R4), a second splitting point is born at
(ηb, ηs) 
 (0.29, 0.38).

FIG. 3. RFA predictions for the contour plots of the (reduced) damping coefficient ασb (top panels) and the (reduced) oscillation frequency
ωσb/2π ≡ σb/λ (bottom panels) corresponding to the leading pole for a size ratio (a, e) q = 0.2, (b, f) q = 0.3, (c, g) q = 0.4, and (d, h)
q = 0.648. The colormap in the bottom bar indicates the color code for the values of ασb and ωσb/2π . In each panel, the (black) dashed
diagonal line represents the locus ηs + ηb = 0.5, the (black) solid vertical lines represent the values ηb = 0.02 (for q = 0.2) or 0.05 (for
q = 0.3, 0.4, and 0.648), 0.10, and 0.20 considered in Figs. 6–9, and the (yellow) circles denote those cases where MD simulations have been
performed. The (colored) thick solid lines represent the crossover lines, while the solid (colored) stars and circles indicate the end points and
the splitting points, respectively.
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FIG. 4. 3D plots, as predicted by the RFA, for (a) the (reduced)
damping coefficient ασb and (b) the (reduced) oscillation frequency
ωσb/2π ≡ σb/λ, corresponding to the leading pole for a size ratio
q = 0.4. The used colormap is the same as the one in Fig. 3; it
indicates the change in ασb in the case of panel (a) and of ωσb/2π in
the case of panel (b). In each panel, the (black) solid lines represent
the cuts ηb = 0.05 and 0.20 considered in Fig. 8. The (red) thick lines
represent the crossover lines and the solid (red) star indicates the end
point.

As a representative example, Fig. 4 shows a 3D view
visualizing the overall structure behavior, in particular the
crossover lines C and C′ and the specific regions R1, R2, and
R3 for the size ratio q = 0.4. This helps the understanding of
the different features observed in Figs. 1 and 3, as well as in
Figs. 6–9 below. In particular, Fig. 4(b) shows that, as said
before, one can move continuously between regions R2 and
R3 by circumventing the end point.

For the investigated cases q = 0.2, 0.3, 0.4, and 0.648, the
crossover lines C and C′ are plotted in Fig. 5, where RFA and
PY predictions, as well as a few points obtained via the WM
scheme, are represented. As can be observed, the shape of
lines C and C′ is qualitatively similar for q = 0.3 and q = 0.4,

FIG. 5. RFA (thick lines) and PY (thin lines) predictions for the
crossover lines C and C′ in the plane ηs vs ηb for q = 0.2, 0.3, 0.4,
and 0.648. The solid circles represent results from MD computer
simulations (via the WM scheme), which confirm the theoretical
RFA predictions. The WM points for ηb = 0.2 correspond, from
top to bottom, to q = 0.648, 0.3, and 0.4, respectively, whereas for
ηb = 0.05 the points correspond to q = 0.3 and 0.4. The (magenta)
diamond represents a result from paper I [12]. The solid (colored)
stars indicate the end points (see Figs. 1–4), while the solid (cyan)
circles represent the splitting points of G3 generation (see Figs. 1 and
2). The (black) vertical lines represent the values ηb = 0.02, 0.05,
0.10, and 0.20 considered in Figs. 6–9.

while the cases q = 0.2 and q = 0.648 present distinctive
features. We observe that the black solid circle representing
the result from the WM method for q = 0.648 and ηb = 0.20
lies on the line obtained from the RFA prediction better than
on the PY line. It is worth noting that the differences between
RFA and PY grow with increasing density and decreasing size
ratio, being especially apparent for q = 0.2. In that case, for
instance, the second splitting point changes from (ηb, ηs) 

(0.29, 0.38) in the RFA to (ηb, ηs) 
 (0.46, 0.27) in the PY
approximation. In any case, it must be remarked that the main
separation between the RFA and PY lines for q = 0.2 takes
place in regions of the plane (ηb, ηs) where the total packing
fraction is rather large (η > 0.6) and hence the stable system
is expected to consist of coexisting fluid and solid phases
[32].

The information presented in Figs. 3 and 5 is com-
plemented by Figs. 6–9 for q = 0.2, 0.3, 0.4, and 0.648,
respectively, where the dependence on ηs of the first six
poles is shown for ηb = 0.02 [for q = 0.2] or 0.05 [for
q = 0.3, 0.4, and 0.648] (top panels), 0.10 (middle panels),
and 0.20 (bottom panels). It can be observed that typically
the first poles correspond to (reduced) frequencies σb/λ ≈ 1,
σb/λ ≈ 1/q, and the first few harmonics σb/λ = 2, 3, 4, . . ..
Note that a certain overlap between the pole with σb/λ ≈ 1/q
and that with the nearest harmonic might exist, in what could
be viewed as sort of “resonance.” This happens for σb/λ ≈ 5,
σb/λ ≈ 3, σb/λ ≈ 2, and σb/λ ≈ 2 in the cases q = 0.2 (see
right panels of Fig. 6), q = 0.3 (see right panels of Fig. 7),
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FIG. 6. Dependence of the first six poles on ηs for q = 0.2 and ηb = 0.02 (top panels), ηb = 0.10 (middle panels), and ηb = 0.20 (bottom
panels). The thick (colored) and thin (gray) lines correspond to the RFA and PY predictions, respectively, while the solid circles represent
the WM values for the cases where MD simulations were performed. The colored squares denote poles for a small sphere packing fraction
ηs = 0.01, and the lines indicate trajectories for increasing values of ηs. The horizontal lines denote the crossovers as ηs increases. In the central
and right panels, the open circles and crosses represent the leading and subleading poles, respectively.

q = 0.4 (see right panels of Fig. 8), and q = 0.648 (see right
panels of Fig. 9), respectively.

As seen from Figs. 7(c) and 8(c), only the conventional
crossover C is present at ηb = 0.05 for q = 0.3 and 0.4, in
agreement with what is observed in Figs. 3(f) and 3(g). On
the other hand, Figs. 7(f), 7(i), 8(f), and 8(i) show that the
crossover C is followed by the crossover C′ as ηs increases

at ηb = 0.10 and 0.20. In the case q = 0.2, Fig. 6(c) shows
two successive crossovers with ηb = 0.02 when traversing the
two branches stemming from the pitchfork bifurcation at the
splitting point (ηb, ηs) 
 (0.04, 0.26). Also for q = 0.2, the
crossovers C and C′ are observed in Fig. 6(i) at ηb = 0.20,
while at η = 0.10 the second crossover C′ is beyond the
range of ηs shown [see Figs. 5 and 6(f)]. On the other hand,
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FIG. 7. Dependence of the first six poles on ηs for q = 0.3 and ηb = 0.05 (top panels), ηb = 0.10 (middle panels), and ηb = 0.20 (bottom
panels). The thick (colored) and thin (gray) lines correspond to the RFA and PY predictions, respectively, while the solid circles represent
the WM values for the cases where MD simulations were performed. The colored squares denote poles for a small sphere packing fraction
ηs = 0.01, and the lines indicate trajectories for increasing values of ηs. The horizontal lines denote the crossovers as ηs increases. In the central
and right panels, the open circles and crosses represents the leading and subleading poles, respectively.

according to Figs. 9(c), 9(f), and 9(i), a single crossover exists
at ηb = 0.20 and q = 0.648 since ηb = 0.05 and ηb = 0.10
are located to the right of the end point [see Fig. 3(h)].

Figures 6–9 also show that some quantitative differences
between the RFA predictions and those of the PY approxi-
mation are present, as already mentioned in connection with
Fig. 5. We can observe as well a good agreement of the results

of the RFA method with the poles obtained from the WM
scheme for those cases where MD simulations were carried
out. This shows (via WM) that the RFA can effectively be
used to predict the structural properties of BHS mixtures over
a wide range of the phase diagram.

It should be noted that, apart from the damping coeffi-
cients and the oscillation frequencies, the amplitudes A(n)

i j [see
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FIG. 8. Same as in Fig. 7, except that in this instance q = 0.4.

Eq. (11)] can be obtained from both the RFA and the WM
scheme. As an illustration, Fig. 10 shows the ηs-dependence
of the amplitudes corresponding to the first three poles in the
case ηb = 0.05 and q = 0.3. For this rather disparate mixture,
it can be observed that Abb ∼ 10Asb ∼ 100Ass. The general
agreement between the RFA and WM results is fair, except for
the amplitude Abb associated with the second pole (ωσb/2π ≡
σb/λ ≈ 2) when ηs increases. Note, however, that this second
pole is never the leading one. If one focuses on the leading
and subleading poles (σb/λ ≈ 1 or σb/λ ≈ 3), the agreement
is very good.

Obviously, this complex behavior concerning the asymp-
totic decay of hi j (r) and the associated structural crossovers
emerge as a consequence of the competition between the
three basic length scales of the problem, namely, σs, σb, and
σsb. Another manifestation of this competition appears when
dealing with the sign of the first (local) minimum of hi j (r),
here denoted as hmin

i j , typically located at rmin
i j ≈ 2σi j . The

conventional expectation is hmin
i j < 0, thus signaling the be-

ginning of the oscillations around hi j (r) = 0. In fact, this is
what happens in monocomponent fluids. However, given ηb
and q, it turns out that hmin

i j > 0 if ηs is smaller than a certain

024128-10



STRUCTURAL PROPERTIES OF ADDITIVE BINARY … PHYSICAL REVIEW E 104, 024128 (2021)

FIG. 9. Same as in Fig. 7, except that q = 0.648.

transition value. The loci hmin
i j = 0 separating the conventional

behavior hmin
i j < 0 (above the locus) from the peculiar prop-

erty hmin
i j > 0 (below the locus) are shown in Fig. 11 for

q = 0.2, 0.3, and 0.4. Given a value of q, the locus hmin
ss = 0

envelops the locus hmin
sb = 0, and the latter envelops the locus

hmin
bb = 0. Additionally, the region with hmin

i j > 0 shrinks as
q increases. Moreover, the curves hmin

sb = 0 and hmin
bb = 0 for

the cases q = 0.3 and 0.4, as well as the curve hmin
ss = 0 for

q = 0.4, lose their meaning to the right of the crosses. This is
because at a larger value of ηb, hmin

i j = hi j (r ≈ 2σi j ) changes

from being a negative local minimum to being negative, but
not an extremum, as ηs decreases.

The structural crossover phenomenon is illustrated in
Fig. 12, where the decay of hbb(r) at ηb = 0.05 and (a)
ηs = 0.1 and (b) ηs = 0.3 for q = 0.3 is shown. In agree-
ment with the top rightmost panel of Fig. 7, the leading
pole changes from being the first one (wavelength λ ≈ σb)
at ηs = 0.1 to being the third one (wavelength λ ≈ σs) at
ηs = 0.3, the transition taking place at ηs 
 0.18. Addition-
ally, Fig. 12(a) shows that, at least for intermediate distances
(say, 1 < r/σb < 2), the three leading poles are needed
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FIG. 10. Plot of the amplitudes (a) Ass, (b) Asb, and (c) Abb as
functions of ηs at ηb = 0.05 for q = 0.3. The first three poles (in
order of increasing ω) are considered. The vertical thick (orange)
line at ηs 
 0.16 represents a structural crossover.

to capture the (large-wavelength) oscillations of hbb(r) at
ηs = 0.1. This situation becomes even more relevant as one
approaches the transition value ηs 
 0.18 since the damping
coefficients associated with the three first poles almost co-
incide near ηs 
 0.18 [see Fig. 7(b)]. However, at ηs = 0.3,
Fig. 12(b) shows that the leading pole is enough to account
for the (small-wavelength) oscillations, even for intermediate
distances.

V. CONCLUDING REMARKS

The results we have presented in this paper deserve more
consideration. First of all, it must be emphasized that the
good agreement found between the results of the RFA method
and those of the WM scheme in paper I [12] for a single
value of the total packing fraction (η = 0.5) and size ratio
(q = 0.648) has been hereby confirmed. Therefore, we now
have a powerful theoretical (almost completely analytic) tool
to examine the complex behavior of the structural properties
of BHS mixtures, including their asymptotic decay. In partic-
ular, we have found that, in the case of the leading pole of the
total correlation functions, given a value of ηs, the (reduced)
damping coefficient ασb generally decreases with increasing
ηb, while it exhibits a nonmonotonic dependence on ηs at fixed

FIG. 11. (a) Locus hmin
ss = 0 [i.e., line of changing sign in the

value of the first minimum of hss(r)], as predicted by the RFA, for
a size ratio q = 0.3. The insets show representative behaviors of
hss(r) above and below the locus, and the triangles are MD results.
(b) RFA predictions for the loci (from top to bottom for each q)
hmin

ss = 0 (red), hmin
sb = 0 (blue), and hmin

bb = 0 (green). The size ratios
are q = 0.2 (solid lines), q = 0.3 (dashed lines), and q = 0.4 (dotted
lines). In each case, hmin

i j > 0 in the region below the corresponding
curve. Some of the curves end at the points marked with crosses. The
triangles represent MD results.

ηb. Also, the influence of q on ασb appears to be rather weak,
although there is a general tendency for a slight decrease with
increasing q at fixed (ηb, ηs).

On the other hand, in agreement with the work of Grodon
et al. [27,29] (which considered a different approximation
and a particular value of q), we have confirmed that there
exists a crossover line (C) in the plane ηs vs ηb separating a
region (R1) where the (reduced) natural oscillation frequency
ωσb/2π ≡ σb/λ is of the order of 1 from another region (Rns ,
with ns ≈ 1/q) where σb/λ is of the order of 1/q. The former
extends to smaller values of ηs, while the latter extends to
larger values of ηs. Further, we have also found that, if q is
small enough, there is a second crossover line (C′) separating
Rns from a third region (Rns+1) where σb/λ is of the order of
the first harmonic of σb/λ = 1 that turns out to be larger than
ns. This line C′ may terminate at an end point located at a
large value of ηs and a small value of ηb, which implies that
one can move continuously between regions Rns and Rns+1 by
circumventing the end point from the left. However, except for
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FIG. 12. Big-big correlation function hbb(r) for q = 0.3, ηb =
0.05, and (a) ηs = 0.1, (b) ηs = 0.3. The (red) open circles are
MD data, while the (blue) solid, (gray) dotted, and (green) dashed
lines represent the contribution of the first (�1), second (�2), and
third (�3) pole, respectively. Note that at ηs = 0.1 the leading pole
describing the asymptotic decay of hbb(r) is �1 and at ηs = 0.3 it is
�3.

small q, this line tends to lie above the region ηs + ηb = 0.5,
where the fluid phase is expected to coexist with the solid

one. Finally, we have also shown that the above scenario can
even be more complex, with additional crossover lines (C′
separating Rns from Rns−1 and C′′ separating R1 from Rns−1)
and splitting points, as the total packing fraction η = ηs + ηb

increases or the size ratio q decreases. One important issue,
which remains to be assessed, is to understand the behavior of
the crossover lines in the limiting region ηb → 0. It should be
remarked that this region is hardly accessible by simulations
but certainly needs to be studied in more depth.

To close this paper, two other outcomes of our work are
worth pointing out. The first one concerns the value of the first
local minimum in the total correlation function hi j (r), which
changes sign as one crosses a certain transition line which
depends on q and the pair under consideration. This point is
dealt with by Fig. 11. The second is that the direct correlation
function csb(r) is not monotonic in the region 0 < r < σsb

and presents a well-defined minimum. To our knowledge, this
feature has not been pointed out before. Due to the fact that
we are persuaded that this finding is relevant, we will address
this point and analyze it in detail in the following (third) paper
of this series.
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