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Structure of the square-shoulder fluid
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The structural properties of square-shoulder fluids are derived from the use of the rational function
approximation method. The computation of both the radial distribution function and the static structure
factor involves mostly analytical steps, requiring only the numerical solution of a single transcendental equation.
The comparison with available simulation data and with numerical solutions of the Percus–Yevick and
hypernetted-chain integral equations shows that the present approximation represents an improvement over the
Percus–Yevick theory for this system and a reasonable compromise between accuracy and simplicity.
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1. Introduction

It is well known that the inclusion of attractive
interactions in the intermolecular potential used to
describe a fluid is crucial to obtain a liquid–vapour
transition. Perhaps the simplest model accounting for
this fact is the square-well (SW) fluid in which the
interaction potential is given by

�SWðrÞ ¼

1, r5 �,

��, �5 r5 ��,

0, r4 ��,

8<
: ð1Þ

where r is the distance, � is the diameter of the hard
core, �40 is the well depth and ð�� 1Þ� is the well
width. The thermodynamic properties of the SW fluid
only depend on three dimensionless parameters,
namely the packing fraction � � ðp=6Þ��3 (� being
the number density), the reduced temperature
T � ¼ kBT=� (kB and T being the Boltzmann constant
and the absolute temperature, respectively) and the
width parameter �. Due to the combined assets of
relative simplicity and ‘realistic’ features, the SW fluid
has been studied thoroughly using both theoretical
approaches and simulations (see, for example, [1–20]
and references therein).

Another closely related interaction potential is the
‘square-shoulder’ (SS) potential, that has also been
considered in the literature. It reads

�SSðrÞ ¼

1, r5 �,

�, �5 r5 ��,

0, r4 ��:

8<
: ð2Þ

This purely repulsive potential, apparently considered

first by Hemmer and Stell 40 years ago [21], has been

the subject of recent attention [22–41]. On the one

hand, it may lead to an isostructural solid–solid

transition [22], to a fluid–solid coexisting line with a

maximum melting temperature [23], to unusual phase

behaviour [24–26] and to a rich variety of

(self-organized) ordered structures [27–30]. On the

other hand, it is the simplest model belonging to

the class of core-softened potential models for fluids

that have been used to study a number of interesting

substances such as water [31], metallic systems [32],

colloidal suspensions [33] and aqueous solutions of

electrolytes [34].
It should also be noted that, as in the SW case, the

thermodynamic properties of the SS system only

depend on the packing fraction �, the reduced temper-
ature T * and the width parameter �. Further, the SS
potential becomes equivalent to a hard-sphere (HS)

interaction of diameter � in the high-temperature limit
(T� ! 1) or in the limit of vanishing shoulder width
(�!1), and to an HS interaction of diameter �� in the

low-temperature limit (T * ! 0).
Despite the simplicity of the SS potential, so far no

exact results for the thermodynamic or structural
properties of this system are available. Further, even

in the simplest approximation within the integral
equation approach for the study of liquids,
namely the Percus–Yevick (PY) closure for the

Ornstein–Zernike (OZ) integral equation, no analytical
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results have been derived for the SS fluid, Very

recently, Zhou and Solana [39] have reported simula-

tions and theoretical results based on a bridge function

approximation to close the OZ equation, while

Guillén-Escamilla et al. [40] have also presented
simulation results and a parametrization of the direct

correlation function which quantitatively agrees with

the numerical solution of the OZ equation within the

PY approximation.
Several years ago two of us [5] derived approximate

analytical results for the structural properties of the

SW fluid using a methodology that has proved useful

for many other systems [42]. Exploiting the fact that

this methodology does not make explicit use of the

positive character of the well depth, the major aim of
this paper is to extend it to the SS system and compare

the resulting structure with the simulation data avail-

able to our knowledge in the literature, namely those

just mentioned by Zhou and Solana [39] and Guillén-

Escamilla et al. [40], as well as the data in the paper by
Lang et al. [7]. Also, given the fact that our approach

represents an alternative analytical route to the integral

equation approach for the structural properties of

fluids, we will further assess its merits for the SS fluid

by comparing our results with those we have obtained
from the numerical solution of the OZ equation both

with the PY and the hypernetted-chain (HNC)

closures.
The paper is organized as follows. In order to make

it self-contained, in the next section we present the
derivation of the structural properties of the SS fluid

using the methodology that we refer to as the Rational

Function Approximation (RFA). This is followed in

Section 3 by a comparison of our analytical approx-

imation and of the numerical solution of the PY and
HNC equations for the SS potential with the available

simulation results. The paper is closed in Section 4 with

further discussion and concluding remarks.

2. Radial distribution function of the square-shoulder

fluid

In this section, we present our proposal for the

structural properties of the SS fluid. It follows very

closely the parallel derivation for the SW fluid as
presented in [42].

2.1. Physical requirements

As in previous works [43], it is convenient to consider
the Laplace transform of rg(r), where g(r) is the radial

distribution function (rdf), namely

GðsÞ ¼

Z 1
0

dr expð�srÞrgðrÞ ð3Þ

and the auxiliary function �(s) defined through

GðsÞ ¼
1

2p
s

�þ expðs�ÞCðsÞ
: ð4Þ

The choice of G(s) as the Laplace transform of rg(r)

and the definition of �(s) from Equation (4) are

suggested by the exact form of g(r) to first order in

density [5].
Since g(r) ¼ 0 for r5� while gð�þÞ ¼ finite, one has

gðrÞ ¼ Yðr� �Þ gð�þÞ þ g0ð�þÞðr� �Þ þ � � �
� �

, ð5Þ

where g0ðrÞ � dgðrÞ=dr and Y xð Þ is the Heaviside step

function. The foregoing property imposes a constraint

on the large-s behaviour of G(s), namely

expð�sÞsGðsÞ ¼ �gð�þÞþ gð�þÞþ�g0ð�þÞ
� �

s�1þOðs�2Þ:

ð6Þ

Therefore, lims!1 expðs�ÞsGðsÞ ¼ �gð�þÞ ¼ finite or,

equivalently,

lim
s!1

s�2CðsÞ ¼
1

2p�gð�þÞ
¼ finite: ð7Þ

On the other hand, according to the definition of

the (reduced) isothermal compressibility

� � kBT
@�

@p

� �
T

¼ 1þ 24���3
Z 1
0

dr r2 gðrÞ � 1½ �, ð8Þ

it follows that

� ¼ 1� 24���3 lim
s!0

d

ds

Z 1
0

dr expð�srÞr gðrÞ � 1½ �

¼ 1� 24���3 lim
s!0

d

ds
GðsÞ � s�2
� �

: ð9Þ

Since the isothermal compressibility � is also finite, one

has
R1
0 dr r2 gðrÞ � 1½ � ¼ finite, so that the weaker

condition
R1
0 dr r gðrÞ � 1½ � ¼ lims!0½GðsÞ � s�2� ¼

finite must hold. This in turn implies

CðsÞ ¼ ��þ ��s�
1

2
��2s2 þ

1

6
��3 þ

1

2p

� �
s3

�
1

24
��3 þ

1

2p

� �
�s4 þOðs5Þ: ð10Þ
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Equation (4) can be formally rewritten as

GðsÞ ¼ �
s

2p

X1
n¼1

�n�1 �CðsÞ½ �
�nexpð�ns�Þ: ð11Þ

Thus, the rdf is given by

g rð Þ ¼
1

2pr

X1
n¼1

�n�1 n r� n�ð ÞY r� n�ð Þ, ð12Þ

with

 n rð Þ ¼ �L�1 s �C sð Þ½ �
�n

� �
, ð13Þ

L
�1 denoting the inverse Laplace transform.
So far, Equations (4), (7), (10) and (12) apply

exactly to any interaction potential having a hard core
at r ¼ �. This includes, among other models, the HS,
SW and SS potentials.

For the SS potential given in Equation (2), G(s)
must reflect the fact that g(r) is discontinuous at r ¼ ��
as a consequence of the discontinuity of the potential
�SSðrÞ and the continuity of the cavity function
yðrÞ ¼ exp �SSðrÞ=kBT½ � gðrÞ. This implies that G(s),
and hence �(s), must contain the exponential term
exp½�ð�� 1Þ�s�. This manifests itself in the low-density
limit, where the condition lim�!0 yðrÞ ¼ 1 yields

lim
�!0

gðrÞ ¼

0, r5 �,

expð�1=T �Þ, �5 r5 ��,

1, r4 ��,

8><
>: ð14Þ

lim
�!0

GðsÞ ¼ expð�1=T �Þ expð��sÞ
1þ �s

s2

þ 1� expð�1=T �Þ½ � expð���sÞ
1þ ��s

s2
:

ð15Þ

Therefore, from Equation (4) we have

lim
�!0

CðsÞ ¼
s3

2p
expð�1=T �Þð1þ sÞ þ exp½�ð�� 1Þs�½

� ½1� expð�1=T �Þ�ð1þ �sÞ��1, ð16Þ

where we have taken, without loss of generality, �¼ 1.
This means that in what follows all distances are
measured in units of the hard-core diameter �.

Equations (7), (10) and (16) are basic exact prop-
erties that any reasonable approximation for �(s) must
fulfill.

2.2. The rational function approximation

In the spirit of the RFA method that has been used in
other cases [42], and following the same rationale as for
the SW fluid [5], the simplest form that complies with

Equation (7) and is consistent with Equation (16) is

CðsÞ ¼
1

2p
�12�þ A1sþ A2s

2 þ A3s
3

1� B0 þ B1sþ exp½�ð�� 1Þs� B0 þ B2sð Þ
,

ð17Þ

where the coefficients B0, B1, B2, A1, A2 and A3 are

functions of �, T * and �. Comparison with

Equation (16) shows that in the limit �! 0 one must

have A1! 0, A2! 0, A3! 1, B0! 1� expð�1=T�Þ,
B1! expð�1=T�Þ and B2!½1� expð�1=T�Þ��.

The condition (10) allows one to express the

parameters B1, A1, A2 and A3 as linear functions of

B0 and B2 [5,10]:

B1 ¼
1

1þ 2�

h
1þ

�

2
� 2�ð�3 � 1ÞB2

þ
�

2
ð�� 1Þ2ð�2 þ 2�þ 3ÞB0

i
� B2 þ ð�� 1ÞB0,

ð18Þ

A1¼
6�2

1þ2�

h
3þ4ð�3�1ÞB2�ð��1Þ2ð�2þ2�þ3ÞB0

i
,

ð19Þ

A2 ¼
6�

1þ 2�
1� �þ 2ð�� 1Þ 1� 2��ð�þ 1Þ½ �B2

�
� ð�� 1Þ2 ð1� �ð�þ 1Þ2

� �
B0

�
, ð20Þ

A3 ¼
1

1þ 2�

n
ð1� �Þ2 � 6�ð�� 1Þ �þ 1� 2��2

� 	
B2

þ �ð�� 1Þ2½4þ 2�� �ð3�2 þ 2�þ 1Þ�B0

o
: ð21Þ

From Equations (7) and (17), we have

gð1þÞ ¼
B1

A3
: ð22Þ

More generally, the complete rdf follows from

Equations (12), (13) and (17). In particular,

 1ðrÞ¼ 10ðrÞYðrÞþ 11ðrþ1��ÞYðrþ1��Þ, ð23Þ

 2ðrÞ ¼  20ðrÞYðrÞ þ  21ðrþ 1� �ÞYðrþ 1� �Þ

þ  22ðrþ 2� 2�ÞYðrþ 2� 2�Þ, ð24Þ

where

 1kðrÞ ¼ 2p
X3
i¼1

W1kðsiÞ

A0ðsiÞ
si expðsirÞ, ð25Þ

 2kðrÞ ¼ �4p2
X3
i¼1

rW2kðsiÞ þW02kðsiÞ �W2kðsiÞ
A00ðsiÞ

A0ðsiÞ


 �

�
expðsirÞ

½A0ðsiÞ�
2
: ð26Þ
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Here, si are the three roots of AðsÞ � �12�þ
A1sþ A2s

2 þ A3s
3, the primes denote derivatives with

respect to s and the functions W1kðsÞ and W2kðsÞ are

defined as

W10ðsÞ � 1� B0 þ B1s, W11ðsÞ � B0 þ B2s, ð27aÞ

W20ðsÞ � s½W10ðsÞ�
2, W22ðsÞ � s½W11ðsÞ�

2, ð27bÞ

W21ðsÞ � 2sW10ðsÞW11ðsÞ: ð27cÞ

To close the proposal, we need to determine the

parameters B0 and B2 by imposing two new conditions.

An obvious condition is the continuity of the cavity

function at r¼ �, what implies

gð��Þ ¼ expð�1=T �Þ gð�þÞ: ð28Þ

From Equations (12) and (23), assuming �52, one has

gð��Þ ¼
 10ð�� 1Þ

2p�
, ð29Þ

gð�þÞ ¼
 10ð�� 1Þ þ  11ð0Þ

2p�
: ð30Þ

Thus, Equation (28) yields

 10ð�� 1Þ ¼
 11ð0Þ

expð1=T �Þ � 1
: ð31Þ

Equations (13) and (17) imply  11ð0Þ ¼ 2pB2=A3.

Therefore, making use of Equation (25), one gets

X3
i¼1

1� B0 þ B1si

A1 þ 2A2si þ 3A3s
2
i

si exp½sið�� 1Þ�

¼
B2

expð1=T �Þ � 1½ �A3
: ð32Þ

Note that, taking into account (31), Equations (29)

and (30) can be rewritten as

gð��Þ ¼
B2

� expð1=T �Þ � 1½ �A3
, ð33Þ

gð�þÞ ¼
B2

� 1� expð�1=T �Þ½ �A3
: ð34Þ

As an extra condition, we could enforce the

continuity of the first derivative y0(r) at r¼ � [9].

However, this complicates the problem too much

without any relevant gain in accuracy. In principle, it

might be possible to impose consistency with a given

equation of state, via either the virial route, the

compressibility route, or the energy route. But this is

not practical since no simple equation of state for SS

fluids is at our disposal for wide values of density,

temperature and range. As a compromise between
simplicity and accuracy, we fix the parameter B0 at its
exact zero-density limit value, namely [5]

B0 ¼ 1� expð�1=T �Þ: ð35Þ

Therefore, Equation (32) becomes a transcendental
equation for B2 that needs to be solved numerically.

In summary, Equations (18)–(21), (32) and (35)
provide the coefficients A1, A2, A3, B0, B1 and B2 as
functions of �, T * and �. This in turn determines the
Laplace transform G(s) via Equations (4) and (17).
The rdf g(r) can be obtained by numerically inverting
G(s) or, alternatively, by means of Equations (12)
and (13).

As a further asset of our present formulation, we
must point out that, once G(s) is determined, the static
structure factor S(q) (where q is the wavevector) of the
SS fluid may be readily obtained as

SðqÞ ¼ 1þ �

Z
dr expð�iq � rÞ½ gðrÞ � 1�

¼ 1� 2p�
GðsÞ � Gð�sÞ

s

����
s¼iq

, ð36Þ

where i is the imaginary unit.
Finally, as proven in the Appendix, the RFA

proposal (17) reduces to the exact solution of the PY
equation [44,45] in three independent HS limits:
(a) �!1, (b) T � ! 1 and (c) T * ! 0.

Before closing this section a further comment is in
order. Our RFA approach has been based upon
the exact rdf, gexðrÞ, at zero density [cf.
Equations (14)–(16)]. On the other hand, it can be
shown that, to first order in density, gRFAðrÞ differs
from gexðrÞ in the region 1 � r � �. More
specifically [5],

lim
�!0

DgðrÞ
�
¼ expð�1=T �Þ 1� expð�1=T �Þ½ �ð�� 1Þ

�
�� r

r
ð�� 1Þ2 � 3ð�þ 1Þðr� 1Þ
� �

�Yðr� 1ÞYð�� rÞ, ð37Þ

where DgðrÞ � gRFAðrÞ � gexðrÞ. This drawback could
be corrected by a modified RFA (mRFA) of the
form [46]

gmRFAðrÞ ¼ gRFAðrÞ exp ��QðrÞYð�� rÞ½ � ð38Þ

with

QðrÞ ¼
�� r

r
Q0 �Q1ðr� 1Þ½ �, ð39Þ

such that lim�!0 Q0 ¼ 1� expð�1=T �Þ½ �ð�� 1Þ3 and
lim�!0 Q1 ¼ 3 1� expð�1=T �Þ½ �ð�2 � 1Þ. The coeffi-
cients Q0 and Q1 for finite � could be determined by
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imposing two extra conditions, such as the continuity of
y0(r) and y00(r) at r¼ �. Nevertheless, since such condi-
tions again lead to technical complications and their
usefulness is not known a priori, for the sake of
simplicity we restrict ourselves here to the unmodified
RFA described by Equations (4), (17)–(21), (32)
and (35). The limitations imposed by this restriction
may be assessed from the examination of the final
results.

3. Comparison with simulation data and integral

equation theories

In order to assess the value of our theoretical approx-
imation for the structural properties of SS fluids, in
this section we perform a comparison between the
results obtained with our approach and those obtained
both from simulation and from our own numerical
solution of the PY and HNC integral equations.

As far as we know, the available simulation data
for the rdf of the SS fluid as a function of distance at
various packing fractions are those of Lang et al. [7],
Zhou and Solana [39] and Guillén-Escamilla et al. [40].
Although we have made a comparison with all these
data, in Figures 1–8 we only show graphs of g(r) versus
r for some representative cases. Since our development
is inspired by and reduces to the form of the solution of
the PY equation for HS fluids (see the Appendix), we
have also included in the figures the results that we
have obtained from the numerical solution of the PY
equation for the SS fluid, as well as those stemming out
of the HNC equation for the same system.1

We start by fixing a shoulder width parameter
�¼ 1.5 and a relatively high reduced temperature
T *¼ 2. Figures 1 and 2 show g(r) for packing fractions

Figure 4. Radial distribution function g(r) as a function of
distance r for an SS fluid having �¼ 1.5, T *¼ 0.5 and �¼ 0.4
as obtained from the RFA approach (solid line), the PY
equation (dashed line), the HNC equation (dotted line) and
simulation data from [7] (circles).

Figure 2. Radial distribution function g(r) as a function of
distance r for an SS fluid having �¼ 1.5, T *¼ 2 and
�¼ 0.4189 (��3 ¼ 0:8) as obtained from the RFA approach
(solid line), the PY equation (dashed line), the HNC equation
(dotted line) and simulation data from [40] (circles).

Figure 3. Radial distribution function g(r) as a function of
distance r for an SS fluid having �¼ 1.5, T *¼ 0.5 and
�¼ 0.2094 (��3 ¼ 0:4) as obtained from the RFA approach
(solid line), the PY equation (dashed line), the HNC equation
(dotted line) and simulation data from [39] (circles).

Figure 1. Radial distribution function g(r) as a function of
distance r for an SS fluid having �¼ 1.5, T *¼ 2 and
�¼ 0.3142 (��3 ¼ 0:6) as obtained from the RFA approach
(solid line), the PY equation (dashed line), the HNC equation
(dotted line) and simulation data from [40] (circles).
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�¼ 0.3142 and �¼ 0.4189, respectively. We observe a
general good behaviour of the RFA, except that it
underestimates the rdf near r¼ 1. Interestingly, the
performance of the RFA is clearly better than that of
the numerical solution of the PY integral equation. On
the other hand, the numerical solution of the HNC
integral equation shows an excellent agreement with
the simulation data.

The above features become much more apparent at
a relatively low reduced temperature T *¼ 0.5, as
Figures 3 and 4 show. At �¼ 0.2094 the limitations
of the RFA are essentially restricted to the contact
region r01. However, the RFA becomes much less
reliable at the larger density �¼ 0.4. Again, the PY is
rather poor, even at �¼ 0.2094, while the HNC keeps
being very good.

It is interesting to analyse the influence of temper-
ature for a fixed value of � and �. This can be achieved
by comparing Figures 2, 4 and 5 (even though the
packing fraction in the case of Figure 2 is not exactly the
same as that of Figures 4 and 5). As the temperature
decreases, the contact value increases moderately and
also g(r) for r02 becomes more structured, especially
when going from T *¼ 1 (Figure 5) to T *¼ 0.5
(Figure 4). The strongest influence of temperature
occurs in the region r	 �, the discontinuity at r¼ �
being much more pronounced as the temperature
decreases, as expected on physical grounds.

To assess the influence of the shoulder width we
consider the choice �¼ 1.2 in Figures 6 and 7, both at a
common packing fraction �¼ 0.4. As before, the RFA
underestimates g(r) near r¼ 1, this effect being more
important in the case of the PY theory. However, the
HNC solution is very reliable in that region. Upon
comparison between Figures 5 and 6, on the one hand,

Figure 7. Radial distribution function g(r) as a function of
distance r for an SS fluid having �¼ 1.2, T *¼ 0.5 and �¼ 0.4
as obtained from the RFA approach (solid line), the PY
equation (dashed line), the HNC equation (dotted line) and
simulation data from [7] (circles).

Figure 6. Radial distribution function g(r) as a function of
distance r for an SS fluid having �¼ 1.2, T *¼ 1, �¼ 0.4 and
as obtained from the RFA approach (solid line), the PY
equation (dashed line), the HNC equation (dotted line) and
simulation data from [7] (circles).

Figure 5. Radial distribution function g(r) as a function of
distance r for an SS fluid having �¼ 1.5, T *¼ 1 and �¼ 0.4
as obtained from the RFA approach (solid line), the PY
equation (dashed line), the HNC equation (dotted line) and
simulation data from [7] (circles).

Figure 8. Radial distribution function g(r) as a function of
distance r for an SS fluid having �¼ 1.3, T *¼ 5 and
�¼ 0.4189 (��3 ¼ 0:8) as obtained from the RFA approach
(solid line), the PY equation (dashed line), the HNC equation
(dotted line) and simulation data from [40] (circles).
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and Figures 4 and 7, on the other hand, one may
observe that shrinking the shoulder at fixed tempera-
ture and density makes the RFA and, to a lesser extent,
the PY approximation become more reliable, while the
HNC approximation is slightly less accurate.

The above conclusion is consistent with the fact
that the SS model becomes closer and closer to the HS
model as the shoulder width decreases. In this HS limit
the RFA reduces to Wertheim–Thiele’s [44] exact
solution of the PY equation (see the Appendix) and
it is well known that such a solution is much more
accurate than the HNC numerical solution for the HS
fluid. Since the HS potential is also reached from the
the SS one in the high-temperature limit (T � ! 1), a
better performance of both RFA and PY over HNC
can be expected to hold for sufficiently high temper-
atures. This is confirmed by Figure 8 in the case
�¼ 1.3, T *¼ 5 and �¼ 0.4189 (��3 ¼ 0:8). In this
state, the HNC theory clearly overestimates the contact
value, a characteristic feature of the HS system. The SS
model also becomes equivalent to the HS model (this
time with a hard-core diameter ��) in the zero
temperature limit (T *! 0). Therefore, again the
RFA and PY predictions should be superior to the
HNC ones for sufficiently low temperatures. From a
practical point, however, this requires temperatures so
low that gðrÞ 	 0 for 1 � r � �, which is obviously not
the case for T *¼ 0.5, as Figures 3, 4 and 7 show.

In summary, from the analysis of the results it is
clear that the RFA approach represents a clear
improvement as compared to the PY approximation.
It also does a fair job in comparison with the HNC
equation, which is generally the best approximation.
On the other hand, this latter becomes more inaccu-
rate, particularly at the contact value, as the HS limit is
approached, in contrast to the good performance of
the RFA approach in this limit. Also worth mentioning
is the fact that, although not shown, the RFA also
beats the numerical solution of the OZ relation closed
by the hard-core condition g(r) ¼ 0 for r51 plus the
parametrization of the direct correlation function for
r41 proposed by Guillén-Escamilla et al. [40]. As
expected, although the RFA always underestimates the
contact value, the present approximation works
particularly well at all distances for narrow shoulders
at high temperatures and low densities. As the shoulder
width increases, for a fixed (relatively high) tempera-
ture, the packing fraction at which deviations become
more pronounced decreases. In the case of low
temperatures, the trend observed for low densities is
maintained but this time the region between contact
and the shoulder width is described more poorly, while
for greater distances the approach seems to capture
rather well the subsequent oscillations of the rdf.

4. Concluding remarks

In this paper we have presented an (almost completely)
analytical procedure to obtain the structural properties

of SS fluids. Although the derivation heavily relied
upon a parallel development for the SW fluid [5], the
results could not be anticipated since the SW and SS
potentials are physically quite different: while the SW

potential has an attractive part that allows for the
existence of a vapour–liquid phase transition ending at
a critical point, the SS potential is purely repulsive.

Our procedure, which follows the same rationale
that we have used for other systems [42], is inspired on

the analytical solution of the PY equation for HS fluids
[44,45] (to which it reduces in the appropriate limits)
and represents a good alternative to the usual integral

equation approach of liquid state theory, which
requires numerical work. As a matter of fact, as
shown above, it clearly provides an improvement over
the results of the simplest such integral equation for SS

fluids, namely the OZ equation with the PY closure,
and compares reasonably well with the results of the
HNC integral equation, which in particular it beats
near the HS limits.

The importance of analytical or semi-analytical

approximations for the equilibrium structural proper-
ties of simple fluids cannot be overemphasized. In this
respect, we find it especially remarkable the fact that
our approach, which only requires the solution of a

single transcendental equation when the SS potential
differs from the HS one (i.e. if � 6¼ 1 and T * is finite),
behaves better than the PY integral equation, whose

solution in the same situation, however, involves much
more numerical work.

Through the comparison with the available simu-
lation data [7,39,40], we have been able to identify
roughly the region in the ð�,T �, �Þ space that these

data span where the approximation for g(r) yields a
reasonably good performance. The RFA approach for
SS fluids leads to rather accurate results at any fluid
density if the shoulder is sufficiently narrow

(say � � 1:2), as well as for any width if the density
is small enough (� � 0:4). However, as the width
and/or the density increase, the RFA predictions
worsen, especially at low temperatures and in the

region between contact and �. In any event, it is fair to
insist on the advantage of the RFA quasi-analyticity
and its relative good numerical results at low and high

fluid densities for the SS fluid.
Apart from the rdf, our proposal allows the

immediate computation of the static structure factor,
as shown by Equation (36). We are not aware of the
existence of simulation data for this structural property

in the case of the SS interaction so a comparison is not
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feasible at this stage. We hope that our work may serve
as a motivation to carry out such simulations. Also
worth pointing out is the fact that the availability of
the rdf allows us to obtain an approximate direct
correlation function c(r) through inversion of the OZ
equation in Fourier space. Once more, we are not
aware of any simulation results for the c(r) of this
system one could compare with. Given this situation
and since these structural properties do not exhibit any
particular feature we have not presented plots of them.
However they may be easily produced upon request.

The present results suggest that the study of the
structural properties of fluids whose particles interact
via discrete potentials composed of combinations of
square wells and square shoulders, and other piece-
wise potentials, may be tackled in a similar way. We
plan to carry out some of these studies in future work.
Finally, we also plan to examine in the near future the
prediction and discussion of the thermodynamics of SS
fluids which follows from our approach.
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Note

1. The numerical solutions were obtained by solving the
system of algebraic equations resulting from the
discretization of the integral equation. The convergence
of the solutions was found to be acceptable for a grid
size of Dr¼ 0.0125 and a cut-off distance rmax ¼ 4.
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Appendix 1. The hard-sphere limit

In this appendix we will show that the proposal we have
introduced for the structure of the SS fluid reduces, in the
appropriate limits, to the PY approximation for HS fluids.
We begin with the latter. For an HS fluid, the Laplace
transform GHSðs; �Þ of rgHSðrÞ in the PY approximation,
where we have made it explicit that it depends on both s and
the packing fraction �, may be expressed as in Equation (4),
where the auxiliary function CHSðs; �Þ takes a form similar to
that of Equation (17), namely [43,44]

CHSðs; �Þ ¼
1

2p
�12�þ AHS

1 ð�Þsþ AHS
2 ð�Þs

2 þ AHS
3 ð�Þs

3

1þ B
HS

1 ð�Þs
,

ð40Þ

with

B
HS

1 ð�Þ ¼
1þ �=2

1þ 2�
, ð41Þ

AHS
1 ð�Þ ¼

18�2

1þ 2�
, ð42Þ

AHS
2 ð�Þ ¼

6� 1� �ð Þ

1þ 2�
, ð43Þ

and

AHS
3 ð�Þ ¼

1� �ð Þ
2

1þ 2�
: ð44Þ

For the sake of clarity, it is convenient in the case of the
SS fluid to include explicitly the dependence on the packing
fraction �, the interaction range �, and the temperature
parameter T * in the function G(s) through the notation
Gðs; �, �,T�Þ.

Limit k!1

We must clearly recover the HS case if �¼ 1, in which case
the SS potential becomes equivalent to an HS interaction of

diameter �¼ 1, i.e.

Gðs; �, 1,T �Þ ¼ GHSðs; �Þ: ð45Þ

It is straightforward to see from Equations (19)–(21) that in
the limit �!1 one has Aið�, �,T

�Þ ! AHS
i ð�Þ, irrespective of

the values of lim�!1 B0ð�, �,T
�Þ and lim�!1 B2ð�, �,T

�Þ.
On the other hand, the denominator of Equation (17)
becomes 1þ B1ð�, 1,T

�Þ þ B2ð�, 1,T
�Þ½ �s ¼ 1þ B

HS

1 ð�Þs on
account of Equation (18). This completes the proof that
Equation (17) reduces to Equation (40) in the limit �!1 for
arbitrary T *.

Limit T � ! 1

The high-temperature limit T � ! 1 can be understood as
the limit � ! 0 at finite T, so the SS potential (2) trivially
becomes that of HS. Consequently,

Gðs; �, �,1Þ ¼ GHSðs; �Þ: ð46Þ

In the limit T � ! 1 one has expð1=T �Þ ! 1, so that
Equations (32) and (35) imply B0ð�, �,1Þ ¼
B2ð�, �,1Þ ¼ 0. Next, Equations (18)–(21) yield
B1ð�, �,1Þ ¼ B

HS

1 ð�Þ and Aið�, �,1Þ ¼ AHS
i ð�Þ for any �.

Limit T * ! 0

On the other hand, the low-temperature limit T *! 0
corresponds to the limit �!1 at finite T. In that case,
the SS potential becomes equivalent to an HS interaction of
diameter �� ¼ �. This latter condition implies that

Gðs; �, �, 0Þ ¼ �2GHSð�s; �3�Þ, ð47Þ

which is a non-trivial scaling relation. In turn, taking into
account the relationship (4), Equation (47) leads to

Cðs; �, �, 0Þ ¼
exp½ð�� 1Þs�

�3
CHSð�s; �3�Þ: ð48Þ

From Equations (17) and (40) it follows that Equation (48) is
satisfied if the coefficients comply with the following
conditions:

B0ð�, �, 0Þ ¼ 1, ð49Þ

B1ð�, �, 0Þ ¼ 0, ð50Þ

B2ð�, �, 0Þ ¼ �B
HS

1 ð�
3�Þ, ð51Þ

A1ð�, �, 0Þ ¼ �
�2AHS

1 ð�
3�Þ, ð52Þ

A2ð�, �, 0Þ ¼ �
�1AHS

2 ð�
3�Þ, ð53Þ

A3ð�, �, 0Þ ¼ AHS
3 ð�

3�Þ: ð54Þ

Equation (49) is a direct consequence of Equation (35).
Next, Equation (32) in the limit T *! 0 yields Equation (50).
Then, by imposing B1¼ 0 in Equation (18) one gets
Equation (51). Finally, by inserting Equations (49) and (51)
into Equations (19)–(21) it is easy to check that
Equations (52)–(54) are verified.
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