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Number of distinct sites visited by N random walkers on a Euclidean lattice
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The evaluation of the average numig(t) of distinct sites visited up to timeby N-independent random
walkers all starting from the same origin on an Euclidean lattice is addressed. We find that, for the nontrivial
time regime and for largé\, SN(t)%SN(t)(l—A), whereSN(t) is the volume of a hypersphere of radius
(4Dt INN)Y2 A=23”_ In""N=l_s?InMIn N, d is the dimension of the lattice, and the coefficies{2
depend on the dimension and time. The first three terms of these series are calculated explicitly and the
resulting expressions are compared with other approximations and with simulation results for dimensions 1, 2,
and 3. Some implications of these results on the geometry of the set of visited sites are discussed.

PACS numbs(s): 05.40.Fb, 05.60.Cd, 66.30.Dn

I. INTRODUCTION the next step, so that the number of distinct sites visited
grows as the volume of a hypersphere of radiu$y(t)
Usually, the extremely successful theory of random walks~t9. Regime Ill ¢/ <t), or long-time regime, corresponds
is only concerned with problems that involvesagle (N to the final stage in which the walkers move far away from
=1) random walker. A solid reason for this is the under-each other so that their trail@lmos) never overlap and
standing that the average properties of the single diffusing,(t)~NS,(t). The crossover time from regime | to regime
walker serve to describe the global properties of system§ is given byt,~InN for every lattice. This can be easily
formed by many walkers. However, there are other interestunderstood if we take into account that the number of par-
ing diffusion problems that involve many random walkersticles on the outer visited sites for very short times will de-
for which the diffusive behavior oéverywalker of the total crease adN/z!, wherez is the coordination number of the
of N is relevant, i.e., diffusion process theannotbe de- lattice, so that the overlapping regime will break approxi-
scribed by averaging over the properties of a single walkemately whenN/z'~1 or, equivalentlyf, ~InN. Regime I
[1]. The problem of evaluating the time spent by the first never appears in the one-dimensional céase, t/,~), but
particles out of a total oN to escape from a given region is t/, ~eN for d=2 andt,=N? for d=3. These crossover
a clear exampl¢2,3]. Another important example, which is  times will be obtained readily from the mathematical formal-
the subject of this paper, is the problem of evaluating thgsm discussed in the present paper. The most interesting re-
average numbe8y(t) of distinct sites visitedor territory  gime is regime II {.<t<t.), or the intermediate regime.
explored by a set ofN independently diffusing random pq this time regime, we will obtain explicitly the main term
walkers up to time [4,5]. o o and the first two corrective terms of the asymptotic expres-
The caseN=1 has been studied in detail since it was gjon of (1) for N>1. Higher corrective terms could be
posed by Dvoretzky and Erd§6] and is discussed in many cicyjated as our method allows them to be obtained in a
general reference$7—9]. However, the multiparticle N gy stematic way. The contribution of these corrective terms
>1) version of this problem has been systematically treatedannot be ignored even for very large valueshobecause
only after the pioneering works of Larraldet al. [4,5].  they decay logarithmically wittN. However, as we will see
These authors addressed the problem of evaluating the terfly Sec. v/, the use of two corrective terms leads to a very
tory covered by a set dit-independent random walkers, all 4604 agreement with simulation results for relatively small
initially placed at the same point, that diffuse with steps of,5,es ofN (N=100).
finite variance on Euclidean lattices. They found asymptotic ¢ paper is organized as follows. The asymptotic evalu-
expressions foBy(t) for N>1, and described the existence 4ijon of Sy(t) for a d-dimensional Euclidean lattice is dis-

of three time regimes. Their results can be summarized a§ssed in detail in Sec. Il. Some geometric implications of

follows: this result are discussed in Sec. lll. In Sec. IV, we compare
d i<t our _zeroth{i.e., ma_ir), first-, and sec_ond_—order term_approxi—
x mation for Sy(t) with other approximations and with com-
Sy()~1 t¥2InY(x), to<t<t, (1)  puter simulations for one-, two-, and three-dimensional
NS,(t) t <t simple Euclidean CL.IbIC _Igttlces._The paper ends W|_th some
' X remarks on the applicability of this method to other diffusion
problems and different media. Some technical details are dis-

wherex=N for d=1, x=N/Int for d=2 andx:N/\ﬁ for cussed in an Appendix.

d=3 [4,5]. The properties 05;(t) are well known; in par-
ticular, S;(t)~t¥? for d=1, S;(t)~t/Int for d=2, and
S,(t)~t for d=3. In the very short-time regimét), or
regime |, there are so many particles at every site that all the We consider a group dfl random walkers starting from
nearest neighbors of the already visited sites are reached ah origin siter=0 at time t=0. A survival probability,

II. THE NUMBER OF DISTINCT SITES VISITED
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TABLE |. Parameters appearing iinthe gsymptotic expression of 3.0 T T T T
Sn(t), Eq. (24). The symboldD refers to dimensional simple
hypercubic lattice. The parametgr is [2t(2D7)%/3]%%p(0,1), 2.5
wherep(0,1)=1.516386[8].
2.0
Case A o h,
1.5
1D V2l 1/2 -1
2D 1/Int 1 -1 1.0
3D 1/(pt) 1 -1/3

0.5

I'y(t,r), is defined as the probability that sitdhas not been o.oo

visited by the random walkers before timeSimilarly, we
can defln_e a mortality fur_lc_non,—ll“N(t,r), as the proba_b|l— FIG. 1. The integran®l&T'N~1(dT, /dé) of Jy(1;05) versusé

ity that siter has been visited by at least one walker in thef,, the one-dimensional lattice afé=1. N=20 andN= 100. The
time interval (0t). The relationship between the number of solid lines correspond to the integrand when the exact value of
distinct sites visitedSy(t), and the survival probability is [ (¢) is used. The broken lines are obtained by using the first-order
[4,5] asymptotic approximationI'y(£)~1— (2/7) Y2~ exg — &4/2](1
—£72). The filled circle[squaré marks the value of, for N
=20[N=100] usingp=2 in Eq.(8).

sN<t>=2 {1-Tn(t,n)}. 2

. TR(&)=1NP, ®)
For independent random walkers, we haJé(t,r)
=[T'(r)I", whereT'\(r)=Ty(t,r) is the one-particle sur- ith p>1 (sayp=2). From Eq.(4) it is straightforward to
vival probability. Next, the discrete analysis implicit in EQ. see that
(2) is replaced by a continuous one. Thus, we write
) &~InN 9
N —

Sn()= J; [1-T(r)dvor " dr, ®) satisfies both conditions. On the other hand, because at most
dI'/dé=0(1), andT';(¢) is a monotonic growing function,
wherev, is the volume(i.e., the number of lattice siteef  Jy(d;0,6«) is bounded by a term that goes as
the hyphersphere with unit radius. It has been found for EuNTthl(gx)gli , or equivalently, from Eq(8), by a term that
clidean lattices thaft5] goes mainly asN'"P. But shortly we will show that

" In(d; € ,©) goes essentially as AN; this means that
14 E hng‘zn), 4) Jn(d;0,6y) is asymptotically smaller than any term in the
n=1

~T 1 _Ae2una—dE2
L(n=~T(g)=1-Ag e asymptotic expansion faly(d;0.%) and thus we can write

for £=r/\2dDt>1. Here,D is the diffusion coefficient de- In(d;00)~J\(d; €, @), N>1. (10)
fined through the Einstein relatigm?)~2dDt, t—c, with . . o -
(r?) being the mean-square displacement of a single random The previous discussion is illustrated in Fig. 1 for the

walker. The values o, u andh, for d=1, 2, and 3 are one-dimensional case. In this figure, we have represented the

shown in Table I. A change to the new variagland inte- i”tegraTd Ofl‘)]N[()_ll_i[O’otcg for inirealsi%g(\gl)aluesf(?/fxl J%Ir[lg %S
. — ~ B . survival probability the exact valuE,(¢&)=er ,
gration by partdtaking into account thal'y() =1], yields and the asymptotic expression of BE¢) up to first order

Sy(t) = vo(2dDt)¥23\(d;0.0) (5) (n=1). Notice that the area below the soJioroken curve
N 0 NYE is just the exact[asymptotic approximate value of
where Sy(1)/(8D1)Y?=J,(1;02). The value ofé, as given by
Eq. (8) with p=2 is marked with a symbol. It is clear from
b B dr'y(é) the figure that, for largd, (a) the integrand ody(1;&«®) is
In(d;a,b)= L NI'Y 1(5)—d§ &idé. (6)  well represented by the asymptotic expressiof’ ¢&), and
(b) that, as stated for the general case in Eg0),
In order to evaluate the asymptotic behaviod{d;0e) it~ IN(L;0£x) <IN(L;€x %)= In(1;02).
is convenient to make the decomposition From Eq.(4), one easily finds that
In(d;02) = In(d;0,6,0) + In(d; £ ,20), 7 diwe) .~ S
N( ) N( §><) N( §>< ) ( ) dtg [1_Ft(§)] lzzgngo Jng 2n’ (11)
where &, is a value that should satisfy the following two
conditions: ¢, is (a) large enough that'(r) can be well  with j,=d/2, j,=u, j»=hy, .... By inserting Eq.(11)
approximated by its asymptotic approximatibi(£) for & into Eg. (6) one has the following expansion for
=¢,, and(b) small enough that In(d; € )
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o

. 1 ny n(n—1)
In(diEy ,0)~2NY, jKny_o1(d—2n+1), (12 1(n,0;N)~ — IN"N| 1+ —— +
n=0 N InN 2
with 2+ 7%l6 2
X— -,
- In?N
ku(e= [ eThon-T@ne a3
3% 1 ny y
I(N,I;N)~—In"N|InInN| 1+ —= |+ —+ ,
By means of the substitution N INN/ " InN
(22)
Tyo=e?, (14 )
N ~ — n 2 o ..
we get a more convenient expression Kqg(«): H(n,2:N) N (IN"N)In“In N+ -, (23

wherey=0.577215 is the Euler constant. Using these results
we get from Egs(5), (12), and(19) the following expansion
for the average number of distinct sites visited on a Euclid-
where, from Eq(8), z,~InN/N. The integral in Eq(15) is  €an lattice of dimensiod

of Laplace type but it is not possible to use Watson's lemma

directly to get its asymptotic behavior becaus¥dé/dz) Sy()=~Sy(H)(1—A) (24)

has a logarithmic singularity at=0 [10]. The evaluation of

Kn(a) requires the inversion dfl4) to obtainé(z). By us-  with

ing Egs.(4) and(14) we get

Zx d
KN(a)Zfo e*NZ(e*Z—l)gad—idz, (15)

d
- §§2+In A+ulné 2+In

- Sy(t)=v,(4Dt INN)92, (25)
1+ hng—zﬂ)

1< "
= —_ -n (n) j,AM
=In(1—e"?). (16) A—A(N,'E)—znz,l In Nm§=,o sy’ InMInN- (26)

The functioné(z) can be readily obtained from this equation

. ) : and where, up to second order=2),
to first approximation: Notice that, as long as

£2>|In A, 17) si=—dw, 27)

the left hand side of Eq(16) can be approximated by siV=du, (28)
—dé&?/2, so that the first-order solution to E(L.6) is £2(2)

~—2In[1-exp@]/d. Equation(16) can be systematically d\ /72 W? dh

solved in order to get higher-order approximatigsse Ap- sgz)=d( 1- 5) (EJF 7) —d(Tl—,uw), (29
pendi¥. The result is

* d
§=X_1/22 5nxn' (18) 5(12)2 —d( 1- 5) /,L(D_dﬂz, (30
n=1
where x=—(d/2)/In[1—exp(—2)]. The substitution of Eq. 2_4d dy ,
(18) into Eq. (15) [see Eq(A9) in the Appendi yields sz =517 5|m (3D
*© n 2(0171)/2 1 . .
Ko (a)= 2 E k()| g_n_ ZmN Here,w=y+In A+ In(d/2), andA, u andh; are given in
N b o glatdiz’™ | 2 2" Table | ford=1, 2 and 3. Notice that the time dependence

(19 of A(N,t) comes from the terrw through the functior(t).
However, this function does not depend on time for the one-
where dimensional case and thdsonly depends om.
Recently, Sastry and Agmdri1] found an approximate
[ N N im formula for Sy(t) for the one-dimensional case. The straight-
I(n,m,N)=J1) dze "4(~In2)"In"(=In2). (20 fonward method used by these authors is based on the fact
that the functionl“{\‘(r) that appears in the integrand of Eq.
The evaluation of y(n,m;N) for N— has been discussed (2) approaches a step function whidR-c. In this way, they

in Refs.[2] and[10]. For the sake of completeness, we give found
here explicitly their expressions up to the order required to

find Sy(t) to second order in 1/IN: Sn(t)=4DtVInN=Inya InN (32
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1InInN=1Ina In2In N visited at the next time step. Therefore, the explored region
~4.\DtInN| 1- 2 NN 5 , Q) is a hypersphere whose radius grows ballistically and its
n In“N volume is proportional ta®. After regime Il is reached, the

development of two qualitatively different zones in the ex-
plored volume is observed) a hyperspherical compact core
fof visited sites, andii) a corona of dendritic nature charac-
terized by filaments created by those relatively few walkers
that are wandering in the outer regions, i.e., wandering at
distances significantly larger than the root-mean-square dis-
placement(r?)¥2=/2dDt of a single walker. Figure 2
shows a snapshot of the set of sites visited\lsy 1000 ran-
(34 dom walkers at time&=900 (every walker makes a jump at
each time unit for dimension two. The visited sites are in
white and the inner black and outer white circles delimit the
corona. The radiu®R, of the outer circle is equal to the
maximum displacement from the origin reached by any of

e ot namercal mraton: Our @ engters ™ WA= S me € 1as een e gt varne
this point: Comparing Eq$33) and(34) one sees that la is 9¢ g y

playing the role of 2. But w=y—2%In7=0.004850 ... term of Eq.(24), i.e., by Sy(t)=vo(4DtIn N)¥2. From this
for the one-dimensional lattice, so thatdwhena =1 leads statement we can draw two conclusions: First, that the aver-
to a good approximation to the rigorous coefficient.2The ~ @9€ radius of this outer circle is
equation of Sastry and Agmon far=1 and our first-order
approximation should thus be very close. This is clearly con- R, ~(4DtInN)Y?, (36)
firmed in Fig. 4.

A question to be answered is why E@4) is valid for ) ) .
time regime Il only, i.e., why it is not always valid for arbi- @1d second, that the asymptotic corrective tefgisen by
trarily large values of time. The reason is that our formulas®) 10 Sn(t) account for the number aivisitedsites that are

have been obtained by assuming that the conditi@hholds inside the corona. In other vyordA, is the fraction of the
for those values of, which are inside the integration interval volume inside the external circumference that has not been

[£, ] of the relevant integraly(d: & =) that is respon- visited by any of theN random walkers. This result can be
sible for the asymptotic behavior &(t). This implies that used12] to easily estimate that the thickness of the dendritic

for our procedure to work, it is necessary tigég>lnA or, corona is approximately given 3. A.
from Eq. (9), that It is also noteworthy thatA(N,t) depends ont very

smoothly in the time regime Il as this dependence is due to
INN>|InA]. (35)  terms proportional to powers of A(t) [and A(t) does not

change exponentially: see Tablk For the two-dimensional
Thus we can estimate the timg, for which our method case, this statement is especially valid becau@g~ 1/Int.
breaks down by solvingin A(7)|~InN. From the expres-
sions forA quoted in Table | one finds that,~eN for d
=2 and7,~N?2 for d=3. Ford=1 and largeN, the con-
dition (35) always holds becauské=(2/7)*? is a constant
and thenr,=«. We see that the upper times, beyond
which Eq.(24) is no longer valid coincide with the crossover
timest!, defined in Sec. |, so we can say that the expressions
for Sy(t) given in this paper are valid only in time regime 1.
This means that our procedure marks its own limit of validity
as that of regime Il, thus predicting the existence of a cross-
over time in a natural way, i.e., as a consequence of the
mathematical formalism.

wherea is given bya = 7 exp(—2/7)=1.66. Itis instructive
to compare this formula with the first-order approximation o
Eq. (24) for the one-dimensional case

S\(t)=~4DtInN

L 1InInN—-2w In?In N
Z InN |n2N ’

Note that the prefactor 4t In N)¥/? of the formula of Sastry
and Agmon is in agreement with that of E@4). In Ref.
[11], they found it “amusing” that the valuer=1 produces
very good agreement between the approximation of(B2).

Ill. GEOMETRIC PROPERTIES OF THE EXPLORED
REGION

. . - L. . FIG. 2. A snapshot of the set of sites visited Hy= 1000 ran-

In th_'s section we will give a geometric |nterpretat|qn of dom walkers on the two-dimensional lattice. The visited sites are in
the main result of this paper, namely, Eg4). The quantity  yite, the unvisited ones are in black and the internal gray points
Sn(t) is by definition the volume of the regiofl explored  are the random walkers. The outer white circle is centered on the
by N random walkers after a timefrom their initial deposi-  starting point of the random walkers and its radius is the maximum
tion on a given site of the latticéf the length of the lattice  distance from that point reached by any walker at the time the
bonds is taken as the upifFor very short timesregime | or  snapshot was taken. The internal black circle is concentric with the
t<In N) the exploration is performed in a compact way be-former but its radius is the distance between the origin and the
cause all the neighbor sites of any visited site are alwaysearest unvisited site.
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FIG. 3. Four successive scaled snapshots of the set of sites visitde-BP0 random walkers on the two-dimensional lattice for times
(from left to right t=2000,t=4000,t= 6000, and = 8000. The second snapshot has been shrunk by the fagr the third by the factor
1/{/3, and the last by the factor 1/2.

Therefore, the ratiggiven by A) between the radial size of tegration results in one dimensioand the broken and solid
the corona of() and the radial size of) itself remains al- lines are the prediction of E@24) to first and second order,
most constant throughout time regime Il. This implies that arespectively. The crosses are the results of Sastry and Agmon
conveniently scaled sequence of snapshots of the set of vis11] given by Eq.(32) with «=1. The dotted lines corre-
ited sites should be very simildin a statistical sengei.e.,  spond to the result of Larraldet al. given by Eq.(1) using

we find that() grows, to a large extent, in a self-similar way the correct amplitude of the main terfsee Ref[12]). The
inside time regime Il. This property is illustrated in Fig. 3. quantity plotted is

As Eq.(36) shows, the appropriate scale factor must be pro-

portional to \t. This “almost” self-similar behavior disap- 1
pears as the regime Ill is approached because the correction S= d
to the main term ofSy(t) becomes as large as this main
term, i.e., becaus&(N,t) approaches the value 1. This tran-
sition takes place wher~ 7, as follows from Eq(26), i.e.,

, (37

versus 1/IMN. From Eq.(24) one sees that the theoretical
this value coincides with the threshold for regime Il de- Prediction for this quantity i~ (1/d) (1~ A)**. The agree-
duced in the previous section. From the geometric point of"€Nt between the second-order approximation and the simu-
view this transition corresponds to the breaking of the self/tions is found to be excellent fd¢=100. Good agreement
similar growing behavior by the appearance of a corona of°’ lower values ofN would be expected if higher-order
filaments as large as the compact core, which finally gived€™Ms in the series were included. The importance of the
rise to a set of separated trails tifaimos) never more over- COITective terms is evident. For example, for the one-
lap. For the two-dimensional case the transition time from

regime Il to regime Il is so great for any significant number 1.0 ' ' ' ' ' ' '
of walkers that it cannot be studied by numerical simulation. ]
R o
0.8} N G i e T i
IV. NUMERICAL RESULTS 2 . ¢
We carried out numerical simulations for the number of
distinct sites visited bjN=2", with m=0,1, .. . ,14 in two -8 !
and three dimensions. For the one-dimensional case it is not S
necessary to carry out simulations because the survival prob- 04k i
ability is exactly known on this latticel’,(r) = erf(¢//2), i
and therefore the integral f@y(t) as given by Eq(3) can
be computed numerically. 0.2F N ey . 1
In our simulations, the random walkers are placed initially e el .
at the center of a hypercubic box of site Regime Il is | * e el .
reached almost immediately with the number of random 0.0 ' ' — T
walkers we have used{~ 10 for N=2%%). The simulations 00 01 02 03 04 05 068 07
were carried out only to a maximum tinte= 200 which is /In N

sufficient for the stabilization of regime Il conditions. The FIG. 4. S=1S (D)0 129/(4dDtIn N LI for. §
square box side fod=2 was taken to bé& =400 to avoid - 4. S=[Su(0)/vo]/( nN) versus 1/im for, from
. top to bottom, dimension 1, 2, and 3 atd 200 (inside time re-
any random walker reaching the edge of the box before the, o - =
. timet=200. M limitati f d ¢ gime Il). We have usetN=2" with m=3, ... ,14 ford=2,3, and
maximum tmet = - viemory imitations forced us o ré-— ., _ 5 ° 30 ford=1. The numerical results are plotted as filled
duce the box side tb =200 for the three-dimensional case.

circles and the brokefsolid] lines correspond to the theoretical

While this implies a possible appearance of finite-size ef'predictions forSy(t) to first [second order as given by Eq24).

fects, we can consider them to be negligible because thqtice that the approximation of order 0 would be a horizontal line
average displacement of the random walkers at the maXinot shown herepassing through @i/ The crosses correspond to
mum time is small compared wiltv2. Each experiment was the Sastry and Agmon result of E¢82) with a=1. The dotted
repeated 1btimes in order to achieve reasonable statistics. ines correspond to the result of Larraldeal. given by Eq.(1) in

Results are plotted in Fig. 4 for one, two, and three di-which the corrected amplitude of the main term has been (sl
mensions. The dots are the simulation res(itsmerical in-  Ref.[12]).
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dimensional case, we would need to use value a§ large  proximation based only on its first moment, i.e., §g(t),
as 1G3° in order to obtain the same precision with the mainseems to be very impreci§8]. As no relationship is known
term as we get with the main and two corrective terms forfor moments of order higher than one, the absorption prob-
values ofN as small as 2 Similar statements can be made lem remains unsolved.
for the other lattices, as Fig. 4 shows. Finally, it should be pointed out that the expression for
Sn(t) given in this paper can be extended to fractal media
with some slight changes. We are currently running simula-
V. REMARKS tions for deterministic(Sierpinski gasket and stochastic
In this paper, we have developed a method for calculatingPercolation aggregaldractals. Results for these substrates
the mean number of distinct sites visited Nyindependent Will be published elsewhere.
random walkers on Euclidean lattices. The method allows
the systematic calculation of the main and corrective ACKNOWLEDGMENTS

asymptotic terms to any order for lardfe These corrective . .
o - Partial support from the DGICYTSpain through Grant
Il -negligibl Il
terms are generally non-negligible as thegsentially decay No. PB97-1501 and from the Junta de Extremadura-Fondo

as powers of 1/IIN. However, we found that the main and . .
first two corrective terms lead to reasonably good resultssgg:jl Europeo through Grant No. IPR99CO31 is acknowl-

when relatively small values oN are used(say, for N
=27). In Sec. lll, we proposed a geometric meaning for the
main and corrective terms: the main term would account for APPENDIX

the volume of the set of visited sites if the exploration of the  \y/e will show in this Appendix how to get E419) from

random walkers were compact, and the corrective terms ju%q_ (15). Let us start by showing that the solutiéfe) of Eq.

improve this rough estimate because, in the outer regions, th@@ for z—0 has the form given in Eq18). For simplicity
exploration performed by theelatively few random walk- ¢ iation. we will writeu=¢"2, ¢=1—exp(—2) andc
ers that move there is really not compact, thus leading to the. 4,5 Hené:e Eq(16) takes the f;)rm

formation of a noncompach dendritig external ring in the

set of visited sites. We hope the above results and ideas

could serve as a basis to gain insight into problems with ——=+ulnu+inA+in
interactingrandom walkers. u

The method developed here for calculatiBg(t) is also In the limit z—0, it is clear thatu—0 and ¢—0. This

useful for evaluating other statistical quantities related to the ; . .
diffusion of a set gf independent ra?ldom walkers. An ex-1cans that as long a [IN(A)], the first term on the right-

ample is the numbegy, (t) of sites visited byN random hand side ofAl) is the most divergent one so that, as a first

walkers on a one-dimensional lattice alongigendirection approximation, we have

[11]. It turns out that the moment®f arbitrary ordey of c

Sy (1) can be readily obtained through a slight modification u~— mzx. (A2)
of Eq. (24). Another example is the first passage titpg(r)

to a distance of the first random walker of a set &f. First This first-order approximation was already obtained in Sec.

passage times are relevant statistical quantities in the stu Y[see below Eq(17)]. A better approximation is achieved
of diffusion processes where the arrival of the first particlesoy writing u=x(1+ €) ' with € a small quantity. The substi-

at a given site produces a significant effeat‘trigger” ef- v f thi ion in EdAL) viel
fect). These quantities have been calculated for one dimen-Utlon of this expression in EGAL) yields
2

sion[3,13] (and for some classes of fract4B]) but little is ux X ux X hyx2  hyx2e

known for dimensions greater than dr&d. The approximate e— e+ —Inx+ —-INA+ —e— —€’+ —+

compact form of the set of visited sites allows one to esti- ¢ ¢ ¢ 2¢ ¢ ¢

mate the first passage time via the relatigg(t,n(r)) +...=0, (A3)

~vor¥[12], which means geometrically that we consider the

region inside the hypersphere of radiusvhere a random where Eq.(A2) has been taken into account. This equation

walker has arrived by time; \(r) as completely visiteda  can be solved by writing as

compact exploration in the sense of de Gerri€$). Results

on Sy (t) andty \(r) obtained using the above ideas will be - N

reported elsewhere. fznzl EnX,
The functionSy(t) we have studied is indeed an impor-

tant quantity concerning the diffusion dfindependent ran-  and inserting it in Eq(A3). We thus find the following val-

dom walkers but there are still many open questions in thigies fore,, up ton=2:

problem. One can think, for example, of the absorption prob-

ability of the set ofN random walkers on a lattice with a

random distribution of pointlike traps. This problem can be €=~ cIn(AX), (A5)

formulated in terms of the moments of the number of distinct

sites visited by the set dfl walkers. A prediction for the 1 h

variance of the number of visited sites is a necessary requi- 62:_|n2(AXM)+ﬁ|n(AXu)_ -1 (AB)

site to tackle this interesting problem as the first-order ap- 2 c? c

©

1+ >, hnu“) =In¢. (Al)
n=1

(Ad)
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Therefore,

[

g(Z):U71/2:X71/2(1+6)71/2:X71/22 5an, (A?)
n=0

where ;=1 and

In(Ax*)
T

1
8= = 5 5 IN*(AX) + 4 In(AX) —4chy]. (A8)
c

The evaluation of the integral fd¢y(«) in Eq. (15) requires
the expression of“dé/dz as a function ok From Eq.(A7)
and taking into account thaté/dz=(dé/dx)(dx/dz) and
dx/dz=[x?/(c¢)]d¢/dz, we find that

dé 1 d¢ - oo
a_> _ T y(l-a)2 n (n) M o
4z ) dZx 1+nzlx mZ:l ki INM(AX*) |,
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Then, from Eq.(A9),

. 1
KN(CY,Z) — zefNZesz(lf a)l2

© n
X[1+ > x" Y, kM Inm(Ax%)|. (A12)
n=1 m=1

Writing e *=1+0(z), x=-(c/In2[1+0O(z/In2)] and
IN(AX)=InA—puIn(=In2)+wInc+O(z/In 2), Eq. (A12) be-
comes

Ri(a,2)=[1+02)]7 e N~ Inz)le D2

clat )2

X ZO 20 kKW(—Inz)"In"(Inz),  (A13)

where the coefficients" up to second ordem(=2) are

(A9) X "
. ke=(a=1)5 —u,
where the coefficients"), m=0, ... n forn=1, 2 are
- _H W1 &
kP = ~ ki”’=(1 a)z,
(1) a—1 (2 w? , hic
1 =50 0 —(S—a)(l—a)g-l—,u,(Z—a)w-F/.L +7(a—3),
N (a—3)h; w? ®
K=+ (A10) K= pl (a=2)p+ (a=3)(1-a) 7|,
(2-a) e
NG a— kP="5 (a=3)(a~1),
2¢?
(a—2)+3 andw=y+In A+xlInc. Finally, inserting Eq(A13) into Eq.
Q(ZZ):M—_ (A11) we get Eq.(19). It should be noted that we have ap-
8c? proximated the factor £ O(z) of Eq. (A13) by 1. This can

be done safely because the contribution of the neglected
terms to the asymptotic behavior Kf,(«) decays as least as
(InN)(«~D2/N? 'j.e., decays to zero faster than the contribu-
tion of the retained terms bfroughly) a factorN [see Egs.
(19-(23)].

Let us useK y(a,Zz) to denote the integrand of E(L5), i.e.,

K (@)= fOZXRN(a,z)dz. (A11)
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