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Survival probability of a particle in a sea of mobile traps: A tale of tails
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We study the long-time tails of the survival probability P(7) of an A particle diffusing in d-dimensional
media in the presence of a concentration p of traps B that move subdiffusively, such that the mean square
displacement of each trap grows as ¢” with 0 < y= 1. Starting from a continuous time random walk description
of the motion of the particle and of the traps, we derive lower and upper bounds for P(r) and show that for
y<2/(d+2) these bounds coincide asymptotically, thus determining asymptotically exact results. The
asymptotic decay law in this regime is exactly that obtained for immobile traps. This means that for sufficiently
subdiffusive traps, the moving A particle sees the traps as essentially immobile, and Lifshitz or trapping tails
remain unchanged. For y>2/(d+2) and d <2 the upper and lower bounds again coincide, leading to a decay
law equal to that of a stationary particle. Thus, in this regime the moving traps see the particle as essentially
immobile. For d>2, however, the upper and lower bounds in this vy regime no longer coincide, and the decay
law for the survival probability of the A particle remains ambiguous.
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I. INTRODUCTION

In the early 1960’s, Lifshitz published his famous analysis
of the low-energy tails of the density N(E) of states of an
electron in a medium with randomly scattered immobile im-
purities [1,2]. He demonstrated that, in d dimensions, the
spectrum N(E) of the random Schrédinger operator decays as

N(E) ~ exp(-const E¥?), E—0. (1)

This exponential decay is in striking contrast to the polyno-
mial decay associated with a periodic Schrodinger operator
and is caused by the presence of arbitrarily large, albeit rare,
regions without impurities.

A decade later Balagurov and Vaks [3] and Donsker and
Varadhan [4] published their celebrated work on trapping
kinetics in a medium with randomly placed immobile traps
(called B). They found that the long-time decay of the sur-
vival probability P?(f) of a particle (called A) diffusing in
such a d-dimensional medium follows the stretched-
exponential law

PB(I) . exp[— kdp2/(d+2)(DAt)d/(d+2)]’ (2)

where p is the mean density of traps, D, is the particle dif-
fusion coefficient, and k, is the d-dependent constant [4]

d+2
kd — (U) (dvd)Z/(d+2)(22§)d/(d+2). (3)

Here z,, is the first zero of the Bessel function J(,_5)(z) and
v,=27"2/[dl'(d/2)] denotes the volume of a d-dimensional
sphere of unit radius. The superscript B on the survival prob-
ability emphasizes that the traps B are immobile. Balagurov
and Vaks obtained the decay form in Eq. (2) exactly for
d=1. While they furthermore deduced this behavior for gen-
eral d by noticing the close mathematical connection be-
tween the trapping problem and the Lifshitz problem, Don-
sker and Varadhan were the first to obtain the rigorous exact
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solution of this essentially many-body problem in d dimen-
sions. They determined not only the time dependence but
also the decay coefficient k; of Eq. (3). Note that this law
stands in stark contrast to the purely exponential decay pre-
dicted by standard chemical kinetics for the reaction
A+B— B of mobile particles and traps, and even to the pre-
dictions of the Smoluchowski approach based on a reaction-
diffusion equation

exp[— p(4Dt/m)"?], d=1,
P(t) ~ \ exp[— 4m7pDt/In(Dt/a*)], d=2, (4)
exp(—4mpDr), d=3,

where D is the sum of the diffusion coefficients of the par-
ticle and the traps [5].

In mathematical analogy with the source of the Lifshitz
tail, the decay law (2) arises from the presence of arbitrarily
large regions without traps in which the particle can diffuse
for a relatively long time before being trapped. Although the
survival probability of a particle in any one such region is
purely exponential, the ensemble average over a random dis-
tribution of such trap-free voids produces the anomalously
slow decay.

The decay law in Eq. (2) has been also generalized to
trapping reactions on fractals and in inhomogeneous struc-
tures [6], to A particles performing subdiffusive motion
[7-10] or attached to the extremities of polymer chains [11],
and also to agglomerated random distributions of traps dis-
tributed on immobile polymer chains in solution [12] or in
clusters [13]. The history of this problem and many other
results have been summarized in several reviews (see, e.g.,
Refs. [14,15]).

The survival probability Eq. (2) [as well as the Lifshitz
tail result of Eq. (1)] is valid only when the traps (or impu-
rities) are strictly immobile. Indeed, if one allows them to
diffuse, no matter how small the diffusion coefficient, the
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particle survival probability is described by a faster decay
law. As proved by Bramson and Lebowitz [16] (see also Ref.
[17]), when both species diffuse, the survival probability of
the A particle at long times is given by

exp(-peyt'?), d=1,
P(t) ~ Yexp(— pcyt/Int), d=2, (5)
exp(— pest), d=3.

The time dependences are the same as in the Smoluchowski
problem, but the constants ¢, ¢,, and c¢3 are in general dif-
ferent, may depend on the diffusion coefficients of the par-
ticle and of the traps (but see below), and were not deter-
mined in this original work.

When traps diffuse, the many-body trapping effects cap-
tured by Eq. (2) are thus no longer applicable, and the A
particle survival probability decays with time according to
the faster time dependencies in Eq. (5). The underlying fluc-
tuation mechanism governing the trapping dynamics has
changed when the traps are allowed to move. While the time
dependence in the decay laws (5) is consistent with
Smoluchowski-like results, which in fact represent a two-
body approximation, the decay amplitudes c, are not simply
functions of the sum of the diffusion coefficients. In particu-
lar, the exact form (including the coefficients) of the leading
large-t behavior for d=1 and 2 has only recently been found
by Bray and Blythe [18] and, surprisingly, ¢, and ¢, depend
only on the diffusion coefficient Dy of the traps and are
independent of D, the diffusion coefficient of the A particle.
This implies that the survival probability of the diffusing A
particle in this scenario is asymptotically identical to that of
an A particle that remains still, that is, to PA(Y).

This remarkable result has subsequently been extended to
systems in which both the particles and the traps move sub-
diffusively [7-10]. In particular, it is again found that the
survival probability of a subdiffusive A particle in a sea of
subdiffusive traps is identical to that of and A particle that
remains still (as in the Bramson-Lebowitz scenario),
P(1) ~ PA(t). However, it is still not clear what happens when
traps move subdiffusively and the particle is diffusive. In one
dimension it was shown in Refs. [7,8] that the asymptotic
survival probability of the diffusing particle is the same
when surrounded by subdiffusive traps characterized by a
mean-square displacement that grows as ” with y=<1 as it is
for a stationary particle, provided the subdiffusive traps
move sufficiently rapidly (y>2/3), again akin to the
Bramson-Lebowitz scenario. However, few results seem to
be currently available for d>1 and/or if the subdiffusive
traps are “too slow.” An interesting question is then the fol-
lowing: will the trapping tails associated with immobile traps
withstand sufficiently slow subdiffusion, thus leading to a
survival probability such as that of the Donsker-Varadhan
result, or will they switch to appropriately rescaled Bramson-
Lebowitz forms? This is the main question that we pose in
this paper.

In this pursuit, we follow the general idea [18] of con-
structing lower and upper bounds on the survival probability
of a diffusive particle in a sea of subdiffusive traps whose
motion is described by a continuous time random walk that
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starts at time =0 [19]. If these bounds coincide asymptoti-
cally, then we can extract an exact asymptotic result for the
survival probability of the particle. We write the asymptotic
survival probability in the form

exp(— 6r), d+2,
P ~ {exp(— 0f/Int), d=2, ©

where the constants 6 and z depend on 7y and on dimension
and explore whether a convergence of upper and lower
bounds provides the exponents z and perhaps even the expo-
nential prefactor §. We broadly anticipate our results by not-
ing that if the subdiffusive particles are sufficiently slow,
specifically if y<2/(d+2), these bounds lead to a Donsker-
Varadhan behavior, and the Lifshitz or trapping tails thus
remain unchanged. If y>2/(d+2) and d<2, then the
bounds lead to a Bramson-Lebowitz behavior that is,
a survival probability behavior associated with a stationary
particle (note that, albeit for a different system, this result
is implicit in Ref. [10]; that work addresses diffusive par-
ticles in a fractal medium, while here we are considering
subdiffusive motion in Euclidean geometries). However, if
v>2/(d+2) and d>2 we are not able to establish a unique
asymptotic behavior. The detailed results are exhibited later
in the paper.

In Sec. II we formulate the model of moving particle and
traps. In Sec. III we calculate a lower bound on the survival
probability of the particle, and in Sec. IV we obtain two
upper bounds. The consequences of these bounds on the sur-
vival probability are collected in Sec. V. A brief recapitula-
tion of the results is given in the concluding section.

II. THE MODEL

In this section we formulate the general model that allows
us to highlight the approximations made to obtain upper and
lower bounds on the survival probability. Consider a
d-dimensional system of volume V containing a single diffu-
sive A particle of radius a and K randomly moving point
traps B (a finite trap radius would add nothing interesting to
the problem for our purposes). The initial position of A is the
origin, and one realization of its trajectory is denoted by a,.
The starting points ng), k=1,2,...,K of the traps are ran-
domly (Poisson) distributed throughout the volume, and a
trajectory of the kth trap is denoted by Bf“:Bg‘Hbﬁ“.

Next we define

©, |x|<a,
v(x) = (7)

0, otherwise.

The indicator function ‘I’[a,,{bgk)}] of the event that the A
particle has not met any of the B’s up to time ¢ for a given
realization of their trajectories can then be written as

K

Vla,{b}] =[] wla,b]
k=1

K t
=TI expl— J v(aT—b(T")—BE)"))dT}. (8)
k=1 0

Consequently the A particle survival probability is
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K

P(t) = E@ H(%} f ng“E(b){qf[a,,b;k)]}) , 9
|4

k=1

where the symbol E(“){---} denotes an average over all A
particle trajectories a, that start at the origin. The symbol
E®){---} denotes an average over all B trajectories b, whose
starting point is B,. We have labeled each of the latter tra-
jectories by a trap label &, but since the traps move indepen-
dently we can omit the label. Furthermore, we go to the
thermodynamic limit K,V—o while keeping the ratio
p=K/V fixed. This leads to the A survival probability

P(t) = E(a){e—pE(b){W[a,—bz]}}’ (10)

where W[a,—b,] is the functional of the trajectories a, and b,
Wla,—b,]= f dBy(1 — el Bodny —(q1)
Rd

The exact problem has thus been reduced to an effective
two-body problem involving a single A particle and a single
B trap. Nevertheless, it unfortunately does not seem possible
to evaluate the survival probability exactly from this expres-
sion, the main mathematical difficulty being that the average
over all possible trajectories b, has to be performed for each
fixed a,. Only after this average has been performed can one
then go on to carry out the further average over the A particle
trajectories. This appears to be a nontractable mathematical
problem, and recourse has to be made to controllable ap-
proximations. We do it here by constructing lower and upper
bounds on P(r) and identifying conditions and regimes where
these converge asymptotically.

III. LOWER BOUND

A lower bound was originally devised in Ref. [18] for
diffusive particles and traps and was extended in Refs.
[7,8,10] to the case of (sub)diffusive particles and traps. We
adapt this method to the current situation in which the traps
B perform continuous-time random walks, so that we may
restate this bound in the language introduced above. Follow-
ing Bray and Blythe, we introduce a notional spherical vol-
ume V; of radius / centered at the origin and pick only those
realizations of initial trap distributions for which this volume
is completely devoid of traps. The probability that the region
will initially be empty of traps is

P oia(l) ~ exp(—vgpl?). (12)

We furthermore introduce the probability P,([;7) that the A
particle does not leave the notional volume V, during time ¢

[18],
P4(l;1) ~ exp[— szAt/(l—a)z]. (13)

Third, we introduce the probability that no B particle enters
the notional volume up to time ¢, that is, the probability that
an immobile d-dimensional target of radius / survives up to
time ¢ in the presence of a concentration p of traps all of
which perform subdiffusive motion [9]
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r
(47TDBtnd/2

CXP(_ PR —a)T (1 + yd2)
47TDBly
Py(l;1) ~ 9 (— ) d=2,
530~ P\ = P 4D,
( 2(d - 2) 72142 D pt”
P\ P @) T (1 + )

), d<2,

) e

\
(14)

Here I' is the gamma function and Dy is the anomalous dif-
fusion coefficient of the traps, that is, the coefficient in the
mean-square displacement relation (r>)=2dDyt?/T(1+ ).

Since the functional in Eq. (9) is positive definite, the two
latter constraints on the trajectories of A and the B’s naturally
lead to a lower bound on the survival probability P(r). Fur-
thermore, for these constrained trajectories the functional in
Eq. (11) is strictly equal to zero, and hence Eq. (9) restricted
in this way is equal to unity. As a consequence, the probabili-
ties associated with the random processes a, and b, subject to
these constraints can simply be factored, immediately lead-
ing to the lower bound on P(r)

P(t) = Pyoig(DPA(L;1) Py(lst) = Pr(L31). (15)

Finally, we note that this lower bound P,(/;¢) is in fact a
family of lower bounds dependent on the radius / of the
notional volume separating particle and traps. This radius
can be chosen to give the best lower bound, that is, the maxi-
mal lower bound, which we simply denote as P;(r). The
optimal radii are shown explicitly in Appendix A and are
shown to depend on dimensionality and on 7. The associated
optimal lower bounds for the survival probability of A,
which also depend on dimensionality and on 7, then imme-
diately follow. We thus have

P(1) = P(1), (16)

where, for d<<2,

2
— k,p2 @D (D pydila2)) <=
- exp(= kqp (Dy1) ) Y d+2
t ~
L ( p(4mDyt")4? ) 2
exp| — , Y>> T,
I'(1=di2)I'(1 + yd/2) d+2
(17)
For d=2 we have
2 172 1
exp[— (47mz3pDat) 7], Y<3
P, (1) ~
1) 8mwpDpt” 1
expl| — , Y>> <.
Q2y-DI'(01+y)Int 2
(18)

For d>?2 the results are
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exp[— kdp2/(d+2)(DAl)d/(d+2)] , y<
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(19)

Py(1) ~ { ((d— 2) 72 pD yt?
exp| —d

L(@2)I'(1 + )

There is thus a change in behavior of the lower bound in all
dimensions when 7y crosses the value 2/(d+2).

IV. UPPER BOUNDS
A. Pascal principle

An upper bound on the survival probability P(¢) of the
diffusive particle was recently derived on the basis of the
so-called “Pascal principle,” which states that the A particle
survives longer if it remains still than if it moves. The prob-
lem with a static A particle and moving traps is the so-called
“target problem,” and consequently we label this upper
bound on the survival probability as Py e (?). The Pascal
principle was conjectured in Ref. [18] and was proved in
Ref. [20] for d <2 for conventional diffusive motion. In Ref.
[21] the statement was proved for a rather general class of
random walks on d-dimensional lattices. A similar statement
was introduced more than a decade earlier in Ref. [22] in the
context of excitation energy migration. This upper bound is
given by Eq. (14) obtained in Ref. [9] if we set [=a, the
radius of the A particle. For visual ease we explicitly rewrite
Eq. (14) with this replacement,

r

(4mDgt")?
exP(‘ Pra-anra + yd/2)>’ d<2,
Y
PU,laIget(t) ~ 9 exp(_ pF(l + :)ZID(thBty/az) ) , d=2,
277‘1/2(1’1_2D3t7
f"p(‘pruu)r(lw))’ =2
(20)

To clearly tie together the various notations introduced so
far, we note that

PB(a;t) = PA(t) = PU,larget(t)’ (21)

and

P(t) = PU,target(t)' (22)

However, this upper bound when associated with the
lower bound is not always sufficiently tight to provide the
desired information about the asymptotic survival probability
of the diffusive particle. We thus introduce an alternative
new upper bound, which in some cases is lower than the
above. In the next section we then explicitly pick the bounds
to be used and exhibit the information that can be obtained
from them.

)2/d( ZinDAl‘>(d_2)/d )
9’ ’y> _'
d-2 d+2

B. Anti-Pascal principle

This new upper bound is based on what we will call the
“anti-Pascal principle.” We will show that the worst possible
strategy for traps in their search for a target is to remain
immobile. Random motion, even uncorrelated with the mo-
tion of the target, enhances the probability to encounter the
target. In other words, the diffusing particle A survives
longer if the traps remain still. The problem with a moving A
particle in a sea of static traps is the so-called “trapping
problem,” and so we label this upper bound on the survival
probability as Py yapping- Again, to clearly tie together various
notations we note that P5(r)= Py ypping(1), and the upper
bound just introduced then says that

P(1) < Py apping(t) = PP(1) = E@fe "0} (23)

To prove Eq. (23) we make use of Jensen’s inequality for
convex functions, which for our model can be stated as
e PEV Wbl < pb)f,=pWia by (24)
[Note that this inequality is generally used to derive a lower
bound. Indeed, when applied to the E@ average in Eq. (10) it
yields a lower bound, which is exactly the Smoluchowski-
type result [17].] Consequently, we have the following upper
bound:

P(t) < E(“){E(b){e—PW[at_bt]}} = E(C‘){E—PW[C;]}, (25)
where E({---} denotes an average with respect to the trajec-
tories ¢,=a,—b, of a “fictitious” particle C of radius a, which
starts its motion at By,.

Note that W[e,] has a clear geometric interpretation—it
defines the volume swept by the fictitious particle C within
the time interval (0,7) and is thus an analog of the so-called
Wiener sausage for conventional diffusive motion. Clearly,
W(e,] is a nondecreasing function of time ¢ or, more pre-
cisely, of the number N of jumps made by the fictitious par-
ticle within the time interval (0,7). This number has two
contributions, N=N,+Np, where N, is the number of jumps
made by particle A and Ny is the number of jumps made by
a trap. Setting Nz=0, i.e., supposing that the trap is immo-
bile, clearly diminishes the total number of jumps and hence
diminishes W[¢,]. In this way we tighten the bound in Eq.
(25) to arrive at the desired inequality (23) We have thus
established the second upper bound (23) for the survival
probability of A. The maximal information about the survival
probability is thus obtained from the lower bounds presented
in Egs. (16)—(19) and the smaller of the upper bounds (22)
with Egs. (20) and (23) with Eq. (2).
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FIG. 1. Asymptotic results for the survival probability of a diffusive particle in a sea of subdiffusive traps. Plotted is the exponent z as
expressed in Eq. (6), or bounds on this exponent, as a function of the trap subdiffusion exponent y. (a) d=1; (b) d=2; (c) d=3. The solid
lines are upper bounds; specifically, the thick solid lines are Pascal upper bounds (immobile particle) while the thin solid lines are anti-Pascal
upper bounds (immobile traps). The solid lines with superimposed circles are lower bounds. Thus panels (a) and (b) show that for d<2 the
Pascal (Donsker-Varadhan) and lower bound lines coincide for y<2/(d+2). The behavior changes when 7y crosses the value 2/(d+2),
leading to a coincidence of the anti-Pascal (Bramson-Lebowitz) and lower bound lines. For d <2 the asymptotic exponent is thus obtained
for all values of 7. Panel (c) for d=3 shows convergence of the upper (Pascal) and lower bounds for y<2/(d+2). However, when
y>2/(d+2)=2/5 the situation is uncertain. The exponent z now lies in the triangular region delimited by the lower bound and the Pascal
[2/(d+2)<7y=<d/(d+2)] or anti-Pascal [d/(d+2)< y<1] upper bound.

V. COLLECTING RESULTS AND BOUNDING THE
SURVIVAL PROBABILITY

In this section we collect our detailed results, exhibited by
displaying values for the constants z and 6 in Eq. (6) when
the upper and lower bounds converge asymptotically and
providing bounds for the exponent z when they do not. The
results for the exponent z as a function of the subdiffusive
trap exponent y are shown for integer dimensions d=1, 2,
and 3 in Fig. 1. Even before displaying the explicit results we
note the following.

When y<<2/(d+2) the asymptotic survival probability of
the diffusive A particle in the sea of subdiffusive traps is the
same as it is for immobile traps. The question asked in the
Introduction, whether trapping tails associated with immo-
bile traps withstand sufficiently slow subdiffusion, is thus
answered in the affirmative, with a precise dimension-
dependent characterization of what is “sufficiently slow.”
This behavior, obtained by the asymptotic convergence of
the bounds P (#) and Py apping(?), is shown for the exponent
z by the thick solid lines with superimposed circles in Fig. 1.
In this regime the survival probability is thus of the Donsker-
Varadhan form.

When vy crosses the value 2/(d+2) there is a kind of
dynamical phase transition. For d <2 the survival probability
of the diffusive particle in the sea of now more rapidly mov-
ing subdiffusive traps decays as it would if the particle re-
mains immobile. This is indicated by the thin solid lines with
superimposed circles in panels (a) and (b) of Fig. 1, and
results from the asymptotic convergence of the bounds P;(r)
and Py ireei(?). In this regime the survival probability is thus
of the Bramson-Lebowitz form generalized to subdiffusive
traps.

For d>2 and y>2/(d+2) the situation is left somewhat
uncertain: we are only able to bound the decay exponent but
not determine it uniquely, because neither upper bound con-
verges asymptotically to the lower bound. All we can say is
that the survival probability decay exponent z lies in the

triangular region bounded by the thin solid line with super-
imposed circles (associated with the lower bound), the thick
solid line (associated with Py upnine), and the thin solid line
(associated with Py ), as indicated in the figure caption.

Finally, we collect the explicit results described above in
Table I. The reported results are for the exponents z and the
prefactors € in Eq. (6). Again, we note that the results for z
are sketched explicitly for d=1,2,3 in Fig. 1.

VI. CONCLUSIONS

In conclusion, we have rigorously determined the survival
probability of a particle diffusing in a d-dimensional medium
in the presence of a concentration of traps performing sub-
diffusive random motion. We have arrived at our results by
calculating a lower bound and two alternative upper bounds
for the survival probability. One of the upper bounds, based
on the “Pascal principle,” is obtained by assuming that the
particle remains immobile. The other, based on the “anti-
Pascal principle,” is found by assuming that the traps remain
immobile. We can then choose the tighter (lower) upper
bound. Results for the asymptotic survival probability of the
particle can thus be extracted if the lower bound and one of
the upper bounds converge asymptotically.

Following this procedure, we have shown that when the
dynamical exponent 7y characterizing the growth of the sec-
ond moment of the displacement of the traps is less than
2/(d+2), that is, if the traps move sufficiently slowly, the
decay of the survival probability of the diffusing particle in
any dimension is given exactly by the Donsker-Varadhan re-
sult obtained for immobile traps. When the traps move more
rapidly than this, i.e., when y>2/(d+2), then in dimensions
d=<2 the survival probability of the particle is identical to
that of a stationary A particle in a sea of mobile traps. For
higher dimensions, d>2, our results do not uniquely deter-
mine the survival probability of the particle in this y regime,
but they do provide tighter bounds than previously known.
We close by noting the well-known difficulties that may
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TABLE I. Collected results for the asymptotic survival probability exponent z and prefactor 6.

Trap subdiffusive Optimal

Survival probability Survival probability

Dimension d exponent y upper bound exponent z prefactor 6
1=d<2 o=sy< i P L K2/ (d+2) pd/(d+2)
= sYs d+2 U.trapping d+2 dP A
drn
L <y< 1 PU areet ﬂ P(47TDB)
d+2 e 2 TF(1-d)T(1+vd/2)
1 1
d=2 0=y=3 Py rapping 5 ky(pD )"
1 1 T(l+v) 2
—<y<1 P —s— = —
2 Y U target y 47TpDB 2’)/— 1
2 d
—_— - 2/(d+2) ryd/(d+2)
d>2 0= vs d+2 PU,lrapping d+2 de (d+ )DA +
2oy A =22y
d+2 ' d+2 Urtarget d+2 " d ' d
d+2 sYs U target YsIs= d + d

stand in the way of reaching and verifying some asymptotic
results via numerical simulations (see Ref. [8], and refer-
ences therein). Such simulations continue to pose an interest-
ing challenge.
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APPENDIX: OPTIMAL NOTIONAL VOLUME

In this appendix we explicitly show the optimal radius /
that leads to the maximal lower bound on the survival prob-
ability of the diffusive particle in the presence of a sea of
subdiffusive point traps. Combining the expressions in Egs.

(12)—(14) and differentiating their product with respect to I,
we find that the optimal / depends on dimensionality and on
v. For d<2 we find

2 1/(d+2
[~ (%) ( ). (A1)
dP
For d=2 we obtain
2D\ 1
=) i
(z%F(l +'y)DAt>1/2 ln( 167pDAY ) 1
47pDgt” z%[‘(l +y)Dyt)’ Y 2
(A2)
For d>?2 we find
222Dt | V@) 2
)™ <
(zf,r(d/z)r(l + 'y)DAtl_V)l/d
(d—2)7"?pDy AT
(A3)
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