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Abstract. When a large numbe¥ of independent random walkers diffuse od-alimensional
Euclidean substrate, what is the expectation vdlug ) of the time spent by the first random
walker to cross a given distaneefrom the starting place? We here explore the relationship
between this quantity and the number of different sites visitedMbyandom walkers all

starting from the same origin. This leads us to conjecture that) ~ (r2/4DInN)[1 +

Yo NN a,(,i’)(ln In N)™] for d > 2, largeN andr > In N, Wherea,(;” are constants

(some of which we estimate numerically) abds the diffusion constant. We find this conjecture
to be compatible with computer simulations.

1. Introduction

Problems related to (whatis now called) the first passage time of a random walker to reach some
place have a long tradition in science: they date back to Huygens’ problem 5 in the seventeenth
century which was generalized and solved by Jacob Bernoulli in the next century [1]. Usually,
the problem considered is the estimate of the time to first reach a given point or a given frontier
by asinglerandom walker. In this paper, we address a similar question: we want to estimate
the mean escape timg y) from a given spherical region of the first random walker st

of N > 1independent random walkers.

This problem was first considered by Weessal in 1983 [2]. They found asymptotic
expressions for larg&v of (¢ y) and (th) when the random walkers diffuse in the one-
dimensional lattice. Some of these expressions were corrected in [3]. This problem and
its extension to some classes of fractal lattices was also studied in [4]. However, there are
no similar results for/-dimensional Euclidean lattices (with > 2), there only being the
conjecture, proposed by Weissalin [2], that(r; y) ~ Cr?In~1 N, but without a value being
stated forC, which, as the authors said, ‘may be quite difficult to calculate’. In [4] it was found
that, for the one-dimensional lattice and for some fractal substraigs, goes agln N)1 =4,

d,, being the diffusion exponent. Notice that the direct extension of this result to Euclidean
substrates is in agreement with the conjecture of Wetiséasd,, = 2 for Euclidean lattices.

The aim of this paper is to explore the connection betwéer) and the territory
covered (or number of different sites visited) Nyrandom walkers all starting from the same
origin. This connection will lead us to conjecture (taking into consideration an idea proposed
previously in [5]) that

2

r = —n < n m
(tin) ~ m[1+;(ln N) Zafn)(lnln N) ] (1)

m=0
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holds for all Euclidean substrates, whérés the diffusion constant defined by the relationship
(r?y =~ 2dDt, with (r?) being the mean-square displacement of a single random walker.
Equation (1) has been rigorously derived in [2—4] for the one-dimensional case. Here we will
check equation (1) fod-dimensional lattices witld > 2 by resorting to comparison with
numerical simulation.

2. Territory explored and first passage time

The territorySy (¢) explored byN independent random walkers as a function of time is a basic
and important quantity first studied for Euclidean media by Larraldal [6]. They found
that there exist three time regimesSp(¢): a short-time regime or regime |, an intermediate
regime or regime Il, and a long-time regime or regime lll. The valu&pft) in regimes |
and Il is not difficult to understand: In regimed & ¢, ~ In N) the number of random
walkers per site is so large that every site that may be visited is effectively visited, so that
Sn(t) ~ t?; in regime Ill ¢ > t.), the random walkers are so far away from each other that
their trails (almost) never overlap so th&at(r) ~ NS1(¢). Of course, this never happens for
the one-dimensional case (i.e., in this case= c0). Ford = 2 one has/ ~ €' whereas
t.. ~ N?for d = 3. The calculation ofy(¢) for the intermediate regime( <« t < t.) is
much more involved (see [5-7]). In this pa@&r(z) is used to estimatg; y).

To start with, it is clear from the very definition of time regime | that the radius of the
frontier of the set of visited sites grows ballistically in this regime so that (r)) ~ r for
r L ryx ~ InN. Let us now study what happens for larger values 6f > r,). In figure 1
we show a typical snapshot of the region of visited sites for the two-dimensional case in
regime Il. Itis clear that if thev random walkers had performed a compact exploration in the
sense of de Gennes (most sites inside a compact region are visited before a new site outside
this region is reached) then almost every site of the hypersphere of radimsid have been
visited when the distanceis first reached by a random walker at timey (r); this implies
that Sy[71.n(r)] would be (roughly) given byor?, vo being the volume of a hypersphere
of unit radius: vg = 7%/?/T"'(1 +d/2). Certainly, as figure 1 shows, the exploration is not
truly compact as there exists a significant dendritic ring. This implies that there will be some
worsening of the estimate &f; y (r)) obtained by solving

Sn{tn ()] = vor. (2)

This procedure for obtaining; y (r)) was proposed previously in [5], and in this paper we
will study to what extent it is accurate.

In order to solve the above equation we need to kisgue) for regime 1. Fortunately
this expression has been obtained in [5] through the asymptotic expansion foVlarigine
exact (for non-interacting random walkers) relati() = > {1 — I'¥(r)}, where the sum
is over all the sites in the lattice aftl(r) is the probability that site has not been visited by
a single random walker by step The final result is

Sy (t) ~ vo(ADt In N)Y/2(1 — A) ()
with
A=33"(nN)™") sP(nin Ny" 4)
n=1 m=0

and where, up to second-order corrective terms-(2),
s(()l) = —dw (5)
st =du (6)
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Figure 1. A snapshot of the set of visited sites Ny= 1000
random walkers on the two-dimensional lattice. The visited
sites are in white, the unvisited ones are in black, and the
internal grey points are the random walkers. We have taken
the snapshot at just the instaniooo(r) at which the circular
frontier placed at distaneefrom the starting pointis reached
for the first time by one of th&/ = 1000 random walkers.

Table 1. Parameters appearing in the asymptotic expressiofiy@f), equation (3), ford-
dimensional cubic lattices. The symhdD refers to thed-dimensional lattice. The parameter
pis [2t(2D7)3/3]Y2p(0, 1), wherep(0, 1) ~ 1.516 386 is the expected number of returns of a
single random walker to the starting site [8].

Case A nw o hy
1D 2/n 1 -1
2D 1/Int 1 -1
3D YpVH 1 -3
d 7% ? dh
(2 1
=d|l-<-||—=+—=)—-d|—— 7
#=a1-3)(207) (7 ) @
d
siz)z—d<1—§>,ua)—dp,2 (8)
d d
2 2
=—-|1-= . 9
=5 (1-5)n ©

Herew = y +In A+ In(d/2), wherey ~ 0.577 215 is Euler’s constant, ard . andh are
given in table 1.
From equations (2) and (3) one easily finds for the one-dimensional case that

72 IninN - 3nInN)2— (@ +1/4)IninN +a’
(t,n) ~ + +

4DIn N In N In® N

In®inN
O( N ) (20)
wherew = y — Inz = 0.0048507... andal’ = w(w+ 1) +72/24 +1 = 0.91368....
Comparing this expression with that derived rigorously in [4] we discover that they only differ
in the value oz’ as the rigorous value is(w+ ) +72/6+1 = 2.14738.... Sowe find that
the procedure for estimating, v (r)) via S, (¢) is exact up to the first-order corrective terms
for the one-dimensional lattice. In fact, it is ‘nearly’ exact up to the second-order corrective

terms as the main term and the coefficienf$ = —w, a” = 1,4’ = —w — L anday? = 1

4
are the exact values, with only the coefficieé?l) being inexact.
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Now we considet/-dimensional media witd > 2. It should be noted that the procedure
used so successfully for the one-dimensional case cannot be implemented as easily as before
because the parametémow depends on time (see table 1). Therefore equation (2) becomes
a transcendental equation:

L)~ r? +uln INN — w({tLy)
LN ADINN InN
122N N — p20((tn)) + u]Inin N +al® In3In N
+ > +0(— (11)
In° N In° N

with a2 = [w((tn)) + 11/2% — n2/4 + 722 — d) /24 — dhy/2. However, neglecting the
corrective terms in equation (11), one has the asymptotic approximation

72

4DInN

forlargeN. It would be futile to strive to find a better estimate of the solution of equation (11)
because even the numerical solution of equation (11) is a worse estimatey6f)) than
that of equation (12). At first sight this might seem strange. The reason, however, is not
difficult to understand: as was argued in [5], the main term of the asymptotic expansion of
Sy (t) accounts for the number of explored sites if the exploration were fully compact and
the corrective terms account for the necessary correction to this number due to the fact that
the exploration isot fully compact, i.e. because there exists a non-negligible outer dendritic
region (see figure 1). As equation (11) comes from equation (2) and this latter equation is
valid as long as the exploration performed by theandom walkers is compact, one deduces
that the inclusion of the asymptotic corrective terms (i.e. the ‘dendritic’ terms), &f) will
worsenthe approximationt.

In sum, one expects that only equation (12) should yield a reasonable estimrate(®j)
ford > 2. As a check, we carried out simulations for two- and three-dimensional simple
cubic lattices forN = 29,...,2%%. Figure 2 is a plot of the simulation results for the
quantity 7 = (t1.n)(4D/r?)In N with » = 100 ford = 2 andr = 50 ford = 3. We
see that the simulation results seem to point to the value 1, i.e. to the asymptotic value
predicted by equation (12). We can give some further support to this guess by assuming
that the corrective terms to the main term (which is given by equation (12)) have the same
functional form as those of the one-dimensional case, i.e. we assunig théf) is given by
equation (1) for largev, a” being unknown coefficients. A way of checking this conjecture
is by studying to what extent the simulation results foare compatible with the functional
form 1 +3 > (InN)™ Y _ai(nIn N)". To this end we fitted the simulation results
for T to the above functional form keeping only the main term and the first-order corrective
terms (those corresponding to= 1), i.e. we fitted the simulation results to the expression
A+(a$’+aP InIn N)/In N (notice that it would not be reasonable to use the functional form
corresponding ta > 2 given the relatively small number of simulation points). Neglecting
the values corresponding 1 smaller thanV = 16 (recall that our formulae are asymptotic
expressions valid for larg®) the fit leads tod = 1.00+ 0.02 (@ = —0.45,a{" = —0.22)
for the two-dimensional lattice and = 1.00 + 0.02 (@’ = —0.42, a{" = —0.68) for
the three-dimensional lattice. These results are in excellent agreement with our theoretically
predicted value oA = 1, which supports the validity of equation (12) and, given the way in
which these results were obtained, the plausibility of the conjecture of equation (1).

(tLn () ~ (12)

T The fact that keeping more corrective term$jn(¢) does not lead to a better estimatemfy ) through equation (2)
reinforces the interpretation (first proposed in [5]) that there is a connection, on the one hand, between the main
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Figure 2. The dependence oN of the average timér; y) to

first reach the distance of the first random walker of a set of

N independent diffusing random walkers all starting from the

same origin on a two- and three-dimensional simple cubic lattice.

We have plotted” = (11 5 (r))(4D/r?)In N versus ¥In N for

N =28, 215 wherer = 100 ford = 2 (solid circles) and

r = 50 ford = 3 (open circles). The lines are curves of the

form A + (a$” +ai” InIn N)/In N fitted to the simulation points

corresponding t&v > 16. The fitting parameters are= 0.997,

a’ = —0453,a’ = —0.222 ford = 2, andA = 1.004,

aél) = 70.423,a§1) = —0.682 ford = 3. In our simulations

. after each time unit every random walker makes a jump from a

0.0 0.1 02 03 0.4 05 site to one of its nearest neighbours placed at one unit distance.
1/InN Each simulation point is an average of*Xperiments.

Finally, the reader may wonder why no expression$g(z) in the time regime Ill has
been considered in our discussion. The reason is that our approximation rests on the validity
of equation (2) and this equation is reasonable as long as the exploration &frdmedom
walkers is (mainly) compact. As regime lll is precisely characterized by an essentially non-
compact exploration, our procedure based on equation (2) cannot use the expressian) for
corresponding to time regime Ill. However, this does not imply that our results are limited to
regime Il. The reason is that the difference between time regime Il and time regime Ill stems
only from the degree of overlap of the trails of therandom walkers. This is due to the
fact that this property is essential for computing the nunfiagir) of distinct sites visited by
these walkers. But this feature is irrelevant with regard to the quatify(r)), so that the
expressions fofr, y (r)) considered previously must hold for alts> r..

3. Conclusions

In this paper we have explored the relationship between(r)) (the mean escape time from

a spherical region of radiusof the first random walker of a set of all starting at sitee = 0

at timet = 0) andSy (¢) (territory covered by these samérandom walkers up to time).

We have learnt that, froriy (#) and through equation (2), we can dgty) up to first-order
corrective terms in Int N for d = 1 (see equation (10)) and up to the zeroth-order term only
(main term) ford > 2 (see equation (12)). We conjectured tfialy) has the same asymptotic
form ford > 2 as ford = 1 and we showed this conjecture to be plausible by comparison with
simulation results. Of course, in order to get a full rigorous asymptotic expression foNarge
of (t1, ¥ (r)) whend > 2 one should resort to other approximations or techniques such as that
employed in [2—4]. Work is in progress along this line.
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asymptotic term ofSy () and the compactness of the set of visited sites, and, on the other, between the asymptotic
corrective terms ofy (1) and the dendritic nature of the outer ring of the set of visited sites.
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