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A GENERALIZED GALERKIN METHOD FOR CUBIC OSCILLATORS 

1. INTRODUCTION 

In a recent paper Chen [l] pointed out that the Galerkin method is not as straightforward 
as usually supposed: the weighting functions that this method uses are not always known 
Q priori. Chen gave a generalized Galerkin procedure for oscillators that avoids this 
problem. This procedure will be briefly expounded in section 2. The purpose of the 
present communication is to show that this Galerkin method is especially suitable for 
cubic oscillators whose trial solutions are given in terms of Jacobi elliptic functions, 
because the choice of weighting functions for this type of solution is difficult. 

In section 3, the generalized Galerkin method is shown to be directly applicable to 
perturbed pure cubic oscillators, 

ij+C,q3+&h(q, fj)=O, (1) 
withc,> Oand~asmallparameter.Insection4,theprocedureforperturbedcubicoscillators, 

cj’+c,q+c,q’+Eh(q, fj)=O, (2) 
is shown also to be straightforward, although it is necessary to obtain a further additional 
Galerkin condition, besides the additional condition given by Chen [l]. 

2. THE GENERALIZED GALERKIN METHOD FOR NON-LINEAR OSCILLATORS 

In this section, the method is expounded for equations with only one degree of freedom. 
The method starts from the differential equation of motion (Lagrange equation): 

E(q)=; $ -+o, ( > (3) 

where L is the Lagrangian of the system and Q is a non-potential force. If the exact 
solution q(t) is replaced with-the trial solution G(t), E(i) = g is no longer zero. According 
to the d’Alembert principle, E can be thought of as a “residual” force. In Chen’s procedure 
the unknown parameters of the trial solution are chosen to make the average “residual” 
work over a certain time interval equal to zero: 

i 

‘I 
&i dt = 0. (4) 

1,1 

For problems having periodic solutions, one assumes that the trial solution has the form 
i = Ap(wt), where p is a periodic function with period T, i.e., p(wt + T) = p(ot). Either 
the period T (or the half-period) is taken as the time interval of integration. 

If w is known (as in the steady response of forced oscillations, for example) 64 = 
p(wt)GA and equation (4) reduces to the ordinary Galerkin condition 

I 

1 
.&wt) dt = 0. 

0 

But if w is unknown (as in self-excited oscillations) w is also subjected to variation and 

6~=p(wt)GA+Ap,(wt)c% =p($)SA+Atp,($)Sw, 
where + = wt, pm = ap/b and pa = ap/a$. From equation (4) one now obtains 

I 

7 T 

Ep($)dt=O, gAtp,($) dt = 0. (h b) 
0 
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The first identity is the ordinary Galerkin condition, and the second is the additional 
Galerkin condition given by Chen. 

3. PERTURBED PURE CUBIC‘ OSCILLATORS 

The trial solution used for the perturbed pure cubic oscillator, described by equation 
(l), is the solution of the non-perturbed oscillator 9+ c,9’ = 0, that is, 

q(t) = A cn (wt, m = l/2) = A cn, 

with W’ = c,A’, and where m is the parameter of the Jacobi elliptic function cn (the 
elliptic function notation is that of reference [2]). Then 

69=cnSA-Atsndn6w 

where sn = sn (4, l/2) and dn = dn (Jr, l/2). The Galerkin conditions are then 

I 

T 

I 

T 

i cndt=O, EAt sn dn dt = 0, (6a, b) 
0 0 

where T = 4K(1/2)/w = 4K/w, with K= I.85407 . . the complete elliptic integral of the 
first kind of parameter m = l/2. Two examples follow. 

3.1. The Vun der Pol pure cubic oscillator 

The equation is 
~+Cj93-F(cY-/392)Lj=0, 

and therefore 

E = -AU* cn’+ c,A3 cn3 + FAW ( (Y - PA’ cn’) sn dn. 

Carrying out the integrations of equation (6), one easily finds (see reference [3]) from 
condition (6a) that W* = c,A*, and from condition (6b) that 

A*= (5a/3P)/[2(E/K) - l] = 3.6474a//3, 

where E = E( l/2) = 1.35064.. . is the complete elliptic integral of the second kind of 
parameter m = l/2. These results are the same as those obtained in reference [4] by using 
a harmonic balance method. 

3.2. Dufing’s oscillator 

This oscillator is 
ij+E9+C393=0, (7) 

and therefore 

g = (-Awl+ c,A’) cni + E-A cn. 

As A and w are connected in this oscillator, equations (6a) and (6b) are not independent. 
From equation (6a) one obtains [3] 

w2=c3A2+e(6E/K-3)=r,A-+1.3708&, 

but from equation (6b) one also obtains [3] 

w*= c,A*+ &6(1- E/K) = c3A’+ 1.6292.~. 

As Chen discusses in reference [l], this “contradiction” serves as a measure of the 
approximation of the solution. 

The harmonic balance method expounded in reference [4], gives wz = c,A’+ (4/3)e. 
A weighted mean “cubication” method for conservative oscillators [5] gives W’ = 

c3AZ + (s +7/s + 5)s, where s is a parameter chosen so that the approximate solution of 
equation (7) has the same period as the exact solution. Usually the choice s = 0 gives 
good results. 
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4. PERTURBED CUBIC OSCILLATORS 

The trial solution used for the perturbed cubic oscillator of equation (2) is the solution 
of the non-perturbed oscillator 

4+c1q+cxq3=o. (8) 

Before continuing it will be convenient to define some useful quantities: the non-linearity 
factor, v = c,A*/c,; total energy of oscillation, En = c,A’+ c,A4/2; and the maximum or 
minimum potential, V, = c:/(2c3). 

Equation (8) has three solutions of the form 4 = Ap(wt, m), where p is a Jacobi 
elliptic function: (i) g = A cn (wt, m) 5 A cn, with w2 = c,( 1 + v), m = v/[2( 1 + v)], T = 
4 K(m)/w when c, > 0, c3 > 0 (hard oscillator) or when c, < 0, c3 > 0 and En 3 0 (soft- 
hard oscillator); (ii) @= A cd (wf, m) = A cd, with W* = c,(l+ v/2), m = -v/(2+ v), 
T = 4K(m)/w when cr > 0, c3 < 0 and O< En < V,,, (hard-soft oscillator); (iii) 4 = 
Adn(wt,m)=Adn, with w2=c,v/2, m=2(1+l/v), T=2K(m)/w when c,<O, c,>O 
and En s 0 (soft-hard oscillator). 

When, as in the next example, A, w and m are unknown, not only A and w, but also 
m must be subjected to variation in following Chen’s procedure: i.e., one has 

%=P($, m)aA+AAfp,($, m)Sw+Ap,(clr, m)am. 

There is, therefore, another additional Galerkin condition 
T 

.6Ap,( +, m) dt = 0. (9) 

4.1. An example: the Van der Pol cubic oscillator 
This oscillator (also called the Van der Pal-Duffing oscillator) is 

~+c,q+C,q3-E((Y-~q2)Cj=0. 

For the class (i) of oscillators one has [3] 

Sq”=cn6A-AtsndnSw+Asndn[-m,cl,-E(rCI)-msncd]6m/(2mm,), 

where m1 = 1 - m and where E($) = E($, m) is the incomplete elliptic integral of the 
second kind. The three Galerkin conditions, (5a), (5b) and (9), are now 

I 

4K 4K 

,6cnd$=O, 
0 I 

E( -At sn dn) d$ = 0, 
0 

I 

4K 

E{Asndn[-m,+-E(+)-m sncd]/(2mm,)}dJI, (10) 
0 

where 

~=A[-w2(1-2m)+c,]cn+[-2w2m+c3A2]Acn3+~(a-~A2cn2)Awsndn 

and K= K(m). By using various properties of the elliptic functions [3], it is not too 
difficult to derive the following system of equations from the above three conditions (10): 

c, -w*(l-2m) =0, c,A2 - 2w2m = 0, 

I 

4K 

I 

4K 
A*=(Y sn* dn2 d$/p sn2 cn2 dn2 d$, (11) 

0 0 

i.e. (see reference [3]), 

A2=(a/5~m){[(2m-l)E-m,K]/[2(m*+m,)E+m,(m-2)K]) 
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where E = E(m). In a similar form one finds for the class (ii) 

c,-0*(1+m)=o, c~A2+2w2m =O, 

I 

4K 4K 

A*=a sd2 nd* d+/ p sd2 nd2 cd* d+, 
0 I 0 

i.e. (see reference [3]), 

335 

(12) 

A’=(cr/5/3m){[(l+m)E-m,K]/[2(m’+m,)E+m,(m-2)K]]. 

Also, for the class (iii), 

c,-w*(m-2)=0, c,A’- 20~ = 0, 

I 

2K 2K 

A’=cY sn* cn2 d$/P 
I 

sn2 cn* dn2 d+, 
0 0 

i.e. (see reference [3]), 

(13) 

A’=((r/5@){[(2-m)E-2m,K]/[2(m2+m,)E+m,(m-2)K]}. 

Solving these systems gives the values of A, w and m for each limit cycle. The results 
are good: the expressions (ll)-(13) are the same as those obtained using the harmonic 
balance method (see references [6,7]). 

5. CONCLUSIONS 

The generalized Galerkin method expounded by Chen has been shown to be applicable 
when the trial solutions are Jacobi elliptic functions, not only when they are circular 
functions. The elliptic functions are particularly suitable for cubic oscillators. The applica- 
tion of Chen’s procedure is straightforward when the parameter of the Jacobi elliptic 
function is known apriori, as for example when m = l/2 for perturbed pure cubic oscillators 
or when m =0, i.e., when the Jacobi elliptic function reduces to a circular function 
(cn ($, m = 0) = cos ($)) for perturbed linear oscillators. But for perturbed cubic oscil- 
lators the elliptic parameter is unknown, and then one must add another additional 
Galerkin condition (corresponding to this parameter) to that given by Chen. The results 
for the examples studied were good, some of them coinciding with results obtained from 
the harmonic balance method. 
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