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Equation of state of polydisperse hard-disk mixtures in the high-density regime
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A proposal to link the equation of state of a monocomponent hard-disk fluid to the equation of state of
a polydisperse hard-disk mixture is presented. Event-driven molecular dynamics simulations are performed
to obtain data for the compressibility factor of the monocomponent fluid and of 26 polydisperse mixtures with
different size distributions. Those data are used to assess the proposal and to infer the values of the compressibility
factor of the monocomponent hard-disk fluid in the metastable region from those of mixtures in the high-density
region. The collapse of the curves for the different mixtures is excellent in the stable region. In the metastable
regime, except for two mixtures in which crystallization is present, the outcome of the approach exhibits a rather
good performance. The simulation results indicate that a (reduced) variance of the size distribution larger than
about 0.01 is sufficient to avoid crystallization and explore the metastable fluid branch.
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I. INTRODUCTION

The popularity in statistical physics of hard-core (hard-rod,
hard-disk, hard-sphere, and hard-hypersphere) models for
monocomponent fluids is undeniable. This is mostly due
to the relative simplicity of their intermolecular interaction
potentials. These models have also been important in the
development of numerical simulation methods such as the
Metropolis Monte Carlo algorithm [1] and the molecular dy-
namics (MD) method [2], which were first used in connection
with monocomponent hard disks and monocomponent hard
spheres in a box, respectively. Nevertheless and despite this
simplicity, except for the hard-rod case, no exact analytical ex-
pressions for the corresponding free energies of these systems
are available. Therefore, most of their qualitative features, such
as the existence of a stable fluid branch, a (freezing) fluid-solid
phase transition at a given packing fraction φf, a region of
fluid-solid coexistence, and a stable solid (crystalline) branch,
have been determined mostly from computer simulations. It
is usual to present the equilibrium phase diagram for such
fluids as a graph in the thermodynamic planes pressure p

versus density ρ or compressibility factor Z ≡ βp/ρ (where
β ≡ 1/kBT , with kB the Boltzmann constant and T the
absolute temperature) versus packing fraction φ ≡ vdρσ d

[σ being the diameter of the d-dimensional spheres, d the
dimensionality, and vd ≡ (π

4 )d/2�(1 + d
2 )]. Note that T enters

in the description only as a scaling parameter, and so these
systems are often referred to as athermal.

The case of the hard-disk (HD) system is especially
interesting since it also presents a hexatic phase characterized
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by short-ranged positional order, but quasi-long-ranged ori-
entational order. Further, for this two-dimensional hard-core
system the nature of the freezing and melting transitions (first
reported in the pioneering work of Alder and Wainwright [3]
and Alder et al. [4]), the existence of a glass transition, and the
location of the random close-packing fraction are still a source
of debate. For more detailed information on these issues, see
Refs. [5–23].

In a different vein, polydispersity is known to be fundamen-
tal in studying important problems involving heterogeneous
media, such as the mechanical properties of composite
materials and the flow of fluids in porous media, and hence
polydisperse systems also have received a lot of attention in the
literature (see, for instance, Ref. [24] and references therein).
Introducing polydispersity in size in hard-core models [in
which case the packing fraction is φ = vdρMd with Mq ≡∫ ∞

0 dσ σqf (σ ) being the qth moment of the size distribution
function f (σ )] is known to lead to a rich phenomenology
(not present in the monocomponent models) that allows one,
for instance, to avoid crystallization and modify the phase
behavior [25–30] or to deal in principle with real polydisperse
systems as diverse as colloidal suspensions, granular matter,
plastics, foams, powders, monolayers of mixtures adsorbed on
a substrate, nanoparticles, micelles, food emulsions, and cell
tissues (see Ref. [31] and the literature cited therein). Particular
interest in polydisperse HD systems has focused on packing
problems, random sequential absorption, and glassy behavior.
Although the list is by no means exhaustive, the interested
reader may refer to Refs. [32–58] for more information on
various aspects of these problems, whose discussion lies
beyond the scope of the present paper.

Apart from the other characteristic regions in the phase
diagram that have been mentioned above, one important
feature that all the monocomponent hard-core systems also
present is that, beyond φf, there is a region of metastable
fluid states that overlaps the fluid-solid coexistence region and
also partly the crystalline branch. Accessing this metastable
fluid branch is difficult using simulations. In particular,
computing the values of the thermodynamic variables with
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enough accuracy in the metastable states is quite a challenge,
so, in general, the metastable fluid branch remains as a
largely unexplored ground. In previous work [59–66], we have
provided different approximations for linking the equation
of state (EoS) of a polydisperse hard-core mixture and the
EoS of the monocomponent system. Our approach has, for
instance and among other things, allowed us [63,66] to infer
the EoS of the (three-dimensional) hard-sphere (HS) fluid in
the metastable fluid region from high-density simulation data
of polydisperse HS mixtures. It also led us to estimate and put
some order in a wealth of values for the random close-packing
fraction of polydisperse HS mixtures from the knowledge
of the random close-packing fraction of the monocomponent
system [66].

The aim of this paper has several facets. On the one
hand, given a polydisperse HD mixture with a certain size
distribution at a packing fraction φ, we will attempt to find
an effective monocomponent HD fluid such that the free
energy and the EoS of the former system can be mapped
onto those of the latter. On the other hand, simulation
data for the compressibility factor of a large number of
polydisperse HD mixtures with different size distributions will
also be presented. These data will then be used to assess the
mapping “polydisperse mixture ↔ monocomponent fluid.” In
particular, we will (a) check the collapse of all the mixture
curves into a master one when plotted in the right variables
and (b) use the high-density data of the mixtures to infer the
EoS of a HD fluid in the metastable region. This latter aspect
allows us to circumvent in part the difficulties associated with
the simulation of the fluid-solid transition and the accessibility
to the metastable fluid region in the monocomponent system.
However, although for many years there has been interest in
polydisperse systems, particularly bidisperse mixtures with
particles of similar sizes for instance to determine whether
and when those systems phase separate into subsystems with
different compositions, such problems and similar ones lie
beyond the scope of this paper and will not be addressed here.

The paper is organized as follows. In Sec. II we present the
development linking the free energy and EoS of a polydisperse
HD mixture to those of the monocomponent system. Section
III presents the simulation results of the compressibility factor
of a variety of polydisperse HD mixtures with different size
distributions and the assessment of the mapping “polydisperse
mixture ↔ monocomponent fluid,” including the inference of
the compressibility factor of the monocomponent HD fluid in
the metastable region. The paper concludes in Sec. IV with
further discussion and some concluding remarks.

II. MAPPING BETWEEN THE EQUATION OF STATE OF
THE POLYDISPERSE MIXTURE AND THAT OF THE

MONOCOMPONENT SYSTEM

Recently a fundamental-measure-theory (FMT) approach
to link through an effective packing fraction φeff the EoS of a
monocomponent (three-dimensional) HS fluid to the EoS of a
polydisperse HS mixture has been derived by application of
some consistency conditions [64–67]. For completeness, the
derivation is summarized in the Appendix. In this approach,
the excess free energy per particle (aex) of the mixture may be
expressed in terms of the one of the monocomponent HS fluid

(aex
s ) as

βaex(φ) + ln(1 − φ) = α

λ

[
βaex

s (φeff) + ln(1 − φeff)
]
, (1)

where the effective packing fraction φeff of the monocom-
ponent fluid is related to the packing fraction φ of the
polydisperse mixture through

φeff

1 − φeff
= 1

λ

φ

1 − φ
. (2)

Here λ = m3/m2
2 � 1 and α = λ/m2 � λ for three-

dimensional systems, mq ≡ Mq/M
q

1 being the qth dimension-
less moment.

In turn, taking into account the thermodynamic relation

Z(φ) = 1 + φ
∂βaex(φ)

∂φ
, (3)

the mapping between the compressibility factor of the mono-
component system (Zs) and that of the polydisperse mixture
(Z) that is then obtained from Eq. (1) may be expressed as

φZ(φ) − φ

1 − φ
= α

[
φeffZs(φeff) − φeff

1 − φeff

]
. (4)

Equivalently, the inverse of the thermodynamic relation (3),
namely,

βaex(φ) =
∫ φ

0
dφ′ Z(φ′) − 1

φ′ , (5)

allows one to recover Eq. (1) from Eq. (4).
An interesting consequence of Eq. (4) is that one can invert it

to infer the monocomponent EoS from that of the polydisperse
fluid. The degree of collapse of the mapping from different
functions Z(φ) onto a common function Zs(φeff) is an efficient
way of assessing Eq. (4) without having to use an externally
imposed EoS.

Equations (1)–(4) lend themselves to an insightful physical
interpretation [67]. First, note that the ratio

y ≡ φ

1 − φ
(6)

represents a rescaled packing fraction, i.e., the ratio between
the volume occupied by the spheres and the remaining void
volume. Thus, Eq. (2) dictates that the effective monocom-
ponent fluid associated with a given mixture has a rescaled
packing fraction yeff ≡ φeff/(1 − φeff) that is λ times smaller
than that of the mixture. Next,

�p∗(y) ≡ φZ(φ) − φ

1 − φ
(7)

represents a (reduced) “surplus” pressure with respect to the
ideal-gas value corrected by the void volume. Analogously,
we can define the “surplus” free energy per particle

�a∗(y) ≡ βaex(φ) + ln(1 − φ) (8)

as the difference between the (reduced) free energy per particle
and the ideal-gas value corrected by the void volume. In terms
of those quantities, Eqs. (1) and (4) establish that the surplus
free energy �a∗ and pressure �p∗ of the polydisperse fluid are
just proportional to their respective monocomponent counter-
parts �a∗

s and �p∗
s . This is schematically depicted in Fig. 1.

062603-2



EQUATION OF STATE OF POLYDISPERSE HARD-DISK . . . PHYSICAL REVIEW E 96, 062603 (2017)

FIG. 1. Schematical view of the polydisperse ↔ monocomponent
mapping represented by Eqs. (1)–(4).

While the surplus free energy of the polydisperse fluid is never
larger than that of the effective monocomponent fluid (since
α/λ � 1), the surplus pressure �p∗ can be larger than, equal
to, or smaller than �p∗

s (since α − 1 has not a definite sign).
It should be stressed that the proposal implied by Eq. (4)

may be interpreted in two directions. On the one hand, if Zs is
known as a function of φeff, then one can readily compute Z

as a function of φ [φeff and φ being of course related through
Eq. (2)]. On the other hand, if Z(φ) is known in a high enough
density region, then the values of Zs(φeff) may be inferred
from those of the mixture even in regions where obtaining
them from simulation is either difficult or not feasible, such as
the metastable fluid branch.

Although initially derived for three-dimensional HS sys-
tems [65,66], the physical interpretation of Eqs. (1)–(4)
suggests their heuristic generalization to any dimensionality
d �= 3. In that case, the parameters λ and α can be determined
by imposing consistency with the second and third virial
coefficients of the mixture [67]. This leads to

λ = B̄2 − 1

b2 − 1

b3 − 2b2 + 1

B̄3 − 2B̄2 + 1
, α = λ2 B̄2 − 1

b2 − 1
, (9)

where B̄n ≡ Bn/(vdMd )n−1 and bn ≡ Bn/(vdσ
d )n−1 are re-

duced virial coefficients of the mixture and the mono-
component fluid, respectively (Bn being the standard virial
coefficients). Of course, λ = m3/m2

2 � 1 and α = λ/m2 � λ

are again recovered from Eq. (9) in the three-dimensional case.
In what follows, we will particularize to HD systems

(d = 2), in which case v2 = π
4 , b2 = 2, b3 = 4(4/3 −√

3/π ) 	 3.12802, and the second virial coefficient of the
polydisperse HD mixture is given exactly by

B̄2 = 1 + m−1
2 . (10)

On the other hand, given a size distribution f (σ ), the exact
third virial coefficient of a polydisperse mixture of additive
HDs is not expressible in terms of moments. Its explicit
expression is [67]

B3 =π

2

∫ ∞

0
dσ1 f (σ1)

∫ ∞

0
dσ2 f (σ2)σ 2

12

×
∫ ∞

0
dσ3 f (σ3)Sσ13,σ23 (σ12), (11)

where σij = 1
2 (σi + σj ) and

Sa,b(r) =a2 cos−1 r2 + a2 − b2

2ar
+ b2 cos−1 r2 + b2 − a2

2br

− 1

2

√
2r2(a2 + b2) − (b2 − a2)2 − r4 (12)

is the intersection area of two circles of radii a and b whose
centers are separated by a distance r .

Therefore, for HD fluids Eqs. (1) and (4) become

βaex(φ) + ln(1 − φ) = λ

m2

[
βaex

s (φeff) + ln(1 − φeff)
]
, (13)

φZ(φ) − φ

1 − φ
= λ2

m2

[
φeffZs(φeff) − φeff

1 − φeff

]
, (14)

respectively, where now

λ = b3 − 3

(B̄3 − 1)m2 − 2
. (15)

Notice that Eq. (14) is equivalent to

�p∗(y) = λ2

m2
�p∗

s (y/λ). (16)

It is worthwhile noting that in the Scaled Particle Theory
(SPT) for HD systems [68–70] one simply has �p∗

s (y) = y2

and �p∗(y) = m−1
2 y2, so that Eq. (16) is identically satisfied

for arbitrary values of λ. In the more general case, however, the
polydisperse ↔ monocomponent mapping depends on λ, as
given by Eq. (15), to guarantee that the third virial coefficient
of the mixture is exactly retained. On the other hand, this latter
requirement implies an added difficulty since, as said before,
the exact determination of B̄3 via Eq. (11) cannot be carried out
from the knowledge of just the first few moments of the size
distribution f (σ ). Therefore, it seems practical to replace the
exact formula (11) by an approximate simpler one. In Ref. [71]
three of us proposed an approximate expression of B3 for
nonadditive d-dimensional HS mixtures. Its particularization
to additive HD mixtures yields [67]

B̄
app
3 = 1 + b3 − 1

m2
. (17)

Using this approximation in Eq. (15), we obtain λ = 1 and α =
m−1

2 . Thus, φeff = φ and Eqs. (13), (14), and (16) reduce to

βaex(φ) + ln(1 − φ) = 1

m2

[
βaex

s (φ) + ln(1 − φ)
]
, (18)

Z(φ) − 1

1 − φ
= 1

m2

[
Zs(φ) − 1

1 − φ

]
, (19)

�p∗(y) = 1

m2
�p∗

s (y). (20)

Interestingly enough, this mapping was derived earlier from
a different method [59,62].

Equation (14) [together with Eqs. (2), (11), (12), and
(15)], on the one hand, and Eq. (19), on the other hand,
provide two different (approximate) connections between the
compressibility factor of polydisperse HD mixtures of given
size distribution and that of the monocomponent HD fluid.

For later comparison, we also include here another theoret-
ical mapping proposed by Barrio and Solana [72–74], which
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reads

Z(φ) − 1 =
[

1 + m−1
2

2
−

(
b3

1 + m−1
2

4
− B̄3

2

)
φ

]
× [Zs(φ) − 1]. (21)

Again the mapping in Eq. (21) is consistent with B̄2 and B̄3 but
cannot be expressed in terms of moments unless B̄3 is replaced
by B̄

app
3 .

The three above proposals for the mapping between Z and
Zs will be assessed in Sec. III.

III. RESULTS

A. Systems examined

In order to test the usefulness of the approximations implied
by Eqs. (14), (19), and (21), the following classes of size
distributions have been chosen. First, binary (B) mixtures
having a discrete composition characterized by

f (σ ) = (1 − x)δ(σ − a) + xδ(σ − aw), (22)

where a is the small diameter, w is the ratio of the big to the
small diameter, and x is the mole fraction of the big species.
The associated qth-order moment is Mq = aq(1 − x + xwq).
Next, the top-hat (TH) distribution

f (σ ) = 1

a(w − 1)

(σ − a)
(aw − σ ), (23)

where 
(x) is the Heaviside step function. In this case, Mq =
aq(wq+1 − 1)/(w − 1)(q + 1). Finally, we consider

f (σ ) = awσ−2

w − 1

(σ − a)
(aw − σ ), (24)

so that the distribution decays in the interval a < σ < aw

as an inverse power (IP) law of second order. Here, M1 =
aw(ln w)/(w − 1) and Mq = aq(wq − w)/(w − 1)(q − 1) for
q �= 1.

Table I contains a list of the 26 mixtures (B1–B8, TH1–
TH11, IP1–IP7) examined in this paper, together with the
corresponding values of their exact second and third virial
coefficients, as given by Eqs. (10) and (11), respectively. Note
that, except in the binary cases, the values of B̄3 need to be
obtained numerically. Table I also includes the values of λ, as
obtained from Eq. (15), and of α = λ2/m2, as well as those of
the approximate third virial coefficient, Eq. (17).

A convenient measure of the “degree of dispersity” in a
mixture can be taken as the reduced variance m2 − 1 of the size
distribution. Equivalently, according to Eq. (10), the degree
of dispersity can be measured by 2 − B̄2 = 1 − m−1

2 . In a B
mixture at a fixed value of w, m2 takes a maximum value
m2 = (1 + w)2/4w at x = 1/(1 + w); this maximum value
monotonically increases (almost linearly) without upper bound
as w increases. In the case of IP mixtures, one has m2 = (w −
1)2/w(ln w)2, which again grows unbounded (but much more
slowly) with increasing w. On the other hand, m2 = 4(1 +
w + w2)/3(1 + w)2 for TH mixtures, this quantity being now
upper bounded by m2 = 4

3 . Taking all of this into account, we
can order the 26 mixtures of Table I in ascending degree of
dispersity as TH1–TH3, IP1, IP2, B1, IP3, TH4, IP4, IP5, TH5,
IP6, B2, TH6, IP7, TH7–TH11, B3–B8. Interestingly, even

TABLE I. Values of B̄2, B̄3, B̄
app
3 , λ, and α for the different

polydisperse HD mixtures examined in this work.

Label x w B̄2 B̄3 B̄
app
3 λ α

B1 0.5 1.4 1.97297 3.06851 3.07050 1.01630 1.00495
B2 0.3 2 1.88947 2.88496 2.89282 1.07412 1.02621
B3 0.25 4 1.64474 2.35456 2.37201 1.26816 1.03689
B4 0.14 6 1.48983 2.02135 2.04237 1.50420 1.10830
B5 0.07 14 1.24902 1.51371 1.52991 2.03367 1.02989
B6 0.04 22 1.16661 1.34172 1.35456 2.51284 1.05206
B7 0.03 30 1.12502 1.25584 1.26605 2.76326 0.95463
B8 0.025 40 1.09520 1.19471 1.20258 2.82185 0.75802
TH1 1.1 1.99924 3.12635 3.12641 1.00046 1.00016
TH2 1.2 1.99725 3.12196 3.12217 1.00166 1.00056
TH3 1.4 1.99083 3.10780 3.10849 1.00553 1.00181
TH4 2 1.96429 3.04943 3.05202 1.02136 1.00593
TH5 3 1.92308 2.95922 2.96432 1.04515 1.00831
TH6 5 1.87097 2.84588 2.85343 1.07264 1.00210
TH7 10 1.81757 2.73069 2.73980 1.09530 0.98083
TH8 20 1.78563 2.66232 2.67183 1.10447 0.95835
TH9 30 1.77417 2.63789 2.64744 1.10663 0.94808
TH10 100 1.75743 2.60233 2.61181 1.10845 0.93062
TH11 500 1.75150 2.58977 2.59920 1.10865 0.92367
IP1 1.4 1.99062 3.10734 3.10805 1.00570 1.00195
IP2 1.6 1.98179 3.08789 3.08927 1.01114 1.00378
IP3 1.8 1.97170 3.06566 3.06779 1.01744 1.00588
IP4 2 1.96091 3.04191 3.04483 1.02428 1.00813
IP5 2.4 1.93850 2.99266 2.99715 1.03883 1.01280
IP6 3 1.90521 2.91960 2.92631 1.06138 1.01975
IP7 4 1.85414 2.80783 2.81762 1.09835 1.03041

though B̄3 is not expressible in terms of moments, it turns out
that the same ordering is obtained if the degree of dispersity
is measured by b3 − B̄3. The same happens if the dispersity
criterion is λ − 1, except for the permutations B2 ↔ TH6 and
IP7 ↔ TH7.

It can be observed from Table I that B̄
app
3 tends to

overestimate B̄3 but otherwise it is always a very good
approximation, with a maximum relative deviation of 1.07%
(mixture B5). This is graphically illustrated in Fig. 2, which

FIG. 2. Scatter plot of B̄
app
3 /b3 vs B̄3/b3 for the 26 mixtures

considered in Table I. The straight dashed line represents the equality
B̄

app
3 /b3 = B̄3/b3. The inset shows a scatter plot of λ vs B̄3/b3.
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shows that B̄
app
3 	 B̄3, even when the third virial coefficient is

more than 40% smaller than its monocomponent value.
Table I also shows that λ � 1.11, except in the mixtures

B3–B8, where λ increases rather rapidly with dispersity (see
inset in Fig. 2). It seems paradoxical that λ can be as large
as λ = 2.82 (mixture B8) even though δB̄3 ≡ B̄

app
3 − B̄3 is

relatively small (for instance, δB̄3 = 0.008 in the case of B8).
In order to understand this, note that Eq. (15) can be recast as
λ−1 = 1 − δB̄3/(b3 − 3)(B̄2 − 1). As long as δB̄3/(b3 − 3) 

B̄2 − 1, as happens typically if B̄2 > 1.7, λ is only slightly
larger than 1. On the other hand, as dispersity increases, B̄2

becomes closer to 1 and, therefore, λ visibly departs from 1.

B. Molecular dynamics simulations

We have used event-driven MD simulations with a mod-
ification of the Lubachevsky-Stillinger algorithm [75–78]
to compute the compressibility factors of polydisperse HD
mixtures having the 26 size distributions described by Table I,
as well as for the monocomponent HD system. Starting from
zero packing fraction, the system is compressed by allowing
the diameter of the disks to grow linearly in time with a
dimensionless rate �, while the kinetic energy E is kept
constant using a rescaling thermostat procedure. Therefore,
in each case, a single MD run was employed to span a wide
range of packing fractions (from φ ≈ 0 to φ ≈ 0.85).

A two-dimensional square unit cell of area A containing
N particles was considered and, as usual, periodic boundary
conditions were used to mimic an infinite system. Given the
velocities (vi and vj ) just before contact of two interacting
particles i and j (with masses μi and μj , respectively) and
given their relative position (rij = ri − rj ), the velocities (v′

i

and v′
j ) after the collision are derived from conservation of

linear momentum as μi,j v′
i,j = μi,j vi,j ± �p. Since we are

dealing with smooth (frictionless) particles, only the normal
component of the change of momentum, �p(n) = (�p · n̂)̂n
(where n̂ = rij /rij is the unit vector in the normal direction),
is affected during the collision. It is obtained from

�p(n) = −2μij v(n)
c , (25)

with μij = μiμj/(μi + μj ) being the reduced mass and v(n)
c

being the normal component of the relative velocity of the
contact point of the particles. The latter is calculated taking into
account the expanding disk diameters (for growing particles)
as

v(n)
c = [

(vi − vj ) · n̂ − 1
2 (σ̇i + σ̇j )

]̂
n. (26)

In our simulations, the diameter σi(t) of particle i was
grown according to the linear law σ̇i = �

√
E/Mσi(t)/σmax(t),

where E and M are the total energy and mass, respectively,
σmax(t) is the largest diameter in the system at time t , �

is the (constant) dimensionless growth rate, and the ratio
σi(t)/σmax(t) is independent of time. In this convention,
we have σmax(t) = �

√
E/Mt and σmin(t) = �

√
E/Mw−1t ,

where σmin(t) is the diameter of the smallest particle and
w = σmax(t)/σmin(t) is constant, as desired. This ensures that
the size distribution during the process is maintained, and thus
disk areas relative to the mean are constant over time, but the
mean disk area increases uniformly with time. According to

FIG. 3. Plot of Z(φ) as obtained from our simulations for the HD
mixture B5. The curves correspond toN = 212 (red),N = 213 (blue),
and N = 214 (black), with growth rates � = 1.6 × 10−3 (dotted),
� = 1.6 × 10−4 (dash-dotted), and � = 1.6 × 10−5 (solid). Note that
the case N = 214 with � = 1.6 × 10−3 has not been included.

this protocol, the packing fraction grows quadratically in time
as φ(t) = π

4

∑
i σ

2
i (t)/A = π

4 (EN /MA)(M2/σ
2
max)�2t2.

The compressibility factor Z at temperature kBT = E/N
is calculated from the total exchanged momentum in all
interparticle collisions during a short time period �t , namely,

Z = 1 +
∑
coll

|�pij |rij

2E�t
, (27)

where rij accounts for the distance over which momentum
is transmitted. Note that, over time, the additional energy
created during collisions would accelerate the particles, but
this is avoided by a periodic rescaling of the average particle
velocity to hold the mean temperature constant. In fact, the
time period �t (typically 400 events per particle) was chosen
so that the total change in the kinetic energy due to growth stays
below 1%.

If the growing is sufficiently slow, the system will approx-
imately be in equilibrium during the densification process
and one can rather efficiently gather quasi-equilibrium data
as a function of density. We used slow growth rates � =
1.6 × 10−4 to 1.6 × 10−5 and a number of particles N =
212 = 4096, except in the most disparate mixtures (B4–B8),
where N = 214 = 16 384.

One may reasonably wonder whether the choices of growth
rate and number of particles do have an important influence on
our simulation results. As an illustration of the effect of varying
both N and � on the robustness of our calculations, in Fig. 3
we show results for mixture B5. Although not shown, the ones
for other mixtures display similar behavior. It is clear that, for
a given number of particles, the rate � = 1.6 × 10−3 is too fast
for our purposes if φ � 0.77, but the rates � = 1.6 × 10−4 and
� = 1.6 × 10−5 lead to practically indistinguishable results
in the region of interest φ � 0.85. On the other hand, for
a fixed growth rate, the results for N = 212, N = 213, and
N = 214 are almost identical. In general, then, an excellent
selection seems to be N = 214 and � = 1.6 × 10−5. This
guarantees meaningful data in the density range of interest. It
is clear also that even the choice N = 212 and � = 1.6 × 10−4

would represent a reasonable compromise between robustness
and computation time. Nevertheless, in the extremely dense
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FIG. 4. (a) Plot of Z(φ) as obtained from our simulations for
the monocomponent HD fluid and for various polydisperse HD
mixtures. (b) Plot of the inferred monocomponent compressibility
factor Zs(φeff) as obtained from Eqs. (2) and (14), complemented
by Eqs. (11) and (15). The thick black solid line corresponds to the
monocomponent system, while the thin red (B1–B8), blue (TH3–
TH11), and green (IP1–IP7) solid lines correspond to polydisperse
systems. The two thick blue dashed lines refer to mixtures TH1 and
TH2. Note the tiny error bars in the curves B4–B8 of panel (a).

region φ > 0.85, not considered in this paper, increasingly
slower growth rates would be necessary to guarantee a good
equilibration.

Thanks to the large number (∼104) of pairs {φ(t),Z(t)}
obtained as direct output for a given size distribution, we could
afford to smooth out the data with a bin size δφ = 10−3. This in
turn allowed us to estimate the error bars from the fluctuations
of Z within each bin. The error bar of Z was observed to
generally increase with φ, but it typically remained close to
1% at φ 	 0.85 [see Fig. 4(a)].

C. Assessment of the mapping

Figure 4(a) shows all the functions Z(φ) for those 26
mixtures and for the monocomponent system. As expected,
each mixture differs in the values of Z for a common φ.
If the mapping “polydisperse mixture ↔ monocomponent
fluid” as given by Eq. (14) works, a high degree of collapse
of all the curves should be expected when the inferred
monocomponent quantity Zs(φeff) is plotted instead of Z(φ).
This is shown in Fig. 4(b), where an excellent collapse
of all the mixture curves is observed in the stable region
(φeff � 0.7), the collapse keeping being rather good (although,

FIG. 5. Plot of the inferred monocomponent compressibility
factor Zs(φ) as obtained from Eq. (19). The meaning of the curves is
the same as in Fig. 4.

of course, not perfect) in the metastable region (φeff > 0.7),
except for the mixtures TH1 and TH2, in which the ratio
between the diameters of the biggest and the smallest disk
is less than or equal to w = 1.2. Those latter curves exhibit
crystallization effects in that region and thus follow trends
similar to that of the monocomponent fluid. This observation
agrees with the result of Speedy [7], who also pointed out that,
in the case of equimolar binary HD mixtures, freezing to a
mixed crystal occurs when w < 1.2 while they may reach the
metastable fluid region when w � 1.3. On the other hand,
a higher degree of dispersity (say, m2 � 1.01) allows one
to frustrate equilibration to a crystal phase and explore the
metastable fluid branch, which is practically inaccessible for
the monocomponent fluid. Interestingly, we have checked (not
shown) that the extrapolations in the metastable domain of
known accurate EoS for the monocomponent HD fluid [79–83]
agree fairly well with the inferred values of Zs in that domain.

Figure 5 shows the inferred Zs(φ) as obtained with the
simplified mapping given by Eq. (19), i.e., with λ → 1 or
B̄3 → B̄

app
3 . Despite this simplification, we get a collapse of

the mixture curves practically as good as the one shown in
Fig. 4(b), although the mapping corresponding to Eq. (14) is
somewhat more accurate in the metastable region. Notwith-
standing this, it should be pointed out that the mapping (14)
has two drawbacks with respect to the mapping (19). First,
it requires the numerical evaluation of the scaling parameter
λ via Eqs. (11) and (15). Second, since φeff < φ, one has
to go to higher packing fractions of the mixture to get
access to the high-density region of the monocomponent
system. This is a drawback because the simulation results
for the polydisperse mixtures become noisier, and hence more
unreliable, as the packing fraction of the mixture increases, due
to diverging collision rates. The previous feature is illustrated
in Fig. 6, where we have joined with straight lines the points
connecting the packing fraction φ of the mixture B8 with
the corresponding effective value φeff of the monocomponent
fluid. Thus, according to Eq. (14), the values of Z for the
mixture B8 on the region 0 < φ < 0.87 map onto values of Zs

in the narrower region 0 < φeff < 0.70. In contrast, Eq. (19)
allows one to infer Zs at the same packing fractions as for
the mixture (i.e., the corresponding points would be joined by
vertical lines, not shown).
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FIG. 6. Plot of the compressibility factor for the mixture B8
(black solid line) and for the inferred monocomponent compress-
ibility factor as obtained from Eq. (14) (blue solid line) and from
Eq. (19) (dotted red line). The circles joined by straight lines denote
pairs (φeff,φ) as given by Eq. (2).

As said at the end of Sec. II, a mapping alternative to
Eqs. (14) and (19) is represented by Eq. (21). The associated
inferred Zs(φ) is shown in Fig. 7. Here the true values of
B̄3 have been used, but we have checked that the curves
are practically indistinguishable from those obtained if B̄3 is
replaced by B̄

app
3 as given in Eq. (17). While the mapping (21)

does a good job for not too disparate mixtures (say, m2 < 2 or,
equivalently, B̄2 > 1.5), it clearly fails for the mixtures B4–B8,
even in the stable region. In fact, Eq. (21) is inconsistent with
the exact limit of a binary mixture in which the small disks are
point particles [84].

D. Mapping the monocomponent system onto itself?

As said in Sec. II, Eq. (14) becomes Eq. (19) if B̄3 → B
app
3 ,

i.e., λ → 1. However, for very disparate mixtures (e.g., mix-
ture B8), the scaling parameter λ can clearly deviate from λ =
1, as can be seen from Table I and the inset of Fig. 2. Despite
this, we have seen from Figs. 4–6 that both approximations (14)
and (19) yield practically the same inferred monocomponent
compressibility factor Zs(φ), even from the mixture B8. This

FIG. 7. Plot of the inferred monocomponent compressibility
factor Zs(φ) as obtained from Eq. (21) with B̄3 given by Eq. (11).
The meaning of the curves is the same as in Fig. 4.

FIG. 8. Plot of our MD results for the monocomponent com-
pressibility factor Zin

s (φ) (—◦—, black) and the output functions
Zout

s (φ) obtained from Zin
s (φ) by using Eq. (28) with λ = 1.5 (–·–·–,

dark yellow), λ = 2 (– – –, red), and λ = 3 (· · · , blue). The (black)
thin solid line represents the function ZSPT

s (φ). The inset shows the
differences Zs(φ) − ZSPT

s (φ).

suggests the possibility of combining Eqs. (14) and (19) to
map Zs(φ) onto itself, as explained below.

Suppose we use as input a known monocomponent com-
pressibility factor Zin

s . Then Eq. (14) allows us to obtain
the compressibility factor Z for a given polydisperse fluid:
Zin

s → Z. Next, insertion of that function Z into Eq. (19)
provides an output monocomponent function Zout

s : Z → Zout
s .

Proceeding in this way, we can define a mapping Zin
s → Zout

s ,
which reads

Zout
s (φ) = λ2

λ − (λ − 1)φ
Zin

s

(
φ

λ − (λ − 1)φ

)
− λ − 1

φ
.

(28)
This is a nontrivial monocomponent → monocomponent non-
local mapping. The degree of consistency Zout

s (φ) 	 Zin
s (φ) for

λ > 1 is an indirect measure of how equivalent the mappings
(14) and (19) are. In terms of the scaled packing fraction (6)
and the surplus pressure (7), Eq. (28) can be simply rewritten as

�p∗out
s (y) = λ2�p∗in

s

(
λ−1y

)
. (29)

The consistency condition �p∗out
s (y) = �p∗in

s (y) yields the
self-similarity relation �p∗

s (y) = λ2�p∗
s (λ−1y), whose unique

solution is the SPT EoS �p∗SPT
s (y) = y2 or, equivalently,

ZSPT
s (φ) = 1/(1 − φ)2. Now, the interesting question is,

How good is the mapping Zin
s (φ) → Zout

s (φ) 	 Zin
s (φ), even

though Zs(φ) �= ZSPT
s (φ)?

To address this question, Fig. 8 plots our MD results for the
monocomponent compressibility factor, Zin

s (φ), together with
the output functions Zout

s (φ) obtained from it via Eq. (28) with
λ = 1.5 (similar to the value corresponding to mixture B4),
λ = 2 (similar to the value corresponding to mixture B5), and
λ = 3 (larger than the value corresponding to mixture B8). As
a reference, the SPT function ZSPT

s (φ) is also plotted, while the
deviations Zs(φ) − ZSPT

s (φ) are displayed in the inset of Fig. 8.
We can observe that, as is well known, the SPT EoS slightly
underestimates the compressibility factor. As was already seen
in Figs. (4), (5), and (7), the “true” monocomponent function
Zin

s (φ) exhibits a freezing transition at φ ≈ 0.7. On the other
hand, part of the stable liquid branch of Zin

s (φ) for φ < 0.7 can
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be mapped onto Zout
s (φ) for a certain domain of the metastable

region φ > 0.7. The larger the parameter λ, the larger the
explored metastable region.

Of course, since Zs(φ) �= ZSPT
s (φ), the mapping Zin

s (φ) →
Zout

s (φ) 	 Zin
s (φ) is imperfect and depends on the value of λ.

Nevertheless, both the main panel and the inset of Fig. 8 show a
high degree of overlap of Zout

s (φ) in the stable and metastable
regions, even for relatively large values of λ. Therefore, it
can be tentatively conjectured that it might be possible to use
Eq. (28) to map the monocomponent EoS onto itself, extending
it into the metastable region and thus obviating the need for
polydispersity.

IV. CONCLUDING REMARKS

In this paper we have presented a heuristic ansatz for
the relationship between the excess Helmholtz free energy
of a polydisperse HD mixture, aex, and the one of the
monocomponent HD fluid, aex

s [see Eq. (13)]. Such an ansatz
maintains the form introduced earlier for the three-dimensional
case [66] and allowed us to derive a link between both
compressibility factors in which Z and Zs are evaluated at
different packing fractions [see Eq. (14)].

The mapping may be used in the two directions: from a
known compressibility factor Zs as a function of the packing
fraction φeff one may obtain the compressibility factor of any
polydisperse mixture at the corresponding packing fraction
φ; on the other hand, from values of Z(φ) at a high enough
density one may compute the corresponding values of Zs(φeff)
in difficult or inaccessible density regions from the simulation
point of view. The only information required in the mapping
are the second and third virial coefficients of the polydisperse
mixture and those of the monocomponent system. Thus, the
main asset of our approach is its relative simplicity.

In the two-dimensional case examined here, the expressions
of the required virial coefficients of the mixture for a given size
distribution are exactly known. It turns out that, in analogy with
what happens in three dimensions, the second virial coefficient
is a rather simple function of the first two moments of the
size distribution. On the other hand, in contrast to the case
of three-dimensional HSs, the third virial coefficient for a
polydisperse HD mixture may not be expressed in terms of the
moments of the size distribution but is nevertheless amenable
to explicit evaluation. If one makes a further approximation,
namely, the replacement of the exact third virial coefficient
by the approximate value B̄

app
3 [also given in terms of the

first two moments; see Eq. (17)], one gets another mapping
[see Eq. (19)] which coincides with one derived earlier with
a different method in which both compressibility factors are
evaluated at the same packing fraction [59,62]. With these
two proposals, and making use of the compressibility factors
obtained from MD simulations for a variety of polydisperse
HD mixtures that cover a wide density range, we have been
able to derive the values of the compressibility factor of
a monocomponent HD fluid in the metastable fluid branch
beyond the fluid-solid phase transition.

While the collapse of the curves corresponding to the
very different mixtures, as obtained from the mapping (14),
is not perfect [see Fig. 4(b)], it is quite reasonable both in
the stable and metastable regions and allows one to identify

systems in which some degree of crystallization may still
be present. In this respect, although at this stage the issue
remains as a conjecture, our results suggest that for a given
polydisperse mixture, irrespective of its size distribution, a
value of the reduced second moment m2 greater than 1.01
is enough to frustrate equilibration to a crystal phase. This
provides a general criterion to classify the systems that allow
the meaningful inference of the EoS of the monocomponent
HD, including the metastable fluid branch, from the knowledge
of the high-density data of such polydisperse HD mixtures.

It also turns out that the inferred EoS of the monocomponent
system with the mapping (19) based on B̄

app
3 is almost as

accurate as the one without such an approximation (see Fig. 5)
and superior to the (also simple) proposal of Barrio and Solana
[72–74], especially in the case of very disparate mixtures.
Therefore, Eq. (19) seems to be a reasonable compromise
between accuracy and simplicity.

As done in the case of HSs in Ref. [66], it would be
tempting to try to estimate the jamming packing fraction
φJ of a given mixture from the knowledge of the random
close-packing fraction φrcp of the monocomponent system.
In fact, the reasonably good degree of collapse observed in
Fig. 4(b) for very high packing fractions provides some support
to the use of Eq. (2) for such an estimate. Hence, in this case

φJ ≈ λ

λ + φ−1
rcp − 1

, (30)

with λ given by Eqs. (11), (12), and (15).
Finally, while it could be argued that dealing with the ther-

modynamic properties of two-dimensional HDs may appear
to be a merely academic problem, it has practical relevance
to confined or adsorbed colloidal systems. In fact, for this
latter case some interesting experiments have recently been
published in which a canted colloidal monolayer in sedimen-
tation equilibrium is used [85]. These experiments confirm
the existence of a first-order liquid-hexatic phase transition
followed by an apparently second-order (or at least continuous)
freezing transition. The assessment of possible artifacts due to
size polydispersity, which arises both intrinsically and from
out-of-plane fluctuations in the sedimentation equilibrium,
is also addressed. Since sedimentation is a direct probe of
compressibility, it is conceivable that the analytical approach
presented in this paper could hopefully have direct application
to this problem.
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APPENDIX: FUNDAMENTAL-MEASURE-THEORY
DERIVATION OF EQ. (1)

In FMT, the bulk excess free-energy density � of a
three-dimensional HS fluid mixture is assumed to depend
on the partial number densities only through the four SPT
variables {nα} [86], the construction of a specific functional
�({nα}) being guided by internal consistency conditions. Two
basic conditions are (i) in the special case where one of the
components is made of point particles � must decompose
into an ideal-gas-like term plus a term associated with
the remaining components and (ii) a common pressure must be
obtained from the standard thermodynamic relation and from
the reversible work needed to create a cavity accommodating
a particle of infinite diameter. Here we summarize the proof
[64,65,67] that the functionals satisfying (i) and (ii) must
necessarily have the form

�({nα}) = −n0 ln(1 − n3) + �(y)
n1n2

1 − n3
, (A1)

where

y ≡ n2
2

12πn1(1 − n3)
(A2)

is a scaled variable and �(y) is an arbitrary dimensionless
scaling function which can be determined from the free-energy
density of the monocomponent system.

1. Hard-sphere mixture

Let us consider an additive HS mixture characterized by
an arbitrary number of components with diameters {σi ; i =
1,2, . . .} and partial number densities {ρi = Ni/V ; i =
1,2, . . .}, Ni being the number of particles of species i

and V being the volume. Other related quantities are the
total number density ρ = ∑

i ρi = N/V , the mole fractions
{xi = ρi/ρ; i = 1,2, . . .}, and the FMT bulk densities

n0 = ρ, n1 = 1

2
ρM1, n2 = πρM2, n3 = π

6
ρM3,

(A3)
where Mq = ∑

i xiσ
q

i are size distribution moments. In par-
ticular, φ ≡ n3 is the packing fraction.

The pressure and chemical potentials are given by appro-
priate derivatives of the excess free energy (in units of kBT )
per unit volume �({ρi}) = �(ρ; {xi}):

βp = ρ + ρ2

(
∂

∂ρ

�

ρ

)
{xi }

, (A4a)

βμex
i =

(
∂�

∂ρ

)
{ρj �=i }

. (A4b)

2. Physical conditions on �

Let us assume that we add N0 = ρ0V particles of zero
diameter (σ0 = 0). In such a case, it can be proved that [64]

lim
σ0→0

�({ρ0,ρ1,ρ2 . . .}) = −ρ0 ln(1 − n3) + �({ρ1,ρ2, . . .}).
(A5)

This is the point-particle limit condition on the free energy
density �.

Another independent condition is related to the fact that,
apart from the thermodynamic relation (A4a), the pressure
can alternatively be obtained taking into account the reversible
work needed to create a cavity accommodating a particle of
infinite diameter [86]:

βp = lim
σi→∞

βμex
i

πσ 3
i /6

. (A6)

3. Truncatable free energies and FMT

A free energy density �({ρi}) is said to be truncatable if
it depends on the series of densities {ρi} and the series of
diameters {σi} only through the packing fraction φ and a finite
number of moments [87]. In the special case of a FMT [88,89],
the number of moments is reduced to three:

�({ρi}) → �(n0,n1,n2,n3). (A7)

Application of Eq. (A5) implies [64]

�({nα}) = −n0 ln(1 − n3) + n1n2H (n3,y), (A8)

where y is defined by Eq. (A2) and the dimensionless function
H (n3,y) remains so far undetermined. On the other hand,
imposing consistency between Eqs. (A4a) and (A6), and using
Eq. (A4b), we obtain

(1 − n3)
∂�

∂n3
= n0 − � +

2∑
α=0

nα

∂�

∂nα

. (A9)

The constraints (A8) and (A9) can be combined to yield
Eq. (A1) [65,67], which can be rewritten as

�({nα}) = − n0 ln(1 − n3) + 4πn2
1

n2

[
βaex

s

(
y

1 + y

)
− ln(1 + y)

]
, (A10)

where aex
s (φ) is the (bulk) excess free energy per particle of the

monocomponent system. Thus, the thermodynamic properties
of a HS mixture of total packing fraction φ are expressed in
terms of those of a pure HS fluid with an effective packing
fraction

φeff = y

1 + y
=

[
1 + 1 − φ

φ

M1M3

M2
2

]−1

� φ. (A11)

Extension to the inhomogeneous case is achieved by appropri-
ate replacements of the variables {nα} by the FMT weighted
densities [90].

In the homogeneous case, it is straightforward to obtain the
excess free energy per particle βaex = �/n0 from Eq. (A10).
The result is given by Eqs. (1) and (2) with

α = M3
1 M3

M3
2

, λ = M1M3

M2
2

. (A12)
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