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Pair correlation function of short-ranged square-well fluids
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We have performed extensive Monte Carlo simulations in the candiNsél) ensemble of the pair
correlation function for square-well fluids with well widths- 1 ranging from 0.1 to 1.0, in units of

the diametewr of the particles. For each one of these widths, several dengitiesl temperatures

T in the ranges 0.4 po®<0.8 andT(\) = T=3T.(\), whereT.(\) is the critical temperature, have

been considered. The simulation data are used to examine the performance of two analytical theories
in predicting the structure of these fluids: the perturbation theory proposed by Tang @vidTamg

and B. C.-Y. Lu, J. Chem. Physl00, 3079 (1994); 100, 6665 (1994] and the nonperturbative
model proposed by two of UsS. B. Yuste and A. Santos, J. Chem. Ph$81 2355(1994)]. It is
observed that both theories complement each other, as the latter theory works well for short ranges
and/or moderate densities, while the former theory works for long ranges and high densities.

© 2005 American Institute of PhysidDOI: 10.1063/1.1855312

I. INTRODUCTION In the present paper we have carried out Monte Carlo
simulations of the pair correlation function or radial distribu-

Thermodynamic and structural properties of square-weltion function(r.d.f.) g(r) of SW fluids with short, intermedi-
(SW) fluids has been a subject of interest for many yearsate, and long ranges for temperatures above the critical ones
because of their simplicity and their resemblance to real fluand for a wide range of densities. These data are used to test
ids with spherically symmetrical potentials, among other reathe performance of two analytical theories, one
sons. Therefore, at present there are available a consideralgerturbativé’?® and the other one nonperturbatf7eAs we
number of theories for this kind of fluid. Among them, par- will see, both theories complement each other: the perturba-
ticularly simple and fruitful are perturbation theories for thetive theory is generally preferable for long ranges, while the
thermodynamic properti€s® If one is interested in struc- nonperturbative theory is better for short ranges.
tural properties, one can resort to integral equations theories The plan of the paper is as follows. The two theories are
based on the Ornstein—Zernike equation, for which we havéntroduced in the next section, some details being relegated
a number of possible choicés?* The latter group of theo- to Appendices A and B. The Monte Carlo method we have
ries has in general the drawback of being nonanalytical, sémployed is succinctly described in Sec. Ill. The theoretical
one has to deal with them by numerical methods. Howevertesults are compared with the simulation data and discussed
in some cases it has been possible to obtain analytical exd Sec. IV. The main conclusions of the paper are summa-
pressions for the structural properfi&s® inspired, at least rfized in Sec. V.
indirectly, in integral equation theories.

In parallel with the theoretical developments, much re-
search has been devoted to obtaining the thermodynamic a [ ANALYTICAL THEORIES FOR THE PAIR

- . RRELATION FUNCTION OF SQUARE-WELL

structural properties of SW fluids by means of computers; yips
simulations> 10143148

Most of that research has focused on SW fluid with in-  For fluids with a square-well potential of the form
termediate ranges of the potential, because they more closely o if r<o
mimic real, simple fluids, whereas relatively little attention . ’
has been paid to SW fluids with short ranges. On the other U(N={—¢€ if o<r<Ao, (1)
hand, recently there has been a renewal in the interest in 0 if r>N\o,
short-ranged SW fluids as models of colloidal
suspensiorfé*®®>? and phase separation of protein
solutions™

where\ is the potential range in units of the particle diam-
etero and e is the potential depth, several approaches have
been devised to derive analytical expressions for the struc-
tural properties. In this paper we will focus on two theories,

Z‘)Electronic mail: largoju@unican.es both having in common that analytical expressions for the
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C)Electrojnic mail: santos@unex.es The first of those theories is attributed to Tang and Lu

9E|ectronic mail: andres@unex.es (TL),27’28 who combined perturbation theory with the mean
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spherical approximatioiMSA) to derive an analytical ex- *
pression for the first-order r.d.fj;(r) in the expansion in g(x) =X, (- 12" H,(x = n)O(x - n), (5)
power series of the inverse of the reduced temperatlre n=1

=kT/e. Taking for th594 gseroth-order termgy(r) the Percus—  \yhere the functiorf,(x) is the inverse Laplace transform of
Yevick (PY) solution;"”" the resulting truncated series for {{F(H)]" and O(x) is Heaviside’s step function. Note that, to
the r.d.f. of the SW fluid is determine the r.d.f. fox<n+1, only the firstn terms in the
summation(5) are needed. In the analysis of Sec. IV, we will
1 consider reduced distancgs< 3, so that only the functions
9(x) = go(x) * gl(x)?, ) f, andf, will be needed. They are given in Appendix B.

wherex=r/o. The expressions for the Laplace transforms oflll. MONTE CARLO SIMULATIONS

Xg(x) andxgy(x) are given in Appendix A. The TL theory is We have performe®lVT Monte Carlo(MC) simulations
expected to be accurate for moderate to large potentigls (na 1 df of SW fluids with ranges\=1.05 and
widths since the series in powers ofTl/converges slowly =1.1-2.0(with a stepAA=0.1) for (reducedl number densi-

for short-ranged SW potentiat®. ties p'=po3=0.1-0.8 (with a stepAp =0.1) and several

For the opposite situation, that is, for SW p%ge”“a' With yemperatures in the supercritical region. To this end, a system
rangesk close to 1, a procedure has been proposemde-  qngisting of 512 particles was considered. The particles
termine the structure of an SW fluid from that of an equiva-,q/q initially placed in a regular configuration in a cubic

lent fluid of sticky hard spheres, using for the latter Baxter's,qyme with periodic boundary conditions, with fixed tem-
analytical solution of the PY equatlc?ﬁ.To this end, the norayre and density. After equilibration, the r.d.f. was deter-
parameters of the equivalent fluid are determined from the... <4 from measurements performed ovex B cycles,
condition that the second virial coefficients of the two fluids o1, of them consisting of an attempted move per particle.
must be equal. This approxima_ltion provides good results foRaqits for the contact valuggl*) of the r.d.f., as well as
the structure factor of _SW fluu_js with=<1.2, _at least for _ for their valuesg(\") andg(\*) at both sides of the potential
moderate to low densities, but is not appropriate for Obtaln'range, were obtained from extrapolation and are reported in
ing the r.d.f., so it will not be c_onside_red in this paper. Table 1% From these values, the compressibility facir

As a second theory, we will consider the one developed. ;\//NkT can be obtained from the virial theorem for the
by Yuste and Santds,which provides an alternative analyti- SW fluid as
cal expression for short-ranged SW fluids and reduces to
Baxter's solution in the sticky hard-sphere limit. We will ~ Z=1+3mp'{g(1") = Ag(\) — g\ ")} (6)
refer to this theory as the Yuste—San{®%S) model and it
will be presented next with some detail.

The starting point in the YS model is the expression of
the Laplace transforn®(t) of xg(x) in the form

Values ofZ thus obtained were reported elsewh‘@rexcept
for the rangex=1.05.

IV. RESULTS AND DISCUSSION

F(t)e * The objective is to determine the limits of applicability
G =tr————= =2 (12" H[FOI"e™, (3) of the TL and YS theories. We are mainly interested in the
1+12pF(het = :
domain ofmoderateaemperatures. By that we mean tempera-
_ _ _ _ tures within the rang@.(\) =T <3T,(\), whereT,(\) de-
wheren=(m/6)po is the packing fractionp being the num-  potes the critical temperature of the SW fluid with range

ber density, andF(t) is an auxiliary function given By"*° This critical temperature has been measured in computer
simulations for several rangé%.****Table | of Ref. 24 gives
1 1+A+Kt-(A+ K,t)e -1t a rather extensive compilation of data. A simple analytical
F(t)=- E] 1+St+S,2+S8 . (4 estimate forT,(\) was derived in Ref. 30
£y 1

The coefficientXy, K,, S;, S,, andS; are determined from T = 34N+ 2\;27 ' (7)
consistency conditions as functions gf T", A, andA (see Inf 1+ = 1(9 — 2% + 12

Appendix B. To close the model, the parameters further ( ) )

fixed at its zero density valuA=eYT —1 for the sake of Figure 1 is aT"-\ plot where the open circles represent

simplicity.29’3° Expression(4) reduces to the exact solutions the three temperaturésvo in the casea=1.9 and\=2) we

of the PY equation in the limit of hard spher@—1 or  have considered in the simulations for each valua.ofhe

T —),>*** as well as in the limit of sticky hard spheres simulation data of,(\),** as well as the theoretical estimate

[N\—1 andT"—0 with T*~—1/In()\—1)].58 Therefore, the (7), are also shown. For each value)ofwe have typically

approximation(4) can be considered as an extension to finiteconsidered three temperaturég:=T,, T,~1.5T;, and T,

widths of Baxter’s solution of the PY equation for sticky =~ 2T;, so thatT;=3T,(\).

hard spheres. Before comparing the simulation data of the full r.d.f.
The inverse Laplace transform of E() allows us to  with the theoretical predictions, it is worth focusing on the

obtain the r.d.f. in the form contact valuey(1*). Figures 2 and 3 shog(1") as a function
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TABLE I. MC simulation data ofg(1*), g(\~), andg(\*) for the values of, p’, andT" considered in the paper.
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*

p 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
A=1.05

T'=05

g(1%) 7.304 7.323 7.343 7.501 7.662 7.771 8.081 8.524 9.078

g(\") 7.278 7.250 7.210 7.317 7.374 7.400 7.587 7.832 8.154

g(\*) 0.987 0.980 0.979 0.988 0.999 0.999 1.030 1.059 1.105

T=07

g(1%) 4.382 4.609 4.899 5.194 5.557 6.009 6.505 7.223 8.065

g(\") 4.321 4.562 4.765 4.986 5.237 5.539 5.842 6.263 6.657

g(\*) 1.034 1.081 1.142 1.195 1.257 1.325 1.401 1.504 1.595

T=1.0

g(1%) 2.964 3.215 3.552 3.891 4.336 4.833 5.457 6.258 7.245

g(\") 2.923 3.153 3.417 3.679 4.009 4.356 4.759 5.197 5.666

g(\*) 1.071 1.162 1.255 1.355 1.477 1.599 1.746 1.912 2.085
A=1.10

T'=0.5

g(1*) 7.254 7.080 6.628 6.461 6.088 5.836 5.667 5.620 5.810

g(\?) 7.179 6.919 6.463 6.219 5.816 5.519 5.307 5.180 5.162

g(\*) 0.973 0.931 0.875 0.840 0.787 0.746 0.718 0.701 0.698

T'=0.7

g(1") 4.135 4.153 4.174 4.222 4.334 4.529 4.746 5.064 5.604

g(\") 4.097 4.064 4.028 4.007 4.028 4.096 4.135 4.202 4.284

g(\") 0.979 0.970 0.964 0.961 0.966 0.980 0.988 1.007 1.027

T=1.0

g(1") 2.829 2.963 3.134 3.320 3.565 3.868 4.263 4.778 5.481

g(\?) 2.790 2.862 2.974 3.068 3.186 3.316 3.463 3.589 3.713

g(\") 1.026 1.058 1.090 1.128 1.172 1.220 1.273 1.316 1.362
A=1.20

T'=0.7

g(1*) 4.126 4.007 3.805 3.562 3.449 3.297 3.281 3.457 3.921

g\ 4.030 3.822 3.555 3.299 3.122 2.924 2.810 2.738 2.612

g(\") 0.968 0.914 0.850 0.792 0.748 0.700 0.675 0.657 0.628

T=1.0

g(1*) 2.671 2.662 2.666 2.721 2.799 2.941 3.173 3.564 4.232

g\ 2.628 2.551 2.489 2.447 2.415 2.388 2.372 2.326 2.208

g(\") 0.968 0.942 0.918 0.900 0.888 0.880 0.871 0.856 0.812

T=15

g(1*) 2.016 2.092 2.212 2.355 2.541 2.807 3.168 3.692 4.513

g\ 1.956 1.973 1.991 2.019 2.042 2.059 2.063 2.028 1.917

g(\®) 1.004 1.012 1.021 1.036 1.050 1.057 1.059 1.039 0.982
A=1.30

T'=1.0

g(1*) 2.660 2.592 2.485 2.435 2.414 2.492 2.703 3.136 4.051

gi\") 2.584 2.433 2.259 2.138 2.033 1.948 1.865 1.737 1.487

g(\") 0.952 0.896 0.830 0.786 0.748 0.716 0.685 0.639 0.547

T=15

g(1*) 1.957 1.982 2.033 2.105 2.245 2.476 2.829 3.409 4.390

g\?) 1.872 1.834 1.792 1.754 1.720 1.680 1.611 1.486 1.272

g(\") 0.966 0.940 0.919 0.901 0.883 0.863 0.828 0.763 0.652

T'=2.0

g(1*) 1711 1.770 1.880 2.012 2.214 2.497 2.916 3.558 4.537

g\ 1.622 1.618 1.611 1.606 1.582 1.555 1.489 1.368 1.176

g(\") 0.990 0.981 0.979 0.972 0.962 0.944 0.903 0.829 0.710

N=1.40
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TABLE I. (Continued)

o 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

T=1.0

g(1%) 2.899 2.840 2.640 2.398 2.246 2.245 2.515 3.162 4.351

g(\) 2.679 2.488 2.227 1.966 1.783 1.669 1.544 1.332 1.055

g\ 0.986 0.918 0.819 0.725 0.657 0.616 0.568 0.491 0.389

T=15

g(1%) 1.928 1.916 1.917 1.977 2.075 2.307 2.716 3.442 4571

g(\) 1.836 1.742 1.656 1.583 1.518 1.441 1.328 1.149 0.932

g(\™) 0.945 0.894 0.849 0.811 0.778 0.740 0.681 0.589 0.478

T=2.0

g(1%) 1.665 1.705 1.788 1.889 2.070 2.362 2.834 3.584 4.719

g(\) 1.588 1.533 1.489 1.444 1.400 1.331 1.227 1.067 0.866

g(\™) 0.960 0.929 0.905 0.877 0.852 0.807 0.743 0.646 0.525
A=1.50

T=15

g(1%) 1.952 1.909 1.884 1.888 1.989 2.263 2.783 3.640 4.962

gi\") 1.832 1.695 1.570 1.464 1.382 1.281 1.150 0.993 0.850

g\ ") 0.941 0.870 0.804 0.751 0.709 0.659 0.590 0.510 0.437

T=20

g(1%) 1.661 1.660 1.720 1.820 2.006 2.336 2.880 3.740 5.013

g(\) 1.563 1.478 1.403 1.338 1.274 1.185 1.063 0.922 0.790

g(\*h) 0.945 0.894 0.851 0.814 0.771 0.719 0.646 0.558 0.480

T=3.0

g(1%) 1.444 1.521 1.628 1.795 2.046 2.424 2.998 3.825 5.025

g(\) 1.351 1.313 1.268 1.230 1.171 1.090 0.982 0.857 0.728

g(\*h) 0.968 0.938 0.909 0.878 0.839 0.781 0.704 0.614 0.521
A=1.60

T=15

g(1%) 2.064 2.026 1.949 1.894 2.004 2.339 3.002 3.996 5.382

gi\") 1.869 1.696 1.528 1.387 1.293 1.200 1.099 1.015 0.956

g(\*h) 0.958 0.872 0.784 0.713 0.665 0.618 0.565 0.521 0.491

T=2.0

g(1%) 1.655 1.673 1.702 1.795 2.007 2.393 3.037 3.985 5.313

g(\) 1.542 1.446 1.350 1.271 1.199 1.110 1.015 0.932 0.872

g(\h) 0.940 0.873 0.819 0.770 0.726 0.673 0.615 0.564 0.530

T=3.0

g(1%) 1.439 1.498 1.602 1.762 2.040 2.463 3.087 3.987 5.258

gi\") 1.329 1.269 1.218 1.165 1.100 1.021 0.933 0.850 0.792

g(\*h) 0.953 0.912 0.873 0.834 0.788 0.732 0.669 0.611 0.567
A=1.70

T=2.0

g(1%) 1.716 1.714 1.752 1.833 2.077 2.538 3.250 4.253 5.611

g(\) 1.551 1.432 1.322 1.237 1.165 1.101 1.045 1.017 1.022

g(\*h) 0.944 0.870 0.802 0.749 0.706 0.668 0.634 0.617 0.619

T=3.0

g(1%) 1.430 1.494 1.598 1.779 2.083 2.549 3.222 4.160 5.454

g(\) 1.318 1.251 1.184 1.131 1.069 1.009 0.956 0.928 0.933

g(\*h) 0.949 0.893 0.849 0.810 0.766 0.725 0.685 0.664 0.667

T=5.0

g(1%) 1.299 1.403 1.554 1.779 2.114 2.567 3.220 4.108 5.351

g(\) 1.177 1.139 1.097 1.052 1.000 0.941 0.893 0.860 0.867

g(\*h) 0.964 0.934 0.898 0.861 0.818 0.771 0.731 0.703 0.709
A=1.80
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TABLE I. (Continued)

P 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
g(1*) 1.839 1.916 1.880 1.932 2.199 2.708 3.487 4.508 5.886
g\ 1.599 1.468 1.326 1.233 1.175 1.144 1.141 1.183 1.312
g(\") 0.974 0.892 0.805 0.745 0.714 0.694 0.693 0.716 0.793
T'=3.0

g(1*) 1.449 1.522 1.629 1.828 2.162 2.670 3.392 4.325 5.627
g\ 1.320 1.238 1.175 1.124 1.079 1.046 1.043 1.079 1.195
g(\") 0.942 0.888 0.840 0.803 0.773 0.751 0.747 0.772 0.853
T'=5.0

g(1*) 1.297 1.411 1.562 1.809 2.152 2.646 3.318 4.214 5.465
g(\?) 1.169 1.126 1.085 1.042 1.005 0.978 0.970 1.003 1.107
g(\") 0.956 0.921 0.886 0.854 0.822 0.800 0.794 0.821 0.906

A=1.90

T'=3.0

g(1*) 1.492 1.570 1.692 1.908 2.274 2.815 3.533 4.450 5.534
g\") 1.323 1.247 1.182 1.142 1.123 1.132 1.174 1.265 1.403
g(\") 0.949 0.895 0.848 0.818 0.805 0.811 0.841 0.908 1.008
T'=5.0

g(1*) 1.309 1.416 1.587 1.847 2.222 2.733 3.404 4.268 5.353
g\") 1.170 1.123 1.087 1.058 1.044 1.049 1.089 1.174 1.305
g(\") 0.958 0.920 0.889 0.867 0.855 0.859 0.891 0.961 1.072

\=2.00

T'=3.0

g(1") 1.564 1.699 1.824 2.032 2.424 2.973 3.669 4.493 5.499
g(\") 1.346 1.282 1.217 1.192 1.199 1.245 1.322 1.425 1.528
g(\") 0.968 0.918 0.873 0.853 0.861 0.892 0.949 1.024 1.100
T'=5.0

g(1%) 1.325 1.450 1.633 1.907 2.300 2.814 3.471 4.304 5.354
g(\") 1.178 1.131 1.105 1.098 1.109 1.152 1.225 1.326 1.428
g(\") 0.960 0.926 0.905 0.899 0.910 0.944 1.005 1.089 1.175

of the reduced density for the temperatures represented perturbation theory is rather poor, especially for low tem-
Fig. 1, as obtained from our MC simulations, as well as fromperatures. Fok=1.2, however, the YS model behaves well
the TL and YS theoriefcf. Egs.(A6), (A9), and(B5)]. We  for small and moderate densities but starts to fail in the high-
observe that fon=1.05 and\=1.1 the nonperturbative YS density domain, especially for the lowest temperature, the
model presents a very good agreement with the simulatiofajlure being more dramatic as the well width increases. In-
data for the three temperatures considered, whereas the Tkrestingly, the TL theory becomes more accurate precisely
in that high-density region where the YS model is less reli-
able. Thus, for a given range there exists a certain thresh-
old densitypy(\) such that the YS model is accurate for
<po(\) and inaccurate fop”=py(\), while the opposite
situation occurs in the case of the TL theory. Of course, this
qualitative description applies for the range of “moderate”
temperatures defined above, since the results obtained from
both theories tend to coincide as the temperature increases.
According to Figs. 2 and 3, the location p{{()\) roughly
coincides with the region where either the isotherms cross
(for A< 1.7) or have the least separati¢ior 1.8<\<2.0).
0-11 - 1'2 : 1'4 : 1'6 : 1'8 : 2'0 This means that the simulation data gffL*) in the region
’ ’ ’ - ' ’ p =py(\) are practically insensitive to the temperature, so
they are close to its hard-sphere vati€l*). For larger den-
FIG. 1. The open circles represent the values of the reduced tempe‘l’*ature sities,p* ng()\), the simulation data show that the influence
we have considered for each value of the rang&he crosses are simula- . .
tion data for the critical temperatufé(\) (see Ref. 2and the solid line is of temperature is small and hence the TL perturbation t*heory
the theoretical estimat). Note the logarithmic scale of the vertical axis. becomes accurate in that domain. On the other handy for

10
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. FIG. 2. Comparison of the contact val-
uesg(1*) of the r.d.f. obtained from
the TL (dashed linesand YS (solid
lines) theories with Monte Carlo data
as functions of the reduced densjty
for different temperatures and well
widthsA=1.05-1.5.
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*
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4
p

<po(\) the MC values ofg(1*) are strongly sensitive to YS region tends to span the whole fluid density domain. In
temperature, as expected from the fact that at zero densit}ddition,pg presents a minimum5~0.4 atA=1.7, so the
g(1*)=eYT, while perturbation theories giveg(1*)=1 YS theory does a fairly good job j" <0.4, even for wide
+1/T". The strong deviation of the nonperturbative YS potentials.
theory from the MC data in the density regiph= pg()\), Once we have analyzed the performances of the TL and
especially forh = 1.4, is in part due to the fact that in the YS YS theories in connection with the contact va(é*), let us
model the parametek in Eq. (4) is assumed to be indepen- proceed to investigate the r.dd(x) itself. The results are
dent of density, and so it is assigned its zero-density valupresented in Figs. 5-10. Since in this paper we are mainly
A=elT —1. A better agreement is expectedhifs allowed to  interested in short-ranged SW potentials, we have paid spe-
depend on density, but this would imply either to impose arcial attention to the ranges 1.85.<1.3 (Figs. 5-8. As
extra consistency conditioffor instance, continuity of the representative examples of a moderate and of a wide range
first derivative of the cavity functionor to apply an empiri- we have considered=1.5 (Fig. 9 and A=2.0 (Fig. 10,
cal fit, which is outside the original spirit of the YS model. A respectively. For each value of we have restricted our-
second reason has to do with the construction of the YSelves to the lowest temperature represented in Fig. 1 and to
model as an extension of Baxter’s solution of the PY integrathe densitiesp'=0.2, 0.4, and 0.8except in the case
equation for sticky hard spheres, so that in principle it is=2.0, wherep”=0.8 has not been considered because the YS
intended to be a model for narrow wells. model fails to have a solution in that casén agreement

A plot of py(\) is presented in Fig. 4. It can be inter- with the analysis of Figs. 2 and 3, one can see that the YS
preted as a sort of “phase” diagram in which the curve sepaheory works well for small potential widtha < 1.2) for the
rates the respective regions where the TL and YS theories amhole density range. For larger potential widths, the perfor-
reliable for moderate temperatures in the inter\Té[)\) mance of the theory is still fair at lowp'=0.2 and even
=T S3TZ()\). We observe that as the rangelecreases, the moderate(p' =0.4) densities. However, the YS theory fails,
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FIG. 3. Same as in Fig. 2, but for
=1.6-2.

and even can become entirely unphysical, at high densitiesr to that of the YS theory, since its accuracy increases as
(p'=0.8> pg). Of course, at temperatures higher than thosehe density and the potential width grow. Of course, it also
of Figs. 5-10 the performance of the theory at high densitiegmproves if the temperature increases, as expected from a
improves(not shown. perturbation theory. According to Figs. 5-10, the TL theory
By contrast, the TL theory presents the opposite behaveoes a better job than the YS modepat 0.8 fora=1.3, in
agreement with the phase diagram of Fig. 4.

1.50 T T T T T
V. CONCLUSIONS
100k | In this paper we have presented extensive Monte Carlo
simulations for the structural properties of square-well fluids
"o with ranges\, reduced densitieg”, and reduced tempera-
tures T" in the intervals 1.055A<2, 0.1<p"<0.8 and
0.50F l T.(\) =T =3T.(\), respectively. The MC data have been
used to assess the accuracy of two theories that provide ex-
plicit expressions of the r.d.f. in Laplace space, the TL per-
0.00™ 1'2 1'4 1'6 1'8 2'0 turbation theory,"?® and the nonperturbative YS mod@l.

A The results show that both theories complement each
other, as the YS theory works well where the TL theory fails
FIG. 4. Plot of the threshold densipy,(\) as a function of the potential and vice versa. More specifically, the YS theory exhibits a

range\. For each vallﬂe ok, py Is _deflne_d as th_e density around which the good agreement with the MC data at any fluid density if the
MC contact valueg(1*) are practically insensitive to the temperature. Be-

low (above the curve, the YSTL) theory can be considered as reliable. The potential Well i.S SUfﬁCiem_ly r}arrov(’say')\ <1.2, a-j' well as
line is a guide to the eye. for any width if the density is small enougbay,p” <0.4).
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FIG. 5. Comparison of the r.d.f. obtained from the {@otted line$ and YS
(solid lineg theories with Monte Carlo datécircles for A=1.05 andT"
=0.5. Note that the TL curves are interrupted afer2.

FIG. 6. Same as in Fig. 5, but far=1.1 andT"=0.5.

the parameteA in Eq. (4) as a function of density. Instead, in
order to improve the TL theory it would be necessary to
Yobtain higher order terms in the expansion of the r.d.f. of the
SW fluid in power series of the inverse of the reduced tem-
J?eratureT*, and this seems too complicated at present.

This can be further refined by noticing that the YS theor

works well if p" =< py(\), wherepy(\) is the density around

which the simulation data for the contact valgel*) show

the least influence on temperature. On the other hand, f

p >p8(7\) the YS theory r.a.pidly deterio'rates, especially forACKNOWLEDGMENTS

temperatures near the critical one, while the TL theory be-

comes very accurate. The present work has been partially supported by the
The complementarity between the TL and YS theories isSpanish Direccion General de Investigaci@idGl) under

interesting because they present some formal similarities iGrants No. BFM2003-001903J.L. and J.R.5 and No.

their formulation and arépractically) equally easy to imple- FIS2004-01399S.B.Y. and A.S.

ment(see Appendices A and)BThe latter theory, however,

has some advantages over the former one. First, the YRPPENDIX A: EXPLICIT EXPRESSIONS IN THE

theory is especially useful for describing colloidal disper-TANG—-LU THEORY

sions modeled as short-ranged SW fluids. Second, it provides

a simple analytical expression for the second sk2# x

=<3) of the r.d.f., whereas this is not the case for the TL R

theory?® Last, it seems feasible to improve the performance ~ G(t) :f dxe™xg(x). (A1)

of the YS theory at high densities by imposing additional '

constraints to the Laplace transform of the r.d.f. to determinédhe contact valug(1") is given fromG(s) as

Let us define the Laplace transfoi@{(s) of xg(x)
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FIG. 7. Same as in Fig. 5, but far=1.2 andT"=0.7.

g(1*) = lim te'G(t).

t—oo

(A2)

The exact solution of the PY equation for hard
sphere¥">reads

L(t)e™

Gyt)=t————— A3

ol¥) S(t) + 127L (e’ (A3)
where »=(m/6)po? is the packing fraction and

L(t)=1+ 27+ (1+75/2t, (A4)

S(t) = = 125(1 + 27) + 1877t + 67(1 — t* + (1 - )*t°.

(A5)
The corresponding contact value is
1+7/2
(19 = : (A6)
do (1-7?

Equation(A3) provides the zeroth-order term in the TL
perturbation theory. The first-order ternfi§®
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FIG. 8. Same as in Fig. 5, but far=1.3 andT =1.0.

(1-np)%et) t41 +rt)
Q5(t) S(-1)

il

—4+(1+ M)+ N\ - 1)ti2]

Gy(t) = (-1t

t’

St t)Si)
S(t)

X —=—=

Si(t)

t(1 - \t)
t+t,

+ (1 -\t)

x eh Vi o (A7)

whereS,;(t)=S'(t), S,(t)=S'(t), the primes denoting deriva-
tives with respect td, and

S(t) + 127L(t)e™

QO(t) = (1 _ 77)2,[3

(A8)

In Eqg. (A7) the summation extends over the three zeros of
S(t), denoted byt;. The contact valug,(1") is
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_ Y 3 /PN
K= 1+—-+29(N°=-1K, = =(N"=4N + 3)A
2 1 1+27][ 2 7]( ) 2 2( ) }
[e)}
+K,— AN - 1), (B1)

5= —2 [—3+2()\3—1)K2—;()\4—4)\+3)A],

0.0 L L L 1+29 2
1.0 1.5 2.0 2.5 3.0
X (B2)
FIG. 9. Same as in Fig. 5, but far=1.5 andT"=1.5.
1
S,= m{— 1+7+2A-1-2n\(\*>- 1)K,
3

LSt
u(1l)=01-9'2 5~ § { s 4 ~[(A=2)2- 7(\* - DA}, (B3)

i=1 | 1

(1-7)?
129

+(L+ )G+ NN - 1>t?}e<“>‘i (A9) S=——1- - [1@2- 1) - ;2\ - 1)}K
1+2y 2 g 2

By analytical inversion of53,(t) one can get explicit ex-
pressions folg,(x) inside the shellq<x=<n+1, which be-
come increasingly more complicatedragrows. The expres-

sion for the first shell £x<2 can be found in Ref. 28.

+ %2[4 + 20— p(ANZ+ 20+ 1)J(\ — 1)2A}. (B4)

From Eq.(A2), we have

Ky
127,

By application of the Heaviside expansion theorem, the
inverse Laplace transform ¢oF(t) reads

g(1%) = (B5)

APPENDIX B: EXPLICIT EXPRESSIONS IN THE
YUSTE-SANTOS MODEL

By imposing the exact conditioB(t)-t™>~t for smallt,
whereG(t) is defined by Eq(Al), one can express the pa-
rametersKy, S;, S, and S; appearing in Eq(4) as linear
functions ofA and K,2%%°

f1(X) = f10X)0O(X) + f11(X+ 1L =N)O(x+ 1 -N\), (B6)

where
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1 S Cylt)
fuX) = = ——— >~ elix, B7
1(¥) 127]21 S " (B7)

Here, t; are the three distinct roots di(t)=1+S;t+S;t?
+S;t3 [not to be confused with the polynomi@h5)] and

Cu(t) = - (A+Kyt). (B8)

Analogously, the inverse Laplace transformt[d¥(t)]? is

Cio(t) =1 +A+Kit,

f2(X) = foo(X)O(X) + T2 (X + 1 =N)O(Xx+ 1 -)\)

+ (X +2=2)O(X+2-2\), (B9)
where
3
fo(x) = wz |:XCQk(ti) +Cy(t)
g | (510
where we have set
Coot) =t{C1o1)]%  Colt) = 2tCyo(t)Cra(h),
(B11)

Colt) =t[Cyy()]%.

Insertion of Eqs.(B6) and (B9) into Eqg. (5) gives the
r.d.f. g(x) in the interval I=x= 3. Note that the contribution
foo(X) is needed inside that interval only )if<%. For x>3
the evaluation off;(x),f4(X),..., is required. Alternatively,

J. Chem. Phys. 122, 084510 (2005)

“D. Henderson, J. A. Barker, and W. R. Smith, J. Chem. Ploys.4244
(1976.

°D. Henderson, O. H. Scalise, and W. R. Smith, J. Chem. PRAgs2431
(1980.

®J. A. Barker and D. Henderson, Rev. Mod. Phy8, 587 (1976.

3. Chang and S. I. Sandler, Mol. Phy&1, 745 (1994).

8A. L. Benavides and A. Gil-Villegas, Mol. Phy97, 1225(1999.

9. Largo and J. R. Solana, Mol. Sim29, 363 (2003.

103, Largo, J. R. Solana, L. Acedo, and A. Santos, Mol. PHy&l, 2981
(2003.

1y, Tago, J. Chem. Phys58, 2096(1973.

12y, Tago, Phys. Lett.44, 43 (1973.

13y, Tago, J. Chem. Phys50, 1528(1974.

1D Henderson, W. G. Madden, and D. D. Fitts, J. Chem. Plyis 5026
(1976.

5W. R. Smith, D. Henderson, and Y. Tago, J. Chem. Ply%5308(1977).

5w, R. Smith and D. Henderson, J. Chem. Phg8, 319 (1978.

1G. L. Jones, J. J. Kozak, E. Lee, S. Fishman, and M. E. Fisher, Phys. Rev.
Lett. 46, 795(1981).

18G. Kahl and J. Hafner, Phys. Chem. Li¢2, 109 (1982, and references
therein.

19G. sarkisov, D. Tikhonov, J. Malinsky, and Y. Magarshak, J. Chem. Phys.
99, 3926(1993.

2A. Gil-Villegas, C. Vega, F. del Rio, and A. Malijevsky, Mol. Phy86,
857 (1995.

2, Bergenholtz, P. Wu, N. J. Wagner, and B. D’Aguano, Mol. PI8/A.
331(1996.

22C. caccamo, Phys. Ref274, 1 (1996, and references therein.

2A. Lang, G. Kahl, C. N. Likos, H. Léwen, and M. Watzlawek, J. Phys.:
Condens. Matterll, 10143(1999, and references therein.

%A, Reiner and G. Kahl, J. Chem. Phy$17, 4925(2002.

2. Nezbeda, Czech. J. Phys., Sect2B, 247 (1977).

%R. V. Sharma and K. C. Sharma, Physicad, 213 (1977).

2y, Tang and B. C.-Y. Lu, J. Chem. Phy400, 3079(1994).

2y, Tang and B. C.-Y. Lu, J. Chem. Phy400, 6665(1994).

293, B. Yuste and A. Santos, J. Chem. Phg81, 2355(1994).

one can make use of the efficient method discussed by Abatg_. Acedo and A. Santos, J. Chem. Phyid5 2805(2001).

and Whitf° to invert Laplace transforms numerically.

S1A. Rotenberg, J. Chem. Phyd3, 1198(1965.

To close the model, we need to determine the parameter&s. J. Alder, D. A. Young, and M. A. Mark, J. Chem. PhyS6, 3013

A andK,. The former is assigned its zero-density limit value
namelyA=el/T -12°To determineK, we impose the conti-
nuity condition of the cavity function at=\, which implies

g\) =€ g\ ). (B12)
This yields
(L= ) N = 1) = fy4(0) = — Ks (B13)
10 11 127753

Since the rootg; depend orK, through the coefficients,,
S,, andS;, Eqg. (B13) is a transcendent equation fip that

(1971.
' 33y, Rosenfeld and R. Thienberger, J. Chem. PH§3.1875(1975.

%D, A. Young and B. J. Alder, J. Chem. Phyg3, 2430(1980).

%G. A. Chapela and S. E. Martinez-Casas, J. Chem. PB§;s5683(1987).

%D. A. de Lonngi, P. A. Longgi, and J. Alejandre, Mol. Phyg1, 427
(1990.

7A. L. Benavides, J. Alejandre, and F. del Rio, Mol. Phyd, 321(1991).

%D, M. Heyes and P. J. Aston, J. Chem. Phg3, 5738(1992.

L. Vega, E. de Miguel, L. F. Rull, G. Jackson, and I. A. McLure, J. Chem.
Phys. 96, 2296 (1992.

“°E. de Miguel, Phys. Rev. 55, 1347(1997).

“4IN. V. Brilliantov and J. P. Valleau, J. Chem. Phyk08, 1115(1998.

“2G. Orkoulas and A. Z. Panagiotopoulos, J. Chem. Phys, 1581(1999.

433, R. Elliott and L. Hu, J. Chem. Phy4.10, 3043(1999.

*G. Orkoulas, M. E. Fisher, and A. Z. Panagiotopoulos, Phys. Re§3E

needs to be solved numerically. Acedo and Santos have r¢3051507(2001)-
cently proposed a simplified version of the YS model °S. Labik, A. Malijevsky, R. Kao, W. R. Smith, and F. del Rio, Mol. Phys.

whereby the exact conditiofB12) is replaced by a simpler
one that allow, to be obtained analyticalﬁ? This is es-
pecially useful for determining
properties®°In this paper, however, since we are intereste
in the structural properties, we enforce conditi@12) and
determineK, from Eq.(B13).

13. A. Barker and D. Henderson, J. Chem. Ph4g. 2856(1967).

2W. R. Smith, D. Henderson, and J. A. Barker, J. Chem. Pi53;.508
(1970.

3W. R. Smith, D. Henderson, and J. A. Barker, J. Chem. Pivgs.4027
(1972.

96, 849(1999.
“F. del Rio, E. Avalos, R. Espindola, L. F. Rull, G. Jackson, and S. Lago,
Mol. Phys. 100, 2531(2002.

the thermodynamic «75 Singh, D. A. Kofke, and J. R. Errington, J. Chem. Phy9, 3405

d (2003.

83, Largo and J. R. Solana, Phys. Rev6E 066112(2003. See also the
electronic publication of the American Physical SocietifPAPS
E-PLEEE8-67-132306, which may be downloaded via ftp at the URL
ftp://ftp.aip.org/epaps/phyev e/

4. 8. Huang, S. A. Safran, M. W. Kim, G. S. Grest, M. Kotlarchyk, and N.
Quirke, Phys. Rev. Lett53, 592 (1984.

%E. Zaccarelli, G. Foffi, K. A. Dawson, F. Sciortino, and P. Tartaglia, Phys.
Rev. E 63, 031501(2007).



084510-12  Largo et al. J. Chem. Phys. 122, 084510 (2005)

K. Dawson, G. Foffi, M. Fuchs, W. Gotze, F. Sciortino, M. Sperl, P. °E. Thiele, J. Chem. Phys39, 474 (1963.
Tartaglia, Th. Voigtmann, and E. Zaccarelli, Phys. Rev.68 011401 563, Largo and J. R. Solana, Fluid Phase EquiBi2 11 (2003.

(2009). K. Shukla and R. Rajagopalan, Mol. Phy&1, 1093(1994).
2. Zaccarelli, G. Foffi, K. A. Dawson, S. V. Buldyrev, F. Sciortino and P. %8R. J. Baxter, J. Chem. Phyd9, 2770(1968.
Tartaglia, J. Phys.: Condens. Matt&b, S367(2003. *%0One can check that the simulation values of the rgtio)/g(\*) deviate
%3A. Lomakin, N. Asherie and G. B. Bendek, J. Chem. Phy84, 1646 from the exact relationshig()\’)/g()\*)=e1”* less than 0.6% in all the
(1996. cases and less than 0.2% in most of the cases.

%M. S. Wertheim, Phys. Rev. Lettl0, 321 (1963. 503, Abate and W. Whitt, Queueing Syst0, 5 (1992.



