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Abstract. The ‘derivation’ in a standard course in statistical thermodynamics of a very simple
equation of state for a hard-disc fluid is discussed. This equation has the form of a simple rational
function that fulfils the requirements of being exact to first order in density and containing a (single
pole) singularity at the close-packed density. This approach is in the same spirit as that used
by Boltzmann in 1898 to propose an equation of state for hard spheres.

1. Introduction and historical perspective

On a first contact with the subject, students of introductory courses in statistical
thermodynamics sometimes get the impression that, other than for ideal systems, very few
interesting results may be derived analytically. As a consequence, many theoretical approaches
are regarded as merely formal and it is often assumed that simplicity and accuracy are
conflicting concepts. Therefore, examples and simple models in which such beliefs can clearly
be ruled out are certainly very valuable. The main aim of this paper is to present one such
example in the case of classical fluids. As an extra point, we would like to convey the idea that
a combination of physical intuition, available evidence and not very sophisticated mathematics
may (albeit with some luck!) work in providing further examples.

One remarkable case of this approach, obtained mostly by intuitive reasoning, but giving an
essentially qualitatively correct picture of the thermodynamic properties of gases and liquids,
is the famous van der Waals’s equation of state. Its derivation relies heavily on the molecular
view of matter and on a tremendous insight into the fundamental physics of the liquid state. As
van der Waals had already realized, his equation is only a first approximation to the equation
of state of fluids, and therefore many other empirical or semi-theoretical attempts have been
made [1, 2] to improve van der Waals’s equation. For the sake of simplicity and also for
gaining insight through analytical derivations, most of the proposals have referred to systems
of particles with a hard core.
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The virial expansion, first introduced by Kamerlingh Onnes [2] as a mathematical
representation of experimental data on the equation of state, is an expansion that gives the
deviation from ideal gas behaviour in ascending powers of the density:

Z ≡ p/ρkT = 1+ B2ρ + B3ρ
2 + · · · (1)

wherep is the pressure,ρ the number density,k the Boltzmann constant andT the absolute
temperature. The successive virial coefficientsBn, which in general depend on the temperature,
are related to the interactions of isolated groups ofn = 2, 3, . . ., molecules by exact statistical-
mechanical formulae. As with any power series, a knowledge of the region of density in which
the virial series converges is important for its use. Again hard-core systems are often used
for clarification. In the case of hard rods of lengthσ in a line, the exact equation of state
was obtained independently by Rayleigh [3] and Korteweg [4] in 1891 and rederived much
later by Herzfeld and Goeppert-Mayer [5] and Tonks [6]; in this case,Bn = σn, so that the
virial series converges for the whole physical domain 0< ρσ < 1 and there is no phase
transition. On the other hand, the exact equation of state for the hard-sphere system (and its
two-dimensional analogue of hard discs) is not known. Computer simulations have shown that
these systems can exist in two thermodynamically stable states corresponding to a fluid and a
crystal, respectively. (There cannot be a gas–liquid transition in these purely hard-core systems
because of the lack of an attractive part in the pair potential.) It has been suggested that the
singularity that certainly must exist in the true equilibrium equation of state at the fluid–solid
transition density might be associated with a divergence of the virial series. However, the very
recent results on the eighth-order virial coefficients for hard spheres and hard discs [7] indicate
that the virial series as given in equation (1) diverges at the crystalline close-packing limit [8],
as suggested earlier by Baram and Luban [9].

It is of interest for our purposes to mention a little known contribution in connection with
the equation of state in which Boltzmann’s intuition is clearly manifested. This is an early
attempt at what is now known as a (two-point) Padé approximant [10]. Boltzmann thought
that the pressure would rise steadily, becoming infinitely large at the close-packing density, an
idea already suggested by Korteweg [11]. So he proposed [12] the following equation for a
hard-sphere fluid:

Z = 1+ 8
3η + 14

3 η
2

1− 4
3η

(2)

where η = 1
6πρσ

3 is the packing fraction, i.e. the fraction of volume occupied by the
molecules, andσ is the hard-sphere diameter. He rounded off the close-packing fraction
valueηcp = 1

6

√
2π ' 0.7405 as3

4 for simplicity. The coefficients in the numerator were
determined by the condition that, on expansion, equation (2) yields the correct first, second,
and third virial coefficients. It turns out that equation (2) also gives a good estimate of the then
unknown fourth coefficient. Much later, and with the knowledge of higher virial coefficients,
the same idea was taken up by Alder and Hoover [13], who suggested the use of approximants
to the compressibility factorZ which force the equation of state to have a singularity (simple
pole) at the close-packing density.

It is instructive and pertinent here to recall the controversy between Boltzmann and van der
Waals on the correct value of the fourth virial coefficient [14]. After the kinetic theory of gases
was developed, a key problem concerning the ‘excluded volume’ attracted the attention of
nineteenth century physicists. It was thought that since molecules have a finite size, the actual
volume of the container of a gas had to be corrected in the equation of state for the volume
occupied by the molecules themselves. Van der Waals’s arguments give only the first-order
effect (second virial coefficient) of the deviation, that is, only through binary collisions. Later
on, Boltzmann and J̈ager independently calculated the value of the third virial coefficient for a
hard-sphere gas, correcting the error made in a former calculation by van der Waals. Without
any strict formalism to guide him (at the time the presently available expressions for the virial
coefficients in terms of the intermolecular potential had not been derived) and realizing that a



Equation of state for a hard-disc fluid 283

further step with the same method was virtually impossible, Boltzmann went on to compute
the fourth virial coefficient, which turned out to be at odds with the result derived by J J van
Laar using a method suggested by van der Waals. It took a long time and the advent of new
and powerful statistical-mechanical methods before Nijboer and van Hove [15] confirmed the
correctness of Boltzmann’s value, doing final justice to his outstanding degree of insight.

Since a liquid neither shows the absence of multiple interactions characteristic of the dilute
gas nor possesses the ordered structure of a solid, the liquid state poses more difficulties in the
quantitative application of the methods of statistical thermodynamics than either the solid state
or the dilute gas. In fact, theories of the liquid state are sometimes distinguished as gas-like
or solid-like, depending on whether the approximations involved are correct in the limit of the
dilute gas, or in the limit of the solid, respectively [1]. Thus, one of the virtues of a proposal
such as equation (2) and of the Alder–Hoover approximants is their attempt to satisfy both
limits simultaneously. The same idea lies behind a recently proposed equation of state for a
fluid of hard discs [16] and in the present paper we want to discuss how, on the basis of very
simple calculations, its derivation can be introduced as an exercise when dealing with classical
fluids in a standard course in statistical thermodynamics.

2. Didactic application

The equation of state for a hard-disc fluid can be used didactically to introduce the student to a
sensible and attractive application of statistical-mechanical methods. The presentation easily
fits into the scheme of standard textbooks. In fact, we will make some parallels with exercises
of [17, chapter 7].

As is well known, by assuming that the potential energy of the fluid is pairwise additive,
that the intermolecular potentialu(r) depends only upon the separation of the two molecules
and that it goes to zero very rapidly in a few molecular diameters, the second virial coefficient
B2 is given by [17, 18]

B2 = −1

2

∫
dr
[
e−u(r)/kT − 1

]
. (3)

A two-dimensional fluid of hard discs is perhaps the simplest model that exhibits many of the
most important structural phenomena that occur in dense fluid systems found in nature. The
potential energy in a hard-disc fluid has the form

u(r) =
{∞ r < σ

0 r > σ
(4)

whereσ is the diameter of the discs. This potential has no attractive part, but does model the
steep repulsive part of realistic potentials. The second virial coefficient for this system follows
trivially after substitution of equation (4) into equation (3), namelyBhd

2 = 1
2πσ

2 †.
Since the radius of convergence of the virial expansion is not known, it is hard to say what

limiting density it approaches as the pressure becomes infinite, but the virial equation appears
to have a pole at the close-packed densityρ = ρcp [8, 9]. It is not difficult to find the value
of ρ = ρcp for a hard-disc fluid‡. Close-packed circular discs form a hexagonal array in two
dimensions that fills a fractionηcp = 1

6

√
3π ' 0.9069 of the space. This number follows from

the ratio of the area of the disc of diameterσ to the area of the circumscribing hexagon whose
side equalsσ/

√
3. Since the packing fraction in two dimensions isη = 1

4πρσ
2, it follows that

ρcp = 2
3

√
3σ−2 discs per unit area. It is interesting to point out that a slightly harder problem

(since it deals with spheres rather than discs) is commonly proposed as an exercise in standard
solid state textbooks [19].

† Note that exercise 7.13 in Chandler’s book [17] could easily be modified to accommodate this calculation.
‡ See exercise 7.24 in [17].
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Once we have determined the second virial coefficientBhd
2 and the close-packed density

ρcp, we are in a position to derive an equation of state for the hard-disc fluid that, on the one
hand, yields the correct dilute gas limit (through the value ofBhd

2 ), i.e.Z = 1+ 2η+ · · ·, and
on the other is forced to give a diverging pressure atρ = ρcp, namelyZ ∼ (ηcp− η)−1. In the
spirit of Boltzmann’s equation of state for hard spheres, equation (2), we choose to write the
compressibility factor for hard discs as the rational functionZ = (1+ aη + bη2)−1, so that
the correct limiting behaviour both for the dilute gas and for the hexagonal close-packed solid
is incorporated. This leads [16] to

Z[0,2] = 1

1− 2η + η2(2ηcp− 1)/η2
cp

(5)

where the subscript [0, 2] has been included to emphasize that the numerator is of zeroth order
in η, while the denominator is of second order in the same variable. Equation (5) is clearly
physically appealing, is analytical and simple, and yet it is accurate both with respect to the
values of the third and up to the eighth virial coefficients and as compared to the simulation
results of Erpenbeck and Luban [20], as shown in [16]. What is more important here is that the
student can easily check the reliability of equation (5) against his/her own simulations†. In fact,
we have used the BASIC Monte Carlo code provided in [17] to perform such a comparison‡.
The results are displayed in figure 1, where we have also included the data from the more
accurate simulation of [20]. The small discrepancy atρ/ρcp = 0.7 is due to the crudeness of
the present simulation. The agreement between equation (5) and the results by Erpenbeck and
Luban at this density (as it is over all densities) is very good. It seems to us that a student can
profit from being able to compare not only his/her simulation with those found in the specialized
literature, but also these with a simple equation that he/she has previously ‘derived’.

It could correctly be argued that the choice of the Padé approximant [0, 2] is to some extent
arbitrary. As a matter of fact, with the same information a Padé approximant [1, 1] is equally
plausible and more in the line of equation (2). The corresponding compressibility factor would
then be

Z[1,1] = 1+ (2− 1/ηcp)η

1− η/ηcp
. (6)

However, the reason for preferring equation (5) over equation (6) is that, on expanding both
equations, the former gives a better estimate of the (exactly known) third virial coefficient,
Bhd

3 = ( 1
3π

2− 1
4π
√

3)σ 4, than the latter§. The comparison between these two Padé equations
of state could also be suggested as an exercise to the student in which he/she would have
to decide on the ‘quality’ of each of them in terms of the prediction of higher order virial
coefficients and the agreement with simulations.

3. Concluding remarks

In conclusion, in this paper we have presented a suggestive example in which, following an
idea already proposed by Boltzmann in 1898 [12], an analytical equation of state for hard
discs in the form of a rational function may easily be derived by a student using the second
virial coefficient and the close-packing fraction as input. The accuracy of this equation may be

† See, for instance, exercises 7.33 and 7.34 in Chandler’s book [17].
‡ See section 7.8 and pages 230–3 in [17]. In this code, the radial distribution functiong(r) of a system of 20 hard
discs is evaluated at shells of thickness 0.10σ . Linear extrapolation yields the contact valueg(σ+), which is directly
related to the equation of state:Z = 1+ 2ηg(σ+). In our simulations, we have averaged over 5000 passes and the
maximum step size ‘DEL’ has been chosen so that the number of acceptances lies in the interval 25% to 65% for all
densities.
§ From equation (5) one findsBhd

3 =
( 1

4(π
2 + 3)− 1

4π
√

3
)
σ 4 (which deviates by 4% from the exact value), while

equation (6) yieldsBhd
3 = 1

4π
√

3σ 4 (which deviates by 30% from the exact value).
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Figure 1. Compressibility factor for hard discs as a function of reduced density. The
solid line corresponds to equation (5). Open circles represent the results obtained with
the Monte Carlo code of [17], while open triangles correspond to the accurate simulation
results of Erpenbeck and Luban [20].

assessed from a comparison (i) with simulation results reported in the literature [20] or, even
better, obtained by the student using, for instance, the simple Monte Carlo code in Chandler’s
book [17], and (ii), after expansion, with the known values of the eight virial coefficients [7].
All this material may readily be incorporated as exercise work in an introductory course in
statistical thermodynamics.

Acknowledgments

Partial financial support of this work for SBY and AS from the DGICYT (Spain) through
Grant No PB97-1501 and from the Junta de Extremadura (Fondo Social Europeo) through
Grant No PRI97C141 is gratefully acknowledged. Thanks are also due to J Tagüẽna-Mart́ınez
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