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Order statistics for d-dimensional diffusion processes
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We present results for the ordered sequence of first-passage times of arrNalaoflom walkers at a
boundary in Euclidean spaces @flimensions.
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It is customary to assume that the important behaviors oproach[8] relies on scaling arguments that are said to be
a group ofindependentvents can all be characterized by independent of the underlying environment and can be ap-
studying the behavior of one such event. For instance, onglied in any dimension to both ordered and disordered struc-
focuses on the mean time that it takes a single randorfires. However, the results obtained in that work do not
walker to arrive somewhere even when there are many suckgree with any of the other published restftsr with those
random walkers in the system provided the walkers are inobtained herein even in the well-established one-
dependent. However, it is clear that there are situations ifimensional problem. This difference is apparent in the lead-
which one might be interested, for example, in the mean timéd term of the result and also in the form of the series that
for the first of the walkers to arrive somewhere or, more follows the leading term. In addition to the order statistics
generally, in the ordered sequence of a particular outcoménd distinct number of sites visited, the behaviombfan-
The statistics of ordered outcomes clearly depends on thdom walkers has also been characterized in terms of the
numberN of events even when these are independent. Fofaximal excursiorj11-13.
example, the mean time for tHest of N walkers to arrive _ In order to complete thél-independent-walker panorama,
somewhere must clearly decrease with increasinghe in-  in this report we present results for the ordered sequence of
terest in so-called order statistics has grown with the develfirst-passage times of arrival at a boundary in Euclidean
opment of experimental techniques that make it possible t§Paces ofl dimensions. This completion is made possible by
follow single events on the microscopic scale. An example? result reported in the maximal excursion literat{ite].
can be found in experiments in which fluorescent moleculed he leading terms obtained here agree with those obtained
in solution diffuse into a laser light cavity and individually €arlier[9] and therefore confirm the conjecture made in that
emit quanta when leaving the cavifg]. Another occurs in  WOrK (at least to leading ordgr . .
the study of the opening times of knots in vertically vibrated ~ The calculation of ordered sequences of first-passage time
granular chains. A recent model of this process involvegnoments is rather elaborate but has been laid out in detail in
three (excluded volume but otherwise independerindom @ number of previous papefé—7]. These steps are easy to
walkers, and the knot survival probability is related to theState but complex to carry out. Thath moment of the
probability that all three walkers remain confined to a finite] th-passage time, that is, of the first arrival of fhle particle
domain[2]. out of N at a(hyper) spherical boundary at a distancéom

One way to characterize the behaviordfandom walk- ~ the origin, is
ers is to focus on the order statistics for the arrival at a
boundary, and, in particular, on the mean and variance for m N
the first arrival of the first, second, third, etc. walker out of a () Jo PYalr.ndt @
set of N. Most of the early literature dealt with mean arrival
times in one dimensiof3-5]. More recent literature has Here; y(r,t) is the probability density of the time it takes
extended these concepts to fractal lattif@s8] and has at- the jth particle to first reach the given distanceThe rela-
tempted to include higher-dimensional Euclidean lattices asionship between the probability distributiap n(r,t) and
well [8,9]. Some of these recent efforft8] have relied on a the first-passage time density of a single particle to this dis-
parallel literature about another quantity of interest in thesgance,y(r,t)= 4 (r,t), is standard in extreme-value theory
problems, namely, the distinct number of sites visited\oy [4,14,15,
walkers[10]. In this approach the first arrival time statistics
are obtained through a conjectured relation between arrival

! .
times and distinct number of sites visited. Yet another ap- ‘Pj,N(f,t):—(N_j)!(j Y P(r,H = H(r 1)
X[1—h(r,t)]N7I. 2
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distance r during the time interval (®). Asymptotic 21742 (pqr2g)(d-2)/4
extreme-value theory for largd provides useful results di- sh(r,s)= T(di2) P, J2dr%s)’ (6)

rectly for the distributiorw; y(r,t) [15]. For example, foj

<N Eq. (2) simplifies to wherel , is a modified Bessel function of order and

| N -1 & (d—1)(d—3)
YN =G o Aoy 1A= =) 1= ——g,— +0@ 9| @
xexg —(N=j)h(r,t)] 3)

for z=1. In writing Eqg. (6) an implicit choice of the diffu-
where nowh(r,t) stands for its short-time approximation Sion coefficienD in the standard mean squared displacement
[see Eq.(9) below]. On the other hand, knowledge of the relation (r?)=2dDt has been made, namelp=1/2d, so
function y(r,t) [or h(r,t)] in principle also allows the full that (r)=t in each Euclidean dimension. The inverse
evaluation of first-passage time moments—provided one cak@place transform o$” exp(~as?) is [17]
carry out the integral in Eq.l). Alternatively, one can cal-

. . 1 a
culate the generating function of the moments, —1/avpa—ast? _ —a?/(8t)
g g L7(s%e 2)_2”+1/27r1’2t”+1e D2y+1 ’_2t>,
1 ®
uN,m(Z)sz:l <tj,N>Z] ) 4

whereD(x) is a parabolic cylinder functiofor Whitaker’s

_ . . . function). Asymptotic expansion of this function foe>|n|
and from this obtain the moments via a Taylor series expary1g] |eads forr?/t>1 to

sion inz
Herein, of course, lies the difficulty of the problem: nei- 2 dr2\ —1t+dz
ther can the integral in Eq1) be done easily, nor can the  h(r,t)= m(;)
generating function be calculated easily. Indeed, the litera-
ture is based on rather elaborate expansions to obtain the
generating function, methods that rely on there being a very +0
large number of walkersN large, and on the walker of
interest being one of the first fewy€N) so that short times
dominate the moments. The formal results are similar fronyvhich is precisely of the fornt5) with
one system to anothdEuclidean, fractg] the differences > g\ —1+di2
arising because of the differences in the mortality function = _<_)
and, specifically, in the short-time behavior of this function. I'(dr2)\2
The mortality function(and particularly its short-time be- d
havion for one-dimensional systems was calculated in the Y
p=1-3, (11)
3

(d—3) t
2d |2

e(dr2/2t){ 1+

2
r4

: (C)

, (10

early work on order statistidg},5]. For certain deterministic

fractal geometries this function was considered in more re-

cent work[6,7]. In all of these, the short-time behavior of h :d_

h(r,t) has a “universal” form. It depends only on the com- 1V ad -

binationt/r? (which we denote simply as, understanding

that it is the distance-scaled tinand is given by Since the steps leading to the moment expansions are well
documented in the literature once the fo(&) has been es-

h(r)~Ar#e A7 (1+h, 1% (5) tablished[4—-7], we only present the results. For tineth

moment of the first-passage time of the firstN$1 par-

(12

where the tilde just stresses the fact that this is an asymptoUIcI:Cles we find

result for ——0. The constant®\, u, B, v, and § vary drz \m m

from one system to another. NG (—) {1+ ——(uInIn\gN—1)
Although the mortality function for Euclidean systems ' 2InxoN INAoN

has long been known and used in the random walk literature

2
]tor a variety of pr_oblem_$11,13,lq, its short-tlme behavior +— [(1+m) 7T_+ yz) +2uy—h,d
or systems of dimension>1 has not been incorporated 2 1n“\oN 6
into the order statistics context. Perhaps not surprisingly, it )
turns out to fit the pattern Eq5) and therefore the existing —2p[ et (T m)y]InIn AN+ w*(1
theories can directly be applied to these systems. In particu- I3 I AN
lar, the time Laplace transform of the mortality function +m)InZIn AN +O(—0 ] (13
h(r,s)=Lh(r,t) (indicated by the same symbol as the func- In3x\oN

tion but with the argumentt replaced with the Laplace vari-
ables) is [11] where
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FIG. 1. Scaled moments for first arrival of the first Nfparticles at a prescribed boundary as a function of N/IFirst panel: first
moment(i.e., mean first-passage tilpsecond panel: second moment; third panel: third moment. Numerical results are indicated by circles
(d=1), triangles ¢i=2), and squaresd= 3). Asymptotic result$cf. Eq. (13)] to zeroth order, first order, and second order are shown by

dotted curves, dashed curves, and solid curves, respectively.

2

M~ T(dr) - 19

- 2 X3t
(14 S(rit)=> ————exg — —~
( , ) n§=:0 XOn‘]l(XOn) 4['2
Themth moment of the first-passage time of b particle \\hereJ; is the first Bessel function ang,, is thenth root of
with j<N is the Bessel function,. For d=3 one obtains the Holling-
sworth distribution16]

d 2ym -1 An
() =)+ s L5 S g

6r2| 12 o 3(2n+1)%r?

2™ InM I\ gN n=1 —1— _> S
0 S(r,t)=1 ( — n:E_m ex T . (20
where ) o o .
To carry out the integration in Ed1) it is convenient to
m+1 Sh(2) integrate by parts so that
— _ n
A(m)y=1+ i )\oN[( 1) (n—1)! +u InIn(AgN) \

<tjm+1,N(r)>:<t??N(r)>+m(N—j.)!j!

In?In \oN
—L—'y%—O(—O , (16)

m+1 In? \oN

><fwtm’l[l—S(r,t)]jS(r,t)N’jdt, (21)
0

and S;(n) is a Stirling number of the second kirjd8]. In
particular, the variancer! \(r)=(t y(r))—(t; n(r))*> can  where
be obtained from Eqg15) and (13):

drz2 \q g2 [iZ1q)\2 <tf1‘jN(r)>=mf t™1S(r,t)Ndt (22
2 0
O']yN( ) (zan}\ON) |: 6 (n—l n) . )
' and where Eq(2) has been used. Note that these integrations
-1 2S,(2) In3In AN become rather awkward for large valueshbf
+ Z (=" Y (W) The numerical results and comparisons with asymptotic
n=t ' 0 expressions are presented graphically in a set of figures. In

(17) Fig. 1 we present scaled results for thedependence of
(tT(N))YM, that is, the (Ih)th power of themth moment of
To check on the range of validity of these results it wouldthe first-passage time of the first df particles. The exact
be desirable to carry out direct computer simulations involvresylts obtained from the integratid@2) are indicated by
ing a very large number of walkers, an exercise that is costlysymbols and the theoretical results of various orders by lines.
Another approach is to integrate numerically the exact Eqgircles denote exact results foe 1, triangles ford= 2, and
(1) with Eg. (2) and the exact mortality function in the inte- squares fod=3. The first panel shows results fior=1, that
grand for values ot beyond the range of validity of the s for the mean first-passage time of the first particle to the
short-time eXpanSionS. The survival prObablllty, related todesired boundary; the second pane' presents the second mo-
the mortality function of Eq(2) by S(r,t)=1-h(r.,t), IS ment (m=2), and the third panel the third moment. The
known exactly in Euclidean geometries. In one dimension itnoments on the ordinates are scaled so that the scaled mo-
is [13] ment approaches 1 as 1Hr-0. The integrations were per-
47 (—1) (2n+1)27% formed forN=2°%,2%, ..., 2. The dotted curves correspond
S(rit)=— 2 exd — NG to the asymptotic results E¢13), to zeroth order, that is,
7 h=o 2n+1 8r? only the first term in the series. The dashed lines include two
terms, the solid lines three. Clearly the convergence to the
In two dimensiong13] exact results improves with order retained, but more slowly
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o 25[ ' ' ' Z pe seen from our asymptotic expansions since the ratio of
2 ~ ol ] first-to-zeroth order terms goes as Iri(\l)_iln N for the mo-
S o8l eu i ments but agIn(InN)J¥InN for the variance. In fact, the
~§ K ’ : 135‘ B AAAzgjin““ ] second actuallygrows with increasingN at first, becoming
sj 08 e N T o1o0b . larger than unity, and only begins to decrease for extremely
% Tl sl ; 1 large values oN (of order 2°~10°). This in turn leads to
N R s the “anomaly” observed in the first panel and enlarged in

00 0.1 o.lzﬂnNo.s 04 05 0 5 iSN 15 20 the inset, namely, that the exact variance actually crosses and

becomedarger than the zeroth order theoretical one before
FIG. 2. N dependence of the variance for first arrival of first of settling down to the asymptotic value at extremely laNge
:;'. Wallkers. ai a pref_cr'be.d bo”ndarly' dsymbt?]lsta?f lines ?hre az 'F\/\/e only carried the numerical calculations to these very
9. % TIrst panel. variance scaled so that the zeroth order, .. values for one-dimensional systems and in fact reach
asymptotic result is unity in all dimensiofidicated by the dotted the limit of numerical reliability in that regioh
line). Inset: detail of thed=1 numerical results. Second panel: imi u cal reiability | gion. .
The second panel in Fig. 2 shows the same information as
same results, unscaled. . - .
the first but plotted in a different way to stress other features.
It is simply a plot ofroyy” vs InN comparing numerical
(symbolg and zeroth order asymptotitines) results in one,
two, and three dimensions. Again, it is clear thatder 1 the
zeroth order asymptotic result is quite good but for higher
dimensions it is not adequate.

In conclusion, we have filled some missing pieces in the
mosaic of results for the order statistics Mfindependent
random walkers ind-dimensional lattices. These results
complement and confirm previous conjectures, indicate that
%rgeN asymptotic expansions converge more rapidly in
. B - 2 .~ lower dimensions, and that convergence of higher cumulants
menS|onsd_—1,2,3 (|nd|cate_zd by the dotted line in the fig- such as variances is more problematic than that of first-
ure). The circles i=1), triangles (=2), and squaresd( .

. ¢ . passage time moments.

=3) are the numerical results obtained from explicit integra-
tion. A number of interesting observations are apparent from This work was supported in part by the Ministerio de
this panel. First, we see that the leading term in the expanCiencia y Tecnolo@ (Spain through Grant No. BFM2001-
sion of the variance leads to adequate results for some ran@&18 and by the Engineering Research Program of the Office
of N only in one dimension. In two and three dimensionsof Basic Energy Sciences at the U.S. Department of Energy
even for extremely larg@l it is necessary to go beyond ze- under Grant No. DE-FG03-86ER13606. S.B.Y. is also grate-
roth order to obtain adequate analytic results. It is thus cleaful to the DGES(Spain for a sabbatical Grant No. PR2000-
that the correction terms for the variance are much mor®116 and to the Department of Chemistry and Biochemistry
important than for the first-passage time moments. This canf the University of California, San Diego for its hospitality.

with increasing dimension. In any case, the deviations eve
at order 2 are clear on the scale of the figure at aradNnd
=100.

The two panels shown in Fig. 2 deal with the variance
o (N=(t2\(r))—(tyn(r))2% The leading term in the
largeN analysis of the variance is given in Ed.7); for the
variance we have only calculated this leadimgroth order
term. In the first panel we present the (IMMpdependent
behavior of the variance scaled in such a way that the leadin
term in the theoretical expression gives unity for all the di-
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