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1. Introduction

Simple models of intermolecular interaction have proven to be useful tools in understanding diverse

phenomena in real fluids. Among these, the so-called discrete potentials that include the popular square-

well [1–19] and square-shoulder [9, 19–22] potentials, or combinations of them [13, 23–39], have received

much attention. This is not surprising in view of their relative simplicity and versatility, which allows

one to treat a variety of problems including, amongst others, chemical reactions [24], liquid-liquid transi-

tions [28–30, 33], colloidal interactions [32], the anomalous density behaviour of water and supercooled

fluids [34, 35] and the thermodynamic and transport properties of Lennard-Jones fluids [23, 25].

While the phase diagram and the thermodynamic and transport properties of the discrete-potential

fluids have been thoroughly examined, studies of their structural properties, either theoretical or from

simulations, are more limited. In fact, for the case where the potential is built as a combination of square

wells and shoulders, we are only aware of the rather recent work reported in references [32, 38, 39].

In previous papers [22, 40], following amethodology that, although approximate, has proven success-

ful for many other systems [41], the structural properties of the square-well and the square-shoulder flu-

ids were derived. Themain aim of this paper is to use a similar methodology, referred to as the method of

rational-function approximation (RFA), to generalize the previous results and derive the structural prop-

erties of fluids whose molecules interact via potentials with a hard-core plus piece-wise constant sections

of different widths and heights.

It should be emphasized that the RFA is not a new integral equation but rather an alternative ap-

proach to derive the structural properties of fluids in an analytic or semi-analytic way. Instead of propos-

ing a closure relation for the Ornstein-Zernike equation, it deals directly with the radial distribution func-

tion in Laplace space and involves some coefficients which are determined by imposing (basic) specific

physical conditions (see references [22, 40, 41] for details). An interesting feature of the method is that,

when applied to hard-sphere systems in odd dimensions [42–45], its simplest implementation coincides

with the exact solution of the Percus-Yevick (PY) integral equation [46–53]. In the case of even dimensions,

the mathematical problem becomes much more complicated, which is connected with the absence of a

© A. Santos, S.B. Yuste, M. López de Haro, 2012 23602-1

http://dx.doi.org/10.5488/CMP.15.23602
http://www.icmp.lviv.ua/journal


A. Santos, S.B. Yuste, M. López de Haro

simple relationship between the Laplace transform (which is a key element of the RFA approach) and the

Fourier transform (related to the static structure factor) in even dimensions. In fact, the PY equation for

hard-sphere fluids has no analytical solution in those dimensions.

The paper is organized as follows. In section 2 we provide the background material required for the

subsequent development. This is followed in section 3 by two different proposals for the RFA, both for the

general n-step case and for the particular case of a two-step potential. Section 4 contains the results of

our calculations for illustrative cases and their comparison with both simulation data [39] and with those

that stem out of the numerical solution of the PY equation for this system. We close the paper in section 5

with further discussion and some concluding remarks. The consistency of the present approach with the

results for both the square-well and square-shoulder results is proven in an appendix.

2. Fundamental relations

The radial distribution function g (r ) of a fluid of particles interacting via a potential ϕ(r ) is directly

related to the probability of finding two particles separated by a distance r [54]. It can be measured from

neutron or x-ray diffraction experiments through the static structure factor S(q), which is related to the

Fourier transform of g (r )−1 by

S(q) = 1+ρ

∫

dr e
−iq·r

[g (r )−1]

= 1−2πρ
G(s)−G(−s)

s

∣

∣

∣

∣

s=iq

, (1)

where ρ is the number density and

G(s)=

∞
∫

0

dr e
−r s r g (r ) (2)

is the Laplace transform of r g (r ). The isothermal compressibility of the fluid, κT = ρ−1
(

∂ρ/∂p
)

T , where

p is the pressure and T is the temperature, is directly related to the long-wavelength limit of the structure

factor:

ρkBTκT = S(0), (3)

where kB is the Boltzmann constant. Thus, all the physically relevant information about the equilibrium

state of the fluid is contained in g (r ) or, equivalently, in G(s).

Let us consider now the piece-wise constant potential

ϕ(r )=







































∞, r <σ,

ǫ1, σ< r <λ1σ,

ǫ2, λ1σ< r <λ2σ,

...
...

ǫn , λn−1σ< r <λnσ,

0, r >λnσ.

(4)

This potential is characterized by a hard core of diameterσ and n steps of (positive or negative) heights ǫ j

and widths (λ j −λ j−1)σ (where the convention λ0 = 1 is understood). Thus, λnσ denotes the total range

of ϕ(r ). The sign of ǫ j defines whether the j -th step is either a “shoulder” (ǫ j > 0) or a “well” (ǫ j < 0). The

interaction potential at r =λ j σ ( j = 1, . . . ,n) is repulsive if ǫ j > ǫ j+1 and attractive if ǫ j < ǫ j+1 (where, by

convention, ǫn+1 = 0). As usual, the density is measured by the packing fraction η ≡
π
6
ρσ3. Henceforth,

we will take the hard-core diameter σ= 1 as the length unit.

It is convenient to define an auxiliary function F (s) directly related to the Laplace transform G(s)

through the relation

G(s) = s
F (s)e−s

1+12ηF (s)e−s

=

∞
∑

m=1

(−12η)
m−1s[F (s)]

m
e
−ms

. (5)
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Laplace inversion of equation (5) provides a useful representation of the radial distribution function:

g (r )= r−1
∞
∑

m=1

(−12η)
m−1 fm(r −m)Θ(r −m), (6)

where fm (r ) is the inverse Laplace transform of s[F (s)]m and Θ(r ) is Heaviside’s step function. Thus, the

knowledge of g (r ) [or G(s) or S(q)] is fully equivalent to the knowledge of the auxiliary function F (s).

The representation (6) reflects the fact that, due to the hard core at r = 1, the radial distribution function

possesses singularities (of decreasing order) at r = 1,2,3, . . .. In particular, the value of g (r ) at contact,

g (1+), is given by the asymptotic behaviour of F (s) for large s:

g (1
+

) = f1(0) = lim
s→∞

s2F (s). (7)

Since g (1+) should be finite and different from zero, we get the condition

F (s) ∼ s−2
, s →∞. (8)

From equation (1), it turns out that the behaviour of G(s) for small s determines the value of S(0):

G(s)= s−2
+const+

1−S(0)

24η
s +O(s2

). (9)

Insertion of equation (9) into the first equality of equation (5) yields the first five terms in the expansion

of F (s) in powers of s [40, 55, 56],

F (s) =−
1

12η

(

1+ s +
1

2
s2

+
1+2η

12η
s3

+
2+η

24η
s4

)

+O(s5
), (10)

and expresses S(0) in terms of the coefficients of s5 and s6, namely

S(0) =
24

5
η3

(

6
d5F (s)

ds5

∣

∣

∣

∣

s=0

−
d6F (s)

ds6

∣

∣

∣

∣

s=0

)

−1+8η+2η2
. (11)

Equations (8) and (10) provide the behaviours for large s and small s, respectively, that the auxiliary

function F (s) should necessarily satisfy.

Let us now decompose F (s) as

F (s) =

n
∑

j=0

R j (s)e
−(λ j −1)s

, (12)

where, as said before, λ0 = 1. The aim of this decomposition is to reflect the discontinuities of g (r ) at the

points r = λ j where the potential is discontinuous. Let us denote by ξ j (r ) the inverse Laplace transform

of sR j (s). Thus,

ξ j (0) = lim
s→∞

s2R j (s), ξ′j (0) = lim
s→∞

s
[

s2R j (s)−ξ j (0)
]

, j = 0, . . . ,n. (13)

Equation (12) implies that the inverse Laplace transform of sF (s) is

f1(r )=

n
∑

j=0

ξ j (r −λ j +1)Θ(r −λ j +1). (14)

From now on we will assume, for the sake of concreteness, that λn É 2 (although the case λn > 2 can

also be dealt with in a similar way). Therefore, equation (6) yields

Θ(2− r )g (r ) = r−1 f1(r −1)Θ(r −1)Θ(2− r )

= r−1
n
∑

j=0

ξ j (r −λ j )Θ(r −λ j )Θ(2− r ). (15)
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As a consequence,

g (λ+
j )− g (λ−

j ) =
1

λ j
ξ j (0), g ′

(λ+
j )− g ′

(λ−
j ) =

1

λ j

[

ξ′j (0)−
1

λ j
ξ j (0)

]

, j = 0, . . . ,n. (16)

On the other hand, the cavity function y(r )≡ g (r )eϕ(r )/kBT and its first derivative y ′(r ) are continuous at

r = λ j [57]. This means that

g (λ−
j )e

βǫ j = g (λ+
j )e

βǫ j+1 , g ′
(λ−

j )e
βǫ j = g ′

(λ+
j )e

βǫ j+1 , j = 1, . . . ,n, (17)

or, according to equation (15),

ξ j (0) =

[

e
β
(

ǫ j −ǫ j+1

)

−1

]
j−1
∑

i=0

ξi (λ j −λi ), j = 1, . . . ,n, (18)

ξ′j (0) =

[

e
β
(

ǫ j −ǫ j+1

)

−1

]
j−1
∑

i=0

ξ′i (λ j −λi ), j = 1, . . . ,n. (19)

In the low-density limit, one has g (r )→ e−βϕ(r ), so that

lim
η→0

F (s) = s−1
e

s
lim
η→0

G(s)

= s−3
n
∑

j=0

e
−(λ j −1)s

(

1+λ j s
)

(

e
−βǫ j+1 −e

−βǫ j

)

, (20)

where, apart from ǫn+1 = 0 and λ0 = 1, it is understood that ǫ0 =∞. Comparison with equation (12) yields

lim
η→0

R j (s) = s−3
(

1+λ j s
)

(

e
−βǫ j+1 −e

−βǫ j

)

, j = 0, . . . ,n. (21)

3. Construction of the rational-function approximation

3.1. The general n-step case

According to the scheme presented in the preceding section, the full knowledge of the radial distribu-

tion function g (r ) for the n-step potential (4) amounts to a prescription for the functions R j (s), such that

the function F (s) obtained through equation (12) fulfills the conditions (8) and (10).

Now we assume the following rational-function approximation (RFA) for R j (s):

R j (s) =−
1

12η

A j +B j s

1+S1s +S2s2 +S3s3
, j = 0, . . . ,n. (22)

Since the degree difference between the numerator and denominator of R0(s) is equal to 2, the form (22)

ensures the consistency with equation (8). In fact, according to equation (13),

ξ j (0) =−
1

12η

B j

S3

, ξ′j (0) =−
1

12η

(

A j

S3

−
B j S2

S2
3

)

, j = 0, . . . ,n. (23)

Insertion into equation (16) yields

g (λ+
j )− g (λ−

j ) =
1

12ηλ j

B j

S3

, j = 0, . . . ,n, (24)

g ′
(λ+

j )− g ′
(λ−

j ) =−
1

12ηλ j

(

A j

S3

−
B j S2

S2
3

−
B j

S3λ j

)

, j = 0, . . . ,n. (25)

23602-4



Piece-wise constant potentials

For r > 0, application of the residue theorem provides the inverse Laplace transform of sR j (s) as

ξ j (r )=−
1

12η

3
∑

α=1

A j +B j sα

S1 +2S2sα+3S3s2
α

sαe
sαr

, (26)

where sα (α= 1,2,3) are the three roots of the cubic equation 1+S1sα+S2s2
α+S3s3

α = 0.

The approximation (22) contains 2(n+1)+3 = 2n+5 parameters to be determined. The exact expan-

sion (10) imposes five constraints among them:

A0 = 1−

n
∑

j=1

A j , (27)

S1 = B0 −
(

1+C (1)
)

, (28)

S2 =
1

2

(

1+2C (1)
+C (2)

)

−B0, (29)

S3 =
1

2
B0 −

1

12η
−

1

6

(

1+3C (1)
+3C (2)

+C (3)
)

, (30)

(1+2η)B0 = 1+C (1)
+
η

2

(

1+4C (1)
+6C (2)

+4C (3)
+C (4)

)

, (31)

where

C (k)
≡

n
∑

j=1

[

A j (λ j −1)
k
−kB j (λ j −1)

k−1
]

. (32)

Thus, the five coefficients A0, B0, S1, S2 and S3 are given by equations (27)–(32) as linear combinations

of A j and B j ( j = 1, . . . ,n). In the case of a hard-sphere system (formally, n = 0) the problem is closed

and one recovers [41, 55, 56] the exact solution of the PY integral equation [46–48]. On the other hand, 2n

parameters remain to be determined if n Ê 1.

Before dealingwith this problem, let us see that the proposal (22) is consistent with the exact form (21)

in the zero-density limit. This implies that one should have

lim
η→0

S1 = 0, lim
η→0

ηS2 = 0, lim
η→0

ηS3 =−
1

12
, (33)

lim
η→0

A0 = e
−βǫ1 , (34)

lim
η→0

B0 = e
−βǫ1 , (35)

lim
η→0

A j = e
−βǫ j+1 −e

−βǫ j , j = 1, . . . ,n, (36)

lim
η→0

B j =λ j

(

e
−βǫ j+1 −e

−βǫ j

)

, j = 1, . . . ,n. (37)

First, note that, if equation (36) is satisfied, then equation (27) reduces to equation (34). Next, equa-

tions (36) and (37) imply that limη→0 C (1) = A0 −1. Thus, equation (31) reduces to equation (35). Finally,

taking the limit η→ 0 in equations (28)–(30) one obtains equation (33). This proves that the approximate

form (22) becomes exact in the limit η→ 0, provided that the 2n coefficients A j and B j ( j = 1, . . . ,n) are

consistent with equations (36) and (37).
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3.1.1. RFA1

As a first proposal to determine the 2n coefficients A j and B j with j = 1, . . . ,n, we may discard the

density dependence of A j ( j = 1, . . . ,n). As a consequence, those coefficients are fixed at their zero-density

values, namely

A j = e
−βǫ j+1 −e

−βǫ j , j = 1, . . . ,n. (38)

Insertion of equation (38) into equation (27) implies that A0 is also given by its zero-density expression,

equation (34). The coefficients B j ( j = 1, . . . ,n) are determined from the n constraints (18) stemming from

the continuity of y(r ). Making use of equations (23) and (26) yields

B j

S3

=

[

e
β(ǫ j −ǫ j+1)

−1

] 3
∑

α=1

sαeλ j sα

S1 +2S2sα+3S3s2
α

j−1
∑

i=0

(Ai +Bi sα)e
−λi sα , j = 1, . . . ,n. (39)

These conditions should be enforced numerically. We will refer to this variant as the RFA1 method. In

the one-step case (n = 1), it coincides with the one previously proposed for square-well [11, 40, 41, 58–60]

and square-shoulder [22] fluids. The RFA1 reduces to the PY solution for hard spheres and sticky hard

spheres in the appropriate limits [22, 40].

3.1.2. RFA2

A more sophisticated version (here referred to as RFA2) consists in replacing the simple prescrip-

tion (38) by the enforcement of the continuity of y ′(r ) via equation (19). Again, taking into account equa-

tions (23) and (26), one gets

A j

S3

−
B j S2

S2
3

=

[

e
β(ǫ j −ǫ j+1)

−1

] 3
∑

α=1

s2
αeλ j sα

S1 +2S2sα+3S3s2
α

j−1
∑

i=0

(Ai +Bi sα)e
−λi sα , j = 1, . . . ,n. (40)

Now the problem requires the numerical solution of the 2n coupled transcendental equations (39) and

(40), instead of the n equations (39) required in the RFA1.

While the RFA2 is internally more consistent than the RFA1, it is not necessarily more accurate. As we

will illustrate in section 4, the requirement of a rather subtle continuity condition of y ′(r ) at r = λ j may

force a radial distribution function with features less realistic than those found.

In either case, once the Laplace transform G(s) is fully determined, its numerical Laplace inver-

sion [61] yields g (r ).

3.2. Particularization to two-step potentials

Let us now adapt the previous scheme to the case n = 2. Then,

F (s)= R0(s)+R1(s)e
−(λ1−1)s

+R2(s)e
−(λ2−1)s

, (41)

where the three functions R0(s), R1(s) and R2(s) have the rational-function form (22). There are 9 coef-

ficients to be determined. In the simpler RFA1 approach, A j are fixed by their zero-density values, i.e.,

according to equation (38),

A0 = e
−βǫ1 , A1 = e

−βǫ2 −e
−βǫ1 , A2 = 1−e−βǫ2 . (42)

Next, S1, S2 and S3 are given as linear combinations of B j by equations (28)–(30), where

C (k)
= A1(λ1 −1)

k
+ A2(λ2 −1)

k
−kB1(λ1 −1)

k−1
−kB2(λ2 −1)

k−1
. (43)

Moreover, equation (31) expresses B0 in terms B1 and B2. Thus, only two equations are needed. They are

given by equation (39), i.e.,

B1

S3

=

[

e
β(ǫ1−ǫ2)

−1

] 3
∑

α=1

sαe(λ1−1)sα

S1 +2S2sα+3S3s2
α

(A0 +B0sα), (44)
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B2

S3

=

(

e
βǫ2 −1

) 3
∑

α=1

sαeλ2sα

S1 +2S2sα+3S3s2
α

[

(A0 +B0sα)e
−sα + (A1 +B1sα)e

−λ1sα
]

. (45)

These two transcendental equations close the problem.

In a more sophisticated RFA2 version of the approximation, equation (42) is replaced by

A0 = 1− A1 − A2, (46)

and equation (40), i.e.,

A1

S3

−
B1S2

S2
3

=

[

e
β(ǫ1−ǫ2)

−1

] 3
∑

α=1

s2
αe(λ1−1)sα

S1 +2S2sα+3S3s2
α

(A0 +B0sα), (47)

A2

S3

−
B2S2

S2
3

=

(

e
βǫ2 −1

) 3
∑

α=1

s2
αeλ2sα

S1 +2S2sα+3S3s2
α

[

(A0 +B0sα)e
−sα + (A1 +B1sα)e

−λ1sα
]

. (48)

These two equations should be solved in conjunction with equations (44) and (45).

It is shown in the appendix that the RFA for the two-step potential reduces to the one for the one-step

potential in the limit ǫ1 = ǫ2 as well as in the limit ǫ1 →∞.

4. Illustration of the approximation for two-step potentials

In this section we illustrate our proposals RFA1 and RFA2 in two representative examples of two-step

potentials. First, we consider a square-shoulder plus square-well (SS+SW) potential (i.e., ǫ1 > 0 and ǫ2 < 0)

with ǫ1 = |ǫ2|, λ1 = 1.25 andλ2 = 1.5. The second case corresponds to a shifted square-well (sSW) potential

(i.e., ǫ1 = 0 and ǫ2 < 0) with λ1 = 1.25 and λ2 = 1.5. Both potentials have recently been analyzed by

Bárcenas et al. [39] bymeans of exchange replicaMonte Carlo (MC) simulations, with special emphasis on

the coexistence curves between the vapour and the condensed phase (liquid or solid) and the structural

properties of the condensed phase at coexistence.

The chosen state points are ρσ3 = 0.421, kBT /|ǫ2| = 0.64 for the SS+SW system and ρσ3 = 0.427,

kBT /|ǫ2| = 0.76 for the sSW system, both lying on the condensed branch of the respective coexistence

curve [39]. The radial distribution function g (r ) at a subcritical temperature and at the density of the

coexisting liquid represents a rather stringent test of the theoretical approach developed in this paper.

To put the results in a proper context, we have also numerically solved the PY integral equation by an

iterative method [22]. The comparison between RFA and PY is especially relevant since both theories

coincide in the hard-sphere and sticky-hard-sphere limits [22, 40].

Figures 1 and 2 show the radial distribution function and the cavity function for the SS+SW and sSW

systems, respectively, as obtained fromMC simulations [39], the PY numerical solution and our RFA1 and

RFA2 approaches. We observe from the figures that the RFA1 and RFA2 curves are practically indistin-

guishable in the region r >λ2, where they describe the main oscillating trends of the true distribution, at

least in a semi-quantitative way. Inside the well (λ1 É r Éλ2), however, both versions of the RFA differ. In

the SS+SW case (figure 1), the RFA2 prediction is excellent, visibly differing from the MC data only near

the inner radius of the well, r = λ1, while the RFA1 exhibits an accused convex shape; as a consequence,

in the shoulder region (1É r É λ1) the RFA1 predicts a g (r ) with positive slope. In the sSW case (figure 2),

on the other hand, it is the RFA2 that presents a convex shape inside the well (λ1 É r É λ2) and hence

exhibits a positive slope in the shift region (1 É r É λ1). By contrast, the RFA1, which (as clearly seen in

the bottom panel of figure 2) has a discontinuous first derivative at r = λ2, presents an almost linear form

in the regions 1 É r É λ1 and λ1 É r É λ2 with a qualitatively correct behaviour. Note, however, that the

RFA2 is very accurate in the region inside the well and near the outer radius (1.4 É r Éλ2).

As for the PY theory, it is obvious from figures 1 and 2 that it performs worse than any of the RFA

results for r Êλ1 and than either RFA2 (SS+SW system) or RFA1 (sSW system) for 1É r É λ1. This remark-

able result (given that the PY solution requires full numerical work, in contrast to the semi-analytical

character of the RFA) was already observed for square-shoulder fluids [22].
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Figure 1. (Color online) Radial distribution func-

tion g (r ) (top panel) and cavity function y(r ) (bot-

tom panel) for a square-shoulder plus square-well

potential (ǫ1 > 0 and ǫ2 < 0) with ǫ1 = |ǫ2|, λ1 =

1.25 and λ2 = 1.5 at ρσ3 = 0.421 and kBT /|ǫ2| =

0.64. The thick solid lines areMC results [39], while

the dashed-dotted, dashed and thin solid lines cor-

respond to the PY, RFA1 and RFA2 theories, respec-

tively.

Figure 2. (Color online) Radial distribution func-

tion g (r ) (top panel) and cavity function y(r ) (bot-

tom panel) for a shifted square-well potential (ǫ1 =

0 and ǫ2 < 0) with λ1 = 1.25 and λ2 = 1.5 at ρσ3 =

0.427 and kBT /|ǫ2| = 0.76. The thick solid lines are

MC results [39], while the dashed-dotted, dashed

and thin solid lines correspond to the PY, RFA1 and

RFA2 theories, respectively.

5. Conclusions

In summary, in this paper we have proposed a method of deriving the structural properties of a

particular kind of discrete-potential fluids, namely the ones in which molecules interact via a potential

consisting of a hard-core plus n-step constant sections of different heights and widths. The method is

based on assuming rational-function forms for n+1 functions R j (s) defined in Laplace space, the coeffi-

cients being constrained by physical consistency conditions. Two approximations were considered: one

inwhich some unknown constants are fixed at their zero density value (RFA1) and onewhich enforces the

continuity of the derivative of the cavity function (RFA2). In the former case, one has in the end to solve

(numerically) n coupled transcendental equations while in the latter, which is internally more consistent,

the set to be solved is made of 2n coupled transcendental equations.

The illustrative cases of the SS+SW and sSW potentials that we examined indicate that our approach,

being semi-analytical in nature, is a reasonable compromise between simplicity and accuracy. For the

SS+SW potential, the RFA2 approximation gives the best results, whereas the RFA1 is superior in the

sSW potential. On the other hand, in these illustrative cases the present development also represents a

clear improvement over the solutions of the corresponding PY integral equations, which require harder

numerical labor.

These further examples of the adequacy of the RFA method as compared with the results of the PY

equation reinforce the notion that such methodology is a valuable alternative to the integral equation ap-

proach for the derivation of the structural properties of fluid systems. This conclusion is of course based

on a limited analysis. One could easily argue that the comparison with the results stemming out of the

Ornstein-Zernike equation with either the Rogers–Young or the hypernetted chain closures would be a

more solid test ground. However, these approximations require much harder numerical work, while our

approach yields the explicit s-dependence of the Laplace transformG(s). In any case, we find it interesting
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to compare the performance of the present development with the results of some other simple approxi-

mations such as the hybrid mean spherical approximation considered in reference [32] or the first-order

mean spherical approximation used in reference [38]. We plan to undertake such comparisons in our

future work.
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A. Consistency with the one-step (square-well or square-shoulder) case

Let us denote by g (r ;ǫ1/ǫ2,λ1,λ2,T ∗,η) the radial distribution function in the case of a two-step po-

tential with reduced temperature T ∗ = kBT /ǫ2 and packing fraction η=
π
6
ρ, where the hard-core distance

isσ= 1. Analogously, we denote by ḡ (r ;λ,T ∗,η) the radial distribution function of a one-step (square-well

or square-shoulder) potential of unit hard-core distance and relative width λ with reduced temperature

T ∗ (in units of the step height) and packing fraction η.

The two-step problem should reduce to the one-step problem in certain limits. The aim of this ap-

pendix is to prove that the RFA2 method fulfills these consistency conditions. A similar and simpler proof

can be worked out for the RFA1 method.

A.1. Case ǫ1 = ǫ2

An obvious physical condition is that the two-step system becomes equivalent to a one-step system in

the limit ǫ1 → ǫ2, i.e.,

g (r ;1,λ1,λ2,T ∗
,η) = ḡ (r ;λ2,T ∗

,η). (49)

In Laplace space,

G(s;1,λ1 ,λ2,T ∗
,η) = Ḡ(s;λ2,T ∗

,η), (50)

F (s;1,λ1,λ2,T ∗
,η) = F̄ (s;λ2,T ∗

,η). (51)

Taking into account equations (12) and (22), one should have

A0(1,λ1,λ2,T ∗
,η) = Ā0(λ2,T ∗

,η), (52)

A1(1,λ1,λ2,T ∗
,η) = 0, (53)

A2(1,λ1,λ2,T ∗
,η) = Ā1(λ2,T ∗

,η), (54)

B0(1,λ1,λ2,T ∗
,η) = B̄0(λ2,T ∗

,η), (55)

B1(1,λ1,λ2,T ∗
,η) = 0, (56)

B2(1,λ1,λ2,T ∗
,η) = B̄1(λ2,T ∗

,η), (57)

S1(1,λ1,λ2,T ∗
,η) = S̄1(λ2,T ∗

,η), (58)

S2(1,λ1,λ2,T ∗
,η) = S̄2(λ2,T ∗

,η), (59)

S3(∞,λ1,λ2,T ∗
,η) = S̄3(λ2,T ∗

,η). (60)

Equations (52)–(54) are in full agreement with equation (27). It remains to prove that the above equations

are consistent with equations (28)–(31), (44), (45), (47) and (48).

For simplicity, henceforth we will omit the arguments of the barred and unbarred quantities. From

equation (43),

C (k)
= C̄ (k)

= Ā1(λ2 −1)
k
−kB̄1(λ2 −1)

k−1
, (61)

23602-9



A. Santos, S.B. Yuste, M. López de Haro

where use has been made of equations (53)–(57). This ensures that equations (28)–(31) are satisfied by

the one-step system, provided they are satisfied by the two-step system in the limit ǫ1 → ǫ2. Next, the

transcendental equations (44) and (47) are trivially satisfied by equations (53) and (56). Finally, the tran-

scendental equations (45) and (48) become the same for the two- and one-step cases.

A.2. Case ǫ1 →∞

In the limit ǫ1 → ∞ the two-step potential becomes equivalent to a one-step potential of hard-core

distance λ1 and relative width λ≡λ2/λ1 with a packing fraction η̄≡ ηλ3
1
, i.e.,

g (r ;∞,λ1,λ2,T ∗
,η) = ḡ (r /λ1;λ,T ∗

, η̄). (62)

In Laplace space, equation (62) translates into

G(s;∞,λ1,λ2,T ∗
,η) =λ2

1Ḡ(λ1s;λ,T ∗
, η̄). (63)

From equation (5),

F (s;∞,λ1,λ2,T ∗
,η) =λ3

1e
−(λ1−1)s F̄ (λ1s;λ,T ∗

, η̄). (64)

According to equations (12) and (22), one should have

A0(∞,λ1,λ2,T ∗
,η) = 0, (65)

A1(∞,λ1,λ2,T ∗
,η) = Ā0(λ,T ∗

, η̄), (66)

A2(∞,λ1,λ2,T ∗
,η) = Ā1(λ,T ∗

, η̄), (67)

B0(∞,λ1,λ2,T ∗
,η) = 0, (68)

B1(∞,λ1,λ2,T ∗
,η) =λ1B̄0(λ,T ∗

, η̄), (69)

B2(∞,λ1,λ2,T ∗
,η) =λ1B̄1(λ,T ∗

, η̄), (70)

S1(∞,λ1,λ2,T ∗
,η) =λ1S̄1(λ,T ∗

, η̄), (71)

S2(∞,λ1,λ2,T ∗
,η) =λ2

1S̄2(λ,T ∗
, η̄), (72)

S3(∞,λ1,λ2,T ∗
,η) =λ3

1S̄3(λ,T ∗
, η̄). (73)

Again, equations (65)–(67) are consistent with equation (27). Let us now check that equations (65)–(73)

are consistent with equations (28)–(31), (44), (45), (47) and (48).

As before, for simplicity we omit the arguments of the barred and unbarred quantities. Taking into

account the definition (43), one has

C̄ (k)
= Ā1(λ−1)

k
−kB̄1(λ−1)

k−1
. (74)

According to equations (65)–(70), we get that, in the limit ǫ1 →∞,

C (k)
= (λ1 −1)

k
+ Ā1

[

(λ2 −1)
k
− (λ1 −1)

k
]

−kB̄0λ1(λ1 −1)
k−1

−kB̄1λ1(λ2 −1)
k−1

, (75)

where we have made use of the property Ā0 + Ā1 = 1. From equations (74) and (75) one has

1+C (1)
=λ1

(

1+ C̄ (1)
− B̄0

)

, (76)

1+2C (1)
+C (2)

=λ2
1

(

1+2C̄ (1)
+ C̄ (2)

−2B̄0

)

, (77)

1+3C (1)
+3C (2)

+C (3)
=λ3

1

(

1+3C̄ (1)
+3C̄ (2)

+ C̄ (3)
−3B̄0

)

, (78)

1+4C (1)
+6C (2)

+4C (3)
+C (4)

=λ4
1

(

1+4C̄ (1)
+6C̄ (2)

+4C̄ (3)
+ C̄ (4)

−4B̄0

)

. (79)

Equations (76)–(78), together with equations (28)–(30), prove the consistency of equations (71)–(73), re-

spectively. Next, equations (76) and (79) prove that, if (31) is satisfied by the unbarred parameters, so it is

by the barred parameters.
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Now we consider the transcendental equations that need to be additionally solved. In the case of the

one-step potential, equations (39) and (40) reduce to

B̄1

S̄3

=

(

e
1/T ∗

−1

) 3
∑

α=1

s̄αe(λ−1)s̄α

S̄1 +2S̄2 s̄α+3S̄3 s̄2
α

(Ā0 + B̄0 s̄α), (80)

Ā1

S̄3

−
B̄1S̄2

S̄2
3

=

(

e
1/T ∗

−1

) 3
∑

α=1

s̄2
αe(λ−1)s̄α

S̄1 +2S̄2 s̄α+3S̄3 s̄2
α

(Ā0 + B̄0 s̄α), (81)

respectively, where s̄α (α= 1,2,3) are the three roots of the cubic equation 1+ S̄1 s̄α+ S̄2 s̄2
α+ S̄3 s̄3

α = 0. In

the case of the two-step potential, multiplication of both sides of equations (44) and (47) by e−βǫ1 shows

that they are identically satisfied in the limit ǫ1 →∞ if A0 = B0 = 0 [cf. equations (65) and (68)]. As for

equations (45) and (48), they become

B2

S3

=

(

e
1/T ∗

−1

) 3
∑

α=1

sαe(λ2−λ1)sα

S1 +2S2sα+3S3s2
α

(A1 +B1sα), (82)

A2

S3

−
B2S2

S2
3

=

(

e
1/T ∗

−1

) 3
∑

α=1

s2
αe(λ2−λ1)sα

S1 +2S2sα+3S3s2
α

(A1 +B1sα). (83)

Taking into account the equations (66), (67) and (69)–(73), as well as the fact that s̄α = λ1sα, it is straight-

forward to check that equations (80) and (81) are equivalent to equations (82) and (83), respectively. This

closes the proof of equation (62).
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Наближення рацiональними функцiями для плинiв, що

взаємодiють через вiдтинково-сталi потенцiали

А. Сантос1, С.Б. Юсте1, М. Лопес де Гаро2

1 Фiзичний факультет, Унiверситет Екстремадури, E-06071 Бадайос, Iспанiя

2 Центр енергетичних дослiджень, Нацiональний автономний унiверситет Мексики (U.N.A.M.),

Морельос 62580, Мексика

Використовуючи (напiваналiтичний) метод наближення рацiональними функцiями, отримано структурнi

властивостi плинiв, молекули яких взаємодiють через потенцiали iз твердою серцевиною та n сходинка-

ми рiзної ширини та висоти. Результати iлюструються на прикладах потенцiалу прямокутний уступ плюс

прямокутна яма i потенцiалу змiщена прямокутна яма, i порiвнюються з результатами симуляцiй, а також

з результатами, що отримуються з (числових) розв’язкiв iнтегрального рiвняння Перкуса-Євiка.
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