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We present a mean field model for coagulation (A+A — A) and annihilation (A+A — 0) reactions on lattices
of traps with a distribution of depths reflected in a distribution of mean escape times. The escape time from
each trap is exponentially distributed about the mean for that trap, and the distribution of mean escape times is
a power law. Even in the absence of reactions, the distribution of particles over sites changes with time as
particles are caught in ever deeper traps, that is, the distribution exhibits aging. Our main goal is to explore
whether the reactions lead to further (time dependent) changes in this distribution.
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I. INTRODUCTION

Chemical reactions limited by the motions of the reactants
are abundant in nature, and among the most thoroughly stud-
ied are diffusion-limited reactions. A ubiquitous approach to
these systems simply adds the diffusion and reaction contri-
butions together so as to construct appropriate reaction-
diffusion equations. It is implicit and even explicit in these
approaches that the diffusive component describes a motion
without a memory, and if one invokes an underlying continu-
ous time random walk (CTRW) where walkers react when
they meet, it is understood that the waiting time distributions
for reactants to remain at one location before moving on
have a finite mean. The most frequently invoked waiting
time in this scenario is exponential. It is also understood that
in fact many microscopic models can be subsumed under the
same mesoscopic reaction-diffusion umbrella [1-5].

On the other hand, contrary to the diffusive case, it is by
now fairly clear that different microscopic scenarios of reac-
tions among subdiffusive species, even simple scenarios,
lead to different mesoscopic descriptions [6—10]. For in-
stance, a popular mesoscopic vehicle, the CTRW, involves
waiting time distributions of ensembles of particles undergo-
ing reactions. The forms of these distributions depend on the
underlying microscopic rules and may vary from one micro-
scopic scenario to another. It is thus risky to simply assume a
form for these distributions as one would for diffusive par-
ticles. Instead, a more detailed derivation starting from a set
of microscopic rules to arrive at a mesoscopic CTRW de-
scription is necessary. The specific microscopic reaction sce-
nario of interest to us is a lattice whose sites are occupied by
traps of varying depths, that is, the quenched trap scenario. If
independent particles simply walk on this lattice, their escape
time from each trap is exponentially distributed, with the
distribution of trap depths reflected in a distribution of mean
escape times. An average over this distribution leads to a
CTRW model in which all sites have the same waiting time
distribution [11,12]. This latter process is spatially homoge-
neous and semi-Markovian, and anomalous diffusion arises
if the resulting mean waiting time on each site diverges. This
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is the so-called annealed trap scenario. However, if particles
can also react with one another, interesting questions imme-
diately arise. Of interest to us are the reactions A+A —A
(coagulation) and A+A — 0 (annihilation); some uncertain-
ties arising from different microscopic descriptions can be
illustrated with the coagulation reaction. Suppose there is an
A at a site, and a second A arrives. In the underlying spatially
disordered quenched trap model, it does not matter which
particle is “killed” by the reaction since the waiting time
distribution for particle departure from any site is exponen-
tial. Such a process is often called memoryless because the
future of each particle is determined only by its present state
and not its past, and therefore the differences between the
two victims become irrelevant. However if, as we subse-
quently do, we implement a mean field assumption which
turns out to lead to a description that is asymptotically
equivalent to a CTRW with diverging mean waiting times,
that is, to an annealed trap model, it may make a kinetic
difference which of the two particles is killed in each reac-
tion. It is not clear in general how to include such fine dis-
tinctions in a mesoscopic formalism nor is it clear what sort
of rule at the mesoscopic or mean field level best mimics the
behavior of the underlying trapping problem.

Our mean field model shares with other CTRW models
with diverging mean waiting times the phenomenon of “ag-
ing” [13-16]. Even in nonreactive systems, aging causes the
waiting time distribution itself to change with time as par-
ticles settle into sites with ever longer waiting times (corre-
sponding to particles caught in ever deeper traps in the un-
derlying system). Aging for nonreactive particles does not
occur in a given finite-quenched trap environment since the
distribution of particles approaches a Boltzmann distribution
[17]. The most intriguing unanswered question that we ad-
dress in this work is whether the reactions cause a change in
the waiting time distribution. We anticipate our answer to
this latter question: we find that in our mean field model the
reaction does not cause an additional change in the waiting
time distribution.

We compare our model predictions with the results of
numerical simulations of the actual distributed trap scenario.

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.79.051113

SOKOLOV et al.

We find that the mean field approach works well for higher
dimensions (d=3) but not for low dimensions (d=1), a re-
sult that agrees with the well-known differences in subdiffu-
sion exponents predicted by CTRW theories and those ob-
tained by numerical simulations in the absence of reactions
[18]. The concentrations of surviving particles are known to
be well reproduced in all dimensions by invoking relations
with the number of distinct sites visited in the asymptotically
equivalent CTRW [3,19]. On the other hand, the mean field
formalism, while restricted to higher dimensions, provides
additional direct insights into the more detailed information
contained in the time dependence of the waiting time distri-
butions.

In Sec. II we describe our mean field model and arrive at
a master equation for the density of particles with given
mean rate for leaving any site in the absence of reactions.
This equation explicitly shows the effects of aging. In Sec.
IIT we establish the corresponding master equations in the
presence of the coagulation and annihilation reactions. In
Sec. IV we discuss the solution of the master equation for the
time-dependent rate distribution. Comparisons with numeri-
cal simulation results for the underlying random trap model
are presented in Sec. V. We conclude with a brief summary
in Sec. VL.

II. MEAN FIELD APPROACH TO A TRAP MODEL

To construct a mean field model, we start with a lattice
whose sites are traps of varying depths. Our model is equiva-
lent to that of [14], but our notation is suitably modified to
facilitate the inclusion of reactions, which they do not con-
sider. The waiting time for leaving a trap i is exponentially
distributed, p(t|7')=7'l-_l exp(-t/7;), where 7;, the mean so-
journ time in the trap, is determined by the trap’s depth via
the Kramers (Arrhenius) law. We further assume that the
distribution of mean waiting times is a power law, for ex-
ample, p(7)=y7'776(t—1). Note that the asymptotics of the
probability density function ¢(z) of waiting times ¢ upon av-
eraging over this distribution of mean waiting times is then
of power law form even though the waiting time for each
trap is exponentially distributed, i.e.,

Ab(t)=f p(t|Dp(ndr~ yL(1+ )77 (1)
0

The power-law distribution of mean waiting times 7; leads
to a power-law distribution of the “leaving rates” w;=1/7;
for departing from a site,

p(w) = yor (1 - ). (2)

Note that all the moments of the distribution of the rates are
finite even if those of the waiting time distribution are not.
Particles are distributed over sites with different mean
waiting times, and as time proceeds, the distribution of par-
ticles over these sites changes even in the absence of reac-
tions because more and more particles get stuck in deeper
and deeper traps. In a finite system the distribution eventu-
ally settles into a Boltzmann distribution once all the traps
have been visited and revisited repeatedly, but in an infinite
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system the distribution continues to change with time ad in-
finitum. Our central question concerns the effects of reac-
tions on this evolving distribution. In particular, we ask
whether the distribution is modified by the reactions. This is
difficult to answer, at least analytically, without further ap-
proximation. The system with distributed traps of varying
depths is spatially inhomogeneous, and if the particle ex-
ecutes the usual nearest-neighbor random walk, the future of
any particle moving over this landscape may be strongly
dependent on its particular location. Furthermore, there may
be strong correlations among subsequent steps (especially in
lower dimensions) because the particle may revisit a previ-
ously visited site. To make progress we implement a mean
field approximation designed to provide information about
the evolving distribution of particles over the inhomoge-
neous landscape. Specifically, we assume that the particles
do not perform a nearest-neighbor random walk but instead
that each particle is equally likely (probability 1/N) to step
on any of the N sites of the system. In other words, the lattice
is a complete graph. Equivalently, as an alternative way of
viewing the model, we can think of particles performing
nearest-neighbor random walks, but before each step the
mean waiting time associated with the trap to which the par-
ticle is about to step is chosen anew from the distribution
p(7) or, correspondingly, a new leaving rate is chosen from
p(w), independently of the waiting times chosen in prior
steps. It is also equivalent to a nearest-neighbor CTRW in a
very high-dimensional quenched medium. In any case, in the
absence of reactions this results in a space-homogeneous
CTRW model with waiting time distribution ¢(r) as given in
Eq. (1) chosen anew at each step. This in turn leads to a
distribution of particles over sites that changes in time ad
infinitum even in the absence of reactions whether the system
is finite or infinite.

The assumptions underlying the mean field approach are
expected to be more adequate for random walks that are
transient, that is, ones in which already visited sites are re-
visited only with a small probability so that almost all sites
reached by the walker are new sites. This is the case for
random walks in dimensions d =3, and as we show in Sec.
V, we do find excellent agreement between the mean field
approach and numerical simulations for the reactions in
quenched trap environments for d=3. If the walk is recur-
rent, that is, if the same sites are revisited repeatedly, the
approximation may be poor. One-dimensional walks are re-
current, and d=2 is the marginal dimension for this property.

As noted earlier, as time evolves the distribution of par-
ticles over the sites with given mean waiting times (leaving
rates) changes even in the absence of the reactions because
more and more particles get stuck in deeper and deeper traps.
(Again we stress that in the mean field model this change
continues over all time whether the system is finite or infi-
nite.) We discuss these changes first in the absence and then
in the presence of the reactions. For this purpose we note that
under the mean field assumption, the master equation for the
probability a;() to be at site i at time ¢ reads

ol = }VE wja (1) - wias). 3)

Since each site is characterized by its own w, we can pass
from the occupation probability a; to the probability a(w,?)
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and introduce the density n(w,?) of particles occupying sites
with leaving rate between w and w+dw. One easily deduces
that n(w,f)do=a(w,t)p(w)dw, where Np(w)dw is the num-
ber of sites with leaving rates between w and w+dw. Note
that in a large system

1 1
ﬁg, w;a(t) = ]T[f wNp(w)a(w,t)dw:j on(w,)dw.

(4)

The last integral can be associated with the time-dependent
mean rate,

Q(t):f on(w,)dw. (5)

Multiplying both sides of Eq. (3) by p(w) leads to the master
equation for n(w,?),

%n(m,t) =Q(")p(w) — wn(w,r). (6)

This equation governs the change in the distribution of par-
ticles over jump rates in the absence of reactions. Note that
the total concentration of particles ¢=fn(w,)dw is constant
in time.

II1. RATE DISTRIBUTION WITH REACTIONS

Next we explore the effects of reactions on the site-
occupation probabilities. We assume that the usual law of
mass action is appropriate at the local level. For the case of
the A+A — A reaction within our mean field approximation,
the change in the occupation probability at site i is

%aﬁﬁﬂl—aﬁﬂ%;gwﬂﬂﬂ—wﬂﬁ) @)

since the number of particles at a site already occupied by a
particle [with probability a;(f)] does not change upon the
arrival of the new particle. In the case of the A+A — 0 reac-
tion the number of particles at an occupied site is reduced by
one upon the arrival of a new particle so that the correspond-
ing equation reads

%a,«(t) =[1- 2ai(t)]]%7% wa(t) - wa;(r). (8)

Again we can focus instead on n(w,), but this is no longer a
proper probability density because the total number of par-
ticles is not conserved. Regrouping terms one obtains the
reaction equations

d <]
Ztn(w,t) =p(a))J0 on(w,t)dw

0

- {w+f wn(w,t)dw}n(w,t) 9)

for the A+A — A reaction, and
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d o0
—n(w,f) =p(w) | on(w,t)do
dt 0

- lw + ZIOC wn(a),t)dw]n(a),t) (10)

0

for A+A—0. At t=0 the particles are homogeneously dis-
tributed over all sites in the system, so the initial condition
for n is n(w,0)=p(w). A normalized probability density is
obtained by noting that the overall time-dependent reactant
concentration is given by

c(t)=fwn(w,t)dw. (11)
0

The properly normalized probability density of particles oc-

cupying sites with leaving rate between w and w+dw is then

given by

n(w.1)
c(t) -

We again introduce the time-dependent mean jumping rate,
which is now given by

plo,t) = (12)

Q) = c‘l(t)JOO on(w,)dw = f“ wp(w,t)dw, (13)
0

0

and rewrite Egs. (9) and (10) in the form

%n(w,t) =c()QO)p(w) - [0+ cOQN)n(w,1)  (14)
for the A+A — A reaction, and

%n(w,t) =c()QUDp(w) = [0 +2c() QD) Jn(w,1)  (15)

for the A+A—0 reaction. Integrating these two equations
over the w domain gives the classical kinetic equations

%do=—uﬂak%o (16)

with the stoichiometric coefficient (“molarity”) of the reac-
tion u=1 for the A+A — A reaction and u=2 for A+A—0.
The mean jump rate ()(7) is thus the time-dependent reaction
rate.

The equation for the probability density p(w,?)
=n(w,1)c”(t) corresponding to Eqs. (14) and (15) is then

d 1 d
Ep(w,t) + P(w,t)ﬁzc(t)

=Q(0)p(w) - wp(w,1) - pc()QDp(w.1).  (17)

With Eq. (16) we see that the term with the time derivative
dc/dt on the left side of this equation and the last term on the
right side cancel. Thus, the final equation for p(w,#) does not
depend on the molarity w of the reaction and is the same as
the equation for n(w,) in the absence of reactions,
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d
SP(e-0) = Q0p() - wp(w.1). (18)

This statement also leads to the remarkable conclusion that
within the mean field approximation adopted in this model
the reaction does not affect the waiting time distribution.
This answers one of our main questions.

IV. SOLUTION FOR THE TIME-DEPENDENT RATE
DISTRIBUTION

The principal question posed earlier, namely, whether the
reaction changes the waiting time distribution, has been an-
swered in the negative within our mean field approach. It is
now instructive to obtain an explicit expression for the time-
dependent reaction rate. Equation (18) is an integrodifferen-
tial equation for p(w,r) since (z) as defined in Eq. (13)
depends on p(w,1) itself. However, contrary to the equations
for n(w, 1), this equation is linear and can best be approached
via Laplace transforms. First we consider the time-Laplace
transforms of p(w,t) and (),

ﬁ(“”s)=fwl’(“”f)€_”dt, ﬁ(S)=fm Q(r)e™"dr.
0 0

(19)
The transform of Eq. (18) is

sp(@,5) = p(w) = A(s)p(w) - wp(w.s), (20)
where we have explicitly used the initial condition p(w,0)
=p(w). The formal “solution” for p(w,s) (with p still con-
tained in Q) is

Pl =01+ A1, e1)
Transforming the definition (13) of {(r) we obtain
Q(s) = f Plo,s)odo (22)
0

so that multiplying both sides of Eq. (21) by w and integrat-
ing, we arrive at a closed algebraic equation for Q(s),

a(s)=[1+ ()] f )y, (23)
The solution of this equation is
A= (24)
1-1(s)
where
I(s) = f o), (25)
0 St

The integral representing I(s) can be evaluated asymptoti-
cally for any long-tailed distribution p(7) using the
asymptotic method for integrals with weak singularity (see
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Ch. 1, Sec. 4 in [20]) as follows. We can rewrite I(s) as

I(s)=1—sf p(w)dwzl—sf Mdm—sf G,
0 S+ w 0S+w e S+ w

(26)

for any €. Relevant to the long-time asymptotic behavior is
the small-s behavior of I(s). As long as € is chosen such that
e/s—» as s —0, the third integral on the right-hand side is
of O(1) in this limit. Furthermore, if p(w)~ yw*! as w
—0 and e<<1, we can write

e y-1
I(s)~1—s‘yj Y dw-0(s) with e<1. (27)
0S+w

s—0

Finally, a change of variables z=g/s then allows us to write
for s—0
=% _y-1

I(s) ~1- ysyf Z—dz— O(s) ~1- .777' s,
0o 14z sin Yy

(28)

For the particular form p(w)=yw? '@ (1 - w) introduced ear-
lier, one finds the result valid for all s [Abramowitz and
Stegun formula 15.3.1]

1(s) = ———F (1,1 + 9,2+ y,— l/s), (29)

(1 7)
which for small s (relevant to long-time asymptotic behav-
ior) leads to the second line of Eq. (28). The inverse trans-

form of Q(s) then follows upon application of the Tauberian
theorem,

sin 71'7
yal'( )

We have thus provided a mesoscopic theoretical foundation
for the widely accepted result that the reaction rate decays
with time.

The time-dependent reaction rate can now be inserted in
the rate equation [Eq. (16)] to solve for the concentration as
a function of time. At long times we find the explicit result

Q@) ~ (30)

(1 +
o)~ TELED oy (31)
M sin Ty
We can in fact calculate the full rate distribution by integrat-
ing Eq. (18). The result up to quadrature is

p(w,t)=p(w)e_“”{ f dt’e“’”Q(t’)+1] (32)
0

From this, we can extract the w dependence for short times
wit<l as p(w,t)~p(w) and for long times wr>1 as
plo,t)~p(w)/o.

Finally, we note the interesting connections between these
results and the number S(¢) of distinct sites visited up to time
t by a particle in a CTRW [21]. We can connect this quantity
to the average reaction rate () for d=3 as follows. Since
at each step of the process a particle mostly visits a new site
in the system (the random walk is “transient” or “nonrecur-
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rent”), the reaction rate can be approximated by the time
derivative of the number of newly visited sites, €(z)
=dS/dt, and we have [21]

s —0, (33)

where R is the probability of return to the origin (R
=0.3405... for a simple cubic lattice). Note that the small-s

behavior of gZ(s) corresponding to the asymptotic behavior of
(1) in Eq. (1) is

~ T

) ~1- L7 =1-(s/\)". (34)
sin 7y

Inserting this expression into Eq. (33), inserting Eq. (28) into

Eq. (24) and comparing the resulting expressions, one sees

that S(s)~(1-R)Q(s)/s for small s so that Q(r)~(1
—R)dS/drt for large t. Although the interpretation of the re-
action rate in terms of the number of distinct sites visited is
quite standard, the fact that the broad distribution of trapping
times does not introduce any additional fluctuation effects
into the kinetics is not at all trivial.

A further connection with the distinct number of sites vis-
ited in a CTRW occurs for the concentration of surviving
reactant, namely, ¢(r)~1/S5(¢), a connection that holds not
only for d>2 but also for d=2, i.e., even when the random
walk is recurrent [3,19]. In [21] we explicitly obtained the 3d
result S(7) ~[(1=R)/T'(1+v)](\t)?. In one dimension S(z)
~[V2/T(1+y/2)](At)”2. We will test the proposition that
¢(t)~1/8(r) in the next section along with results of the
theory we have developed above.

V. NUMERICAL RESULTS

Our discussion supports the expectation that the results of
the mean field model approximate those of the underlying
random depth trap system in 3d (but not in 1d). Even in 3d,
where walks are transient, it is nevertheless the case that
there is a finite probability R of return to a previously visited
site, e.g., about 1/3 for a simple cubic lattice. In this section
we compare our results with those of numerical simulations
of 3d and 1d lattices with traps of random mean exit times as
described earlier. The algorithm used in the simulations is
described in some detail in the Appendix.

Figure 1 shows a collection of results for the concentra-
tion of reactants as a function of time in 3d. The results fall
essentially on two straight lines, except for finite-size effects.
The upper set of results is for y=0.5 and the lower set for
v=0.8. The concentrations shown are indicated as c,(7),
which we associate with the coagulation reaction A+A —A,
and ¢,(¢) for the annihilation reaction A+A — 0. We plot ¢, (1)
and 2¢,(7) to ascertain that the surviving concentration in the
coagulation reaction is twice that of the annihilation reaction.
The coincidence of the simulation results for the two cases
shows that this is indeed the case. Simulation results are
shown for two sizes of the LX L XL simple cubic lattice
with L=30 and L=60. The results for the two sizes are the
same except for the larger value of 7, where we see some
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FIG. 1. (Color online) The reactant concentrations c;(¢) and
2¢5(t) in three dimensions as functions of time for y=0.5 and y
=0.8 and two lattice sizes. The symbols denote numerical simula-
tion results. The solid lines result from the mean field theory, and
the dashed lines from the connection with the number of distinct
sites visited.

deviations from the straight line at very long times due to
finite-size effects. These deviations are more pronounced for
the larger vy (in the faster walk the ends of the lattices are
reached earlier) and for the smaller lattice. Since this is a
log-log plot the straight-line behavior confirms the power-
law decay of the concentrations. Furthermore, we find that
the slopes of these lines are close to y. In particular, we find
slopes 0.491(2) for y=0.5 and 0.763(2) for y=0.8 (in both
cases for both reactions). The agreement in the former case is
very good, but somewhat less so in the latter, where we are
not in the fully asymptotic scenario [22].

Figure 2 shows our simulation results in 1d, again for vy
=0.5 and y=0.8. The lines in this case are power-law fits to
the simulation results. The size of the lattice is L=10 000.
The mean field approach is not valid here as an approxima-
tion to the underlying trap model, and yet a number of inter-
esting results are nevertheless worth mentioning. First, we
note that the relation c,()=2c,(¢) still holds. We do not
know whether this indicates that here again the reactions do
not affect the dynamics of the moving species, but this result
indicates that it may be so. Second, we note that the expo-

FIG. 2. (Color online) The reactant concentrations c;(¢) and
2¢,(f) in one dimension as functions of time for y=0.5 and vy
=0.8. The symbols denote the results of numerical simulations, and
the lines are linear fits to these results.
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10

10° 10" 100 100 10"

FIG. 3. (Color online) For all results in this figure, y=0.5. The
solid lines are calculated from the analytic result Eq. (32) and the
symbols are the simulation results for lattices with quenched traps
scaled as described in the text. From high to low on the right side of
each panel the curves are for t=102, 10°, 10%, and 10°. Top panel:
3d lattice; bottom panel: lattice with equally likely jumps to any
site, that is, a complete graph.

nents of the concentration, while quite different from those
of the mean field model, agree with those associated with the
distinct number of sites visited for the original trap model,
namely, that in one dimension c(t)~ 1/5(t)~(x?)~1"?
~ 177047 because all sites within the span of the random
walk are visited at least once. The numerical fits for the
simulation results yield ¢(r)=2¢,(r) ~0.881(1)r 03321 for
y=0.5 and ¢,(t)=2c,(f) ~0.959(4)r 040 for y=0.8. The
exponents 0.33 and 0.43 are in good agreement with the
values of y/(1+75)=0.333 and 0.444, respectively.

Finally, we compare our analytic mean field predictions in
more detail with numerical simulations of the quenched trap
model. In Fig. 3 we show results for the distribution p(w,?)
vs w. The solid lines in both panels correspond to the mean
field result [Eq. (32)] for y=0.5. From high to low on the
right side of each panel the curves are for t=10%, 10%, 10%,
and 10°. Equation (32) leads to p(w,?)~p(w)~ w?"! for
wt<1 and p(w,t)~p(w)/ o~ w*? for wt>1; the slopes
—0.5 and —1.5 in the log-log plot are evident. The symbols
show the corresponding simulation results. The top panel
shows the results for a 3d quenched trap lattice with nearest-
neighbor steps, and the bottom panel those of a quenched
trap lattice in which steps to any site are equally likely. Our
only adjustment in these figures is the normalization, which
cannot be obtained properly from the simulations since they
do not cover an infinite range of ws. We have made this
adjustment by scaling the simulation results so that the quan-
tity R(t)=/ z::P(w,t)dw<l evaluated using the scaled re-
sults agrees with the one obtained by means of the theoreti-
cal result [Eq. (32)]. Here wy,;, and wp,,, define the range of
ws covered by the simulations. These results confirm that
already in 3d the mean field theory captures the behavior as
well as does the actual numerical realization of the model.
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We have also ascertained the agreement between simulations
and mean field theory for other values of the subdiffusive
exponent 7.

VI. CONCLUSIONS

We have presented a mean field theory of coagulation
(A+A —A) and annihilation (A+A — 0) reactions on a lattice
whose sites are occupied by traps of varying depths. The
escape times from these traps are distributed exponentially
about a mean time, and the distribution of mean escape times
is of power-law form. We calculate reactant concentrations
as a function of time as well as the time-dependent distribu-
tion of particles over sites with different escape rates. The
mean field model is designed with the particular goal of
studying this evolving distribution and the effects of the re-
actions on it and is expected to do well in dimensions d
=3 but not in 1d. The noteworthy outcome of the model is
that this distribution is not changed by the occurrence of the
reactions. One consequence of this result is that the concen-
tration of surviving reactant in the A+A—A reaction is
double that of the A+A— 0 reactions, that is, c¢,(f)=2c,(z).
While the model does not shed light on the 1d case, numeri-
cal simulations here also show that c¢(f)=2c,(f) and thus a
reaction-insensitive aging distribution of particles is not
ruled out. Numerical simulations in d=3 with quenched traps
agree with these predictions.

While the waiting time distribution is unaffected by the
reaction in this mean field model, it is interesting to speculate
about the assumptions that would have to be made in a spa-
tially translationally invariant model with long-tailed wait-
ing time distributions to arrive at this conclusion in a formu-
lation that includes an explicit description of the reaction (we
remind the reader that this is not an issue in the underlying
random trap depth model with exponentially distributed
waiting times). The result would seem to be automatically
correct for the A+A — 0 reaction since every reacting pair
involves two particles that have not been previously involved
in a reaction. However, for the A+A — A reaction the situa-
tion is different. Here one of the reaction partners continues
its walk and may participate in a later reaction. It may make
a difference whether the survivor is the A that arrived at the
site immediately before the reaction (“no kill” scenario), or
the A that was there already (“kill” scenario), or a choice of
one or the other according to some probability. While it
might be tempting to assume that a random choice of one or
the other (e.g., with equal probability) would lead to the
mean field result obtained above, it is not immediately evi-
dent that this choice provides exactly the correct compensa-
tory effect. Interestingly, in our numerical simulations we
find no statistically significant difference between results ob-
tained in the two scenarios.
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APPENDIX: DESCRIPTION OF THE NUMERICAL
ALGORITHM

In this appendix we describe the steps used in our numeri-
cal algorithm.

(1) We generate a 1d or 3d lattice.

(2) We generate a mean escape time 7; to be associated
with each lattice site i using a given probability distribution.
In this paper we use the probability distribution p(7)
=y7177(7-1). The times 7, are fixed throughout the entire
simulation.

(3) We distribute particles on the lattice sites with concen-
tration ¢ so that the probability that any particular site is
initially occupied is c. There is at most one particle per site.

The dynamics then proceeds as follows:

(a) We generate the waiting times for each particle’s next
jump using an exponential distribution about a mean escape
time 7; associated with each site i.
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(b) We choose the particle with the smallest waiting time.
This particle jumps to one of its nearest neighbors (two in
1d, six in 3d) with equal probability.

(c) If the destination site is empty, we update the waiting
time for the arriving particle (we simply add to the old wait-
ing time a new time obtained using 4a and we repeat the
process 4b.

(d) If the destination site is occupied, the particles anni-
hilate (in the case A+A —0) or coagulate (in the case A+A
—A). We then repeat the process by returning to 4b. In the
A+A — A case we need to specify which of the two particles
is the victim in the coagulation process. In the “kill” scenario
the arriving particle (the particle that just performed the
jump) annihilates the particle that was already there, and the
waiting time of the arriving particle is updated as in 4c, that
is, as if the destination site were empty. In the “no kill”
scenario the arriving particle is annihilated, and the waiting
time of the surviving particle remains unchanged. One could
also implement a combination of these rules with some prob-
ability weighting. In any case, in our simulations interest-
ingly we have observed no statistically significant difference
between the results obtained with “kill” and with “no kill”
rules.
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