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RADIAL DISTRIBUTION FUNCTIONS IN HARD-SPHERE
MIXTURES ∗

SANTOS BRAVO YUSTE†, ANDRÉS SANTOS† AND MARIANO LÓPEZ DE HARO‡

As is well known, hard-sphere systems play a fundamental role in the study of
liquids at equilibrium, not only from a theoretical point of view, but also because they
are frequently used as reference systems in perturbation theories. Therefore, it is of
paramount interest to have simple and accurate expressions for the radial distribution
function of those systems in the whole range of densities corresponding to the fluid
phase. The problem is especially intricate in the case of an N -component mixture
made of ρi hard spheres (of diameter σi) per volume unit, where i = 1, . . . , N . In
that case, there exist N(N + 1)/2 radial distribution functions gij(r) and 2N − 1
independent parameters characterizing the mixture (for instance, the N − 1 molar
fractions xi, the N − 1 size ratios σi/σ1, and the packing fraction η = π

6

∑
i ρiσ

3
i ). A

quite good approximation is given by Lebowitz’s [2] exact solution of the Ornstein-
Zernike equation with the Percus-Yevick (PY) closure, namely cij(r) = 0 for r >
σij ≡ (σi + σj)/2, where cij(r) are the direct correlation functions. Nonetheless,
comparison with simulation data shows the existence of some deficiencies, similar
to those already found in the one-component case. A remarkable improvement is
obtained by means of the “Generalized Mean Spherical Approximation” (GMSA) [1],
in which the closure relation reads cij(r) = Kije

−zr/r for r > σij ; the parameters Kij

and z can be chosen by imposing, for example, given values for gij(σ+
ij) and for the

isothermal compressibility κT . However, the practical implementation of the GMSA
requires to solve, on the one hand, two nonlinear sets N2 equations each (for given
Kij and z) and, on the other hand, a nonlinear set of N(N + 1)/2 + 1 equations in
order to get Kij and z from gij(σ+

ij) and κT .
In this work we briefly describe an alternative method to obtain gij(r) which,

while giving results equivalent to those of the GMSA, is much simpler to implement.
This method [4] is an extension to mixtures of the one previously applied to one-
component systems of hard spheres, sticky hard spheres, and square wells [3]. As
happens in the PY and GMSA theories, it is convenient to work in the Laplace space
and define Gij(s) =

∫∞
0

dr e−srrgij(r). There are two basic requirements that Gij(s)
must satisfy. First, gij(r) = 0 for r < σij and gij(σ+

ij) = finite, which implies that (i)
lims→∞ sesσij Gij(s) = finite. Second, κT = finite, so that (ii) lims→0[Gij(s)− s−2] =
finite. The approximation we propose consists of assuming the following functional
form:

Gij(s) =
e−sσij

2πs2

∑

k

Lik(s)[(1 + αs)I− A(s)]−1
kj ,

where Lij(s) = L
(0)
ij + L

(1)
ij s + L

(2)
ij s2 and Aij(s) = ρi

∑2
n=0 ϕn(sσi)σn+1

i L
(2−n)
ij , with

ϕn(x) ≡ x−(n+1)[
∑n

m=0(−x)m/m! − e−x]. Condition (i) is verified by construction.
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Fig. 1. Plot of g11(r) for ternary mixtures with η = 0.49, σ1 = 1, σ2 = 0.5, σ3 = 0.25,
x1 = 0.05, and x2 = 0, 0.1, 0.25, 0.55, 0.95. The solid and dashed lines correspond to this work and
the PY solution, respectively.

On the other hand, condition (ii) yields two linear sets of N2 equations each, whose
solution is straightforward: L

(0)
ij = λ + λ′σj + 2λ′α − λ

∑
k ρkσkL

(2)
kj , L

(1)
ij = λσij +

λ′
2 σiσj+(λ+λ′σi)α−λ

2 σi

∑
k ρkσkL

(2)
kj , where λ ≡ 2π/(1−η) and λ′ ≡ (λ/2)2

∑
k ρkσ2

k.

The parameters L
(2)
ij and α (which play a role similar to that of the parameters Kij

and z in the GMSA) are arbitrary, so that conditions (i) y (ii) are satisfied regardless of
their choice. In particular, if one chooses L

(2)
ij = α = 0, our approximation coincides

with the PY solution. If, on the other hand, we fix given values for gij(σ+
ij), we

get the relationship L
(2)
ij = 2πασijgij(σ+

ij); thus, only α remains to be determined.
Finally, if we fix κT , we obtain a closed equation for α of degree 2N . The comparison
with simulation data shows a significant improvement of the results obtained from our
method (by using the values of gij(σ+

ij) and κT given by the BMCSL equation of state)
with respect to the PY solution, particularly in the vicinity of the contact points. In
addition, we have verified that in the binary case a high degree of consistency between
the five thermodynamics routes to the equation of state exists. For details, see Ref.
[4]. As a complement to the cases considered in Ref. [4], we plot in Fig. 1 the radial
distribution function g11(r) for several ternary mixtures.

The work reported here and in Ref. [4] can be extended in a number of directions.
For instance, one could use as input an equation of state different from the BMCSL
(e.g., one predicting the demixing transition) and analyze its influence on the structure
of the mixture. It is also possible to apply the same approach to mixtures of particles
interacting via the sticky-hard-sphere model or, more generally, via the square-well
interaction A more difficult, but yet quite interesting, situation is that of non-additive
mixtures.
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