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Order statistics for d-dimensional diffusion processes
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We present results for the ordered sequence of first-passage times of arrival ofN random walkers at a
boundary in Euclidean spaces ofd dimensions.
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It is customary to assume that the important behaviors
a group of independentevents can all be characterized b
studying the behavior of one such event. For instance,
focuses on the mean time that it takes a single rand
walker to arrive somewhere even when there are many s
random walkers in the system provided the walkers are
dependent. However, it is clear that there are situation
which one might be interested, for example, in the mean t
for the first of the walkers to arrive somewhere or, mo
generally, in the ordered sequence of a particular outco
The statistics of ordered outcomes clearly depends on
numberN of events even when these are independent.
example, the mean time for thefirst of N walkers to arrive
somewhere must clearly decrease with increasingN. The in-
terest in so-called order statistics has grown with the de
opment of experimental techniques that make it possible
follow single events on the microscopic scale. An exam
can be found in experiments in which fluorescent molecu
in solution diffuse into a laser light cavity and individual
emit quanta when leaving the cavity@1#. Another occurs in
the study of the opening times of knots in vertically vibrat
granular chains. A recent model of this process involv
three~excluded volume but otherwise independent! random
walkers, and the knot survival probability is related to t
probability that all three walkers remain confined to a fin
domain@2#.

One way to characterize the behavior ofN random walk-
ers is to focus on the order statistics for the arrival a
boundary, and, in particular, on the mean and variance
the first arrival of the first, second, third, etc. walker out o
set ofN. Most of the early literature dealt with mean arriv
times in one dimension@3–5#. More recent literature ha
extended these concepts to fractal lattices@6–8# and has at-
tempted to include higher-dimensional Euclidean lattices
well @8,9#. Some of these recent efforts@9# have relied on a
parallel literature about another quantity of interest in th
problems, namely, the distinct number of sites visited byN
walkers@10#. In this approach the first arrival time statistic
are obtained through a conjectured relation between arr
times and distinct number of sites visited. Yet another
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proach @8# relies on scaling arguments that are said to
independent of the underlying environment and can be
plied in any dimension to both ordered and disordered str
tures. However, the results obtained in that work do
agree with any of the other published results~nor with those
obtained herein!, even in the well-established one
dimensional problem. This difference is apparent in the le
ing term of the result and also in the form of the series t
follows the leading term. In addition to the order statisti
and distinct number of sites visited, the behavior ofN ran-
dom walkers has also been characterized in terms of
maximal excursion@11–13#.

In order to complete theN-independent-walker panorama
in this report we present results for the ordered sequenc
first-passage times of arrival at a boundary in Euclide
spaces ofd dimensions. This completion is made possible
a result reported in the maximal excursion literature@11#.
The leading terms obtained here agree with those obta
earlier@9# and therefore confirm the conjecture made in th
work ~at least to leading order!.

The calculation of ordered sequences of first-passage
moments is rather elaborate but has been laid out in deta
a number of previous papers@4–7#. These steps are easy
state but complex to carry out. Themth moment of the
j th-passage time, that is, of the first arrival of thej th particle
out of N at a~hyper-! spherical boundary at a distancer from
the origin, is

^t j ,N
m ~r !&5E

0

`

tmc j ,N~r ,t !dt. ~1!

Herec j ,N(r ,t) is the probability density of the time it take
the j th particle to first reach the given distancer. The rela-
tionship between the probability distributionc j ,N(r ,t) and
the first-passage time density of a single particle to this d
tance,c(r ,t)[c1,1(r ,t), is standard in extreme-value theo
@4,14,15#,

c j ,N~r ,t !5
N!

~N2 j !! ~ j 21!!
c~r ,t !hj 21~r ,t !

3@12h~r ,t !#N2 j . ~2!

Hereh(r ,t)5*0
t c(r ,t)dt is the mortality function, i.e., the

probability that a single diffusing particle has reached
©2001 The American Physical Society02-1



-

n
e

ca

a

i-
e
r
t

e

om

io
n
-
th

re
f
-

to

s
tu

d
,

ic
n
c
-

ent

se

well
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distance r during the time interval (0,t). Asymptotic
extreme-value theory for largeN provides useful results di
rectly for the distributionc j ,N(r ,t) @15#. For example, forj
!N Eq. ~2! simplifies to

c j ,N~r ,t !'
N!

~N2 j !! ~ j 21!!
c~r ,t !hj 21~r ,t !

3exp@2~N2 j !h~r ,t !# ~3!

where nowh(r ,t) stands for its short-time approximatio
@see Eq.~9! below#. On the other hand, knowledge of th
function c(r ,t) @or h(r ,t)# in principle also allows the full
evaluation of first-passage time moments—provided one
carry out the integral in Eq.~1!. Alternatively, one can cal-
culate the generating function of the moments,

UN,m~z!5(
j 51

N

^t j ,N
m &zj 21, ~4!

and from this obtain the moments via a Taylor series exp
sion in z.

Herein, of course, lies the difficulty of the problem: ne
ther can the integral in Eq.~1! be done easily, nor can th
generating function be calculated easily. Indeed, the lite
ture is based on rather elaborate expansions to obtain
generating function, methods that rely on there being a v
large number of walkers (N large!, and on the walker of
interest being one of the first few (j !N) so that short times
dominate the moments. The formal results are similar fr
one system to another~Euclidean, fractal!, the differences
arising because of the differences in the mortality funct
and, specifically, in the short-time behavior of this functio

The mortality function~and particularly its short-time be
havior! for one-dimensional systems was calculated in
early work on order statistics@4,5#. For certain deterministic
fractal geometries this function was considered in more
cent work @6,7#. In all of these, the short-time behavior o
h(r ,t) has a ‘‘universal’’ form. It depends only on the com
bination t/r 2 ~which we denote simply ast, understanding
that it is the distance-scaled time! and is given by

h̃~t!'Atme2b/tg
~11h1td! ~5!

where the tilde just stresses the fact that this is an asymp
result for t→0. The constantsA, m, b, g, and d vary
from one system to another.

Although the mortality function for Euclidean system
has long been known and used in the random walk litera
for a variety of problems@11,13,16#, its short-time behavior
for systems of dimensiond.1 has not been incorporate
into the order statistics context. Perhaps not surprisingly
turns out to fit the pattern Eq.~5! and therefore the existing
theories can directly be applied to these systems. In part
lar, the time Laplace transform of the mortality functio
h(r ,s)5Lh(r ,t) ~indicated by the same symbol as the fun
tion but with the argumentt replaced with the Laplace vari
ables) is @11#
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sh~r ,s!5
212d/2

G~d/2!

~2dr2s!(d22)/4

I d/221~A2dr2s!
, ~6!

whereI n is a modified Bessel function of ordern, and

I d/221~z!5
ez

A2pz
F12

~d21!~d23!

8z
1O~z22!G ~7!

for z@1. In writing Eq. ~6! an implicit choice of the diffu-
sion coefficientD in the standard mean squared displacem
relation ^r 2&52dDt has been made, namely,D51/2d, so
that ^r 2&5t in each Euclidean dimension. The inver
Laplace transform ofsn exp(2as1/2) is @17#

L 21~sne2as1/2
!5

1

2n11/2p1/2tn11
e2a2/(8t)D2n11S a

A2t
D ,

~8!

whereDn(x) is a parabolic cylinder function~or Whitaker’s
function!. Asymptotic expansion of this function forx@unu
@18# leads forr 2/t@1 to

h~r ,t !5
2

G~d/2! S dr2

2t D 211d/2

e2(dr2/2t)F11
~d23!

2d

t

r 2

1OS t2

r 4D G , ~9!

which is precisely of the form~5! with

A5
2

G~d/2! S d

2D 211d/2

, ~10!

m512
d

2
, ~11!

h15
d23

2d
. ~12!

Since the steps leading to the moment expansions are
documented in the literature once the form~5! has been es-
tablished@4–7#, we only present the results. For themth
moment of the first-passage time of the first ofN@1 par-
ticles we find

^t1,N
m ~r !&5S dr2

2 lnl0ND mH 11
m

ln l0N
~m ln ln l0N2g!

1
m

2 ln2 l0N
F ~11m!S p2

6
1g2D12mg2h1d

22m@m1~11m!g# ln ln l0N1m2~1

1m!ln2 ln l0NG1OS ln3 ln l0N

ln3 l0N
D J , ~13!

where
2-2
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FIG. 1. Scaled moments for first arrival of the first ofN particles at a prescribed boundary as a function of 1/lnN. First panel: first
moment~i.e., mean first-passage time!; second panel: second moment; third panel: third moment. Numerical results are indicated by
(d51), triangles (d52), and squares (d53). Asymptotic results@cf. Eq. ~13!# to zeroth order, first order, and second order are shown
dotted curves, dashed curves, and solid curves, respectively.
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G~d/2!
. ~14!

The mth moment of the first-passage time of thej th particle
with j !N is

^t j ,N
m ~r !&'^t1,N

m ~r !&1
~dr2!mm

2m lnm11 l0N
(
n51

j 21
Dn~m!

n
, ~15!

where

Dn~m!511
m11

ln l0N F ~21!n
Sn~2!

~n21!!
1m ln ln~l0N!

2
m

m11
2gG1OS ln2 ln l0N

ln2 l0N
D , ~16!

and Si(n) is a Stirling number of the second kind@18#. In
particular, the variances j ,N

2 (r )[^t j ,N
2 (r )&2^t j ,N(r )&2 can

be obtained from Eqs.~15! and ~13!:

s j ,N
2 ~r !5S dr2

2 ln2 l0N
D 2Fp2

6
2S (

n51

j 21
1

nD 2

1 (
n51

j 21

~21!n
2Sn~2!

n! G F11OS ln3 ln l0N

ln l0N D G .
~17!

To check on the range of validity of these results it wou
be desirable to carry out direct computer simulations invo
ing a very large number of walkers, an exercise that is cos
Another approach is to integrate numerically the exact
~1! with Eq. ~2! and the exact mortality function in the inte
grand for values oft beyond the range of validity of the
short-time expansions. The survival probability, related
the mortality function of Eq.~2! by S(r ,t)[12h(r ,t), is
known exactly in Euclidean geometries. In one dimensio
is @13#

S~r ,t !5
4

p (
n50

`
~21!n

2n11
expF2

~2n11!2p2t

8r 2 G . ~18!

In two dimensions@13#
05210
-
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S~r ,t !5 (
n50

`
2

x0nJ1~x0n!
expF2

x0n
2 t

4r 2 G , ~19!

whereJ1 is the first Bessel function andx0n is thenth root of
the Bessel functionJ0. For d53 one obtains the Holling-
sworth distribution@16#

S~r ,t !512S 6r 2

pt D 1/2

(
n52`

`

expF2
3~2n11!2r 2

2t G . ~20!

To carry out the integration in Eq.~1! it is convenient to
integrate by parts so that

^t j 11,N
m ~r !&5^t j ,N

m ~r !&1m
N!

~N2 j !! j !

3E
0

`

tm21@12S~r ,t !# jS~r ,t !N2 jdt, ~21!

where

^t1,N
m ~r !&5mE

0

`

tm21S~r ,t !Ndt ~22!

and where Eq.~2! has been used. Note that these integrati
become rather awkward for large values ofN.

The numerical results and comparisons with asympt
expressions are presented graphically in a set of figures
Fig. 1 we present scaled results for theN dependence o
^t1,N

m (r )&1/m, that is, the (1/m)th power of themth moment of
the first-passage time of the first ofN particles. The exac
results obtained from the integration~22! are indicated by
symbols and the theoretical results of various orders by lin
Circles denote exact results ford51, triangles ford52, and
squares ford53. The first panel shows results form51, that
is, for the mean first-passage time of the first particle to
desired boundary; the second panel presents the second
ment (m52), and the third panel the third moment. Th
moments on the ordinates are scaled so that the scaled
ment approaches 1 as 1/lnN→0. The integrations were per
formed forN523,24, . . . ,230. The dotted curves correspon
to the asymptotic results Eq.~13!, to zeroth order, that is
only the first term in the series. The dashed lines include
terms, the solid lines three. Clearly the convergence to
exact results improves with order retained, but more slo
2-3
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with increasing dimension. In any case, the deviations e
at order 2 are clear on the scale of the figure at arounN
5100.

The two panels shown in Fig. 2 deal with the varian
s1,N

2 (r )[^t1,N
2 (r )&2^t1,N(r )&2. The leading term in the

large-N analysis of the variance is given in Eq.~17!; for the
variance we have only calculated this leading~zeroth order!
term. In the first panel we present the (1/lnN)-dependent
behavior of the variance scaled in such a way that the lea
term in the theoretical expression gives unity for all the
mensionsd51,2,3 ~indicated by the dotted line in the fig
ure!. The circles (d51), triangles (d52), and squares (d
53) are the numerical results obtained from explicit integ
tion. A number of interesting observations are apparent fr
this panel. First, we see that the leading term in the exp
sion of the variance leads to adequate results for some r
of N only in one dimension. In two and three dimensio
even for extremely largeN it is necessary to go beyond ze
roth order to obtain adequate analytic results. It is thus c
that the correction terms for the variance are much m
important than for the first-passage time moments. This
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FIG. 2. N dependence of the variance for first arrival of first
N walkers at a prescribed boundary. Symbols and lines are a
Fig. 1. First panel: variance scaled so that the zeroth o
asymptotic result is unity in all dimensions~indicated by the dotted
line!. Inset: detail of thed51 numerical results. Second pane
same results, unscaled.
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be seen from our asymptotic expansions since the ratio
first-to-zeroth order terms goes as ln(lnN)/ln N for the mo-
ments but as@ ln(ln N)#3/ln N for the variance. In fact, the
second actuallygrows with increasingN at first, becoming
larger than unity, and only begins to decrease for extrem
large values ofN ~of order 230;109). This in turn leads to
the ‘‘anomaly’’ observed in the first panel and enlarged
the inset, namely, that the exact variance actually crosses
becomeslarger than the zeroth order theoretical one befo
settling down to the asymptotic value at extremely largeN.
~We only carried the numerical calculations to these v
largeN values for one-dimensional systems and in fact re
the limit of numerical reliability in that region.!

The second panel in Fig. 2 shows the same information
the first but plotted in a different way to stress other featur
It is simply a plot of rs1,N

21/2 vs lnN comparing numerical
~symbols! and zeroth order asymptotic~lines! results in one,
two, and three dimensions. Again, it is clear that ford51 the
zeroth order asymptotic result is quite good but for high
dimensions it is not adequate.

In conclusion, we have filled some missing pieces in
mosaic of results for the order statistics ofN independent
random walkers ind-dimensional lattices. These resul
complement and confirm previous conjectures, indicate
large-N asymptotic expansions converge more rapidly
lower dimensions, and that convergence of higher cumula
such as variances is more problematic than that of fi
passage time moments.
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