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Pair correlation function of short-ranged square-well fluids
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We have performed extensive Monte Carlo simulations in the canonicalsNVTd ensemble of the pair
correlation function for square-well fluids with well widthsl−1 ranging from 0.1 to 1.0, in units of
the diameters of the particles. For each one of these widths, several densitiesr and temperatures
T in the ranges 0.1ørs3ø0.8 andTcsld&T&3Tcsld, whereTcsld is the critical temperature, have
been considered. The simulation data are used to examine the performance of two analytical theories
in predicting the structure of these fluids: the perturbation theory proposed by Tang and LufY. Tang
and B. C.-Y. Lu, J. Chem. Phys.100, 3079 s1994d; 100, 6665 s1994dg and the nonperturbative
model proposed by two of usfS. B. Yuste and A. Santos, J. Chem. Phys.101 2355 s1994dg. It is
observed that both theories complement each other, as the latter theory works well for short ranges
and/or moderate densities, while the former theory works for long ranges and high densities.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1855312g
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I. INTRODUCTION

Thermodynamic and structural properties of square-
sSWd fluids has been a subject of interest for many y
because of their simplicity and their resemblance to rea
ids with spherically symmetrical potentials, among other
sons. Therefore, at present there are available a consid
number of theories for this kind of fluid. Among them, p
ticularly simple and fruitful are perturbation theories for
thermodynamic properties.1–10 If one is interested in stru
tural properties, one can resort to integral equations the
based on the Ornstein–Zernike equation, for which we
a number of possible choices.11–24 The latter group of theo
ries has in general the drawback of being nonanalytica
one has to deal with them by numerical methods. Howe
in some cases it has been possible to obtain analytica
pressions for the structural properties25–30 inspired, at leas
indirectly, in integral equation theories.

In parallel with the theoretical developments, much
search has been devoted to obtaining the thermodynam
structural properties of SW fluids by means of comp
simulations.5,10,14,31–48

Most of that research has focused on SW fluid with
termediate ranges of the potential, because they more c
mimic real, simple fluids, whereas relatively little attent
has been paid to SW fluids with short ranges. On the o
hand, recently there has been a renewal in the intere
short-ranged SW fluids as models of colloi
suspensions23,49–52 and phase separation of prot
solutions.53
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In the present paper we have carried out Monte C
simulations of the pair correlation function or radial distri
tion functionsr.d.f.d gsrd of SW fluids with short, intermed
ate, and long ranges for temperatures above the critical
and for a wide range of densities. These data are used
the performance of two analytical theories,
perturbative27,28 and the other one nonperturbative.29 As we
will see, both theories complement each other: the pert
tive theory is generally preferable for long ranges, while
nonperturbative theory is better for short ranges.

The plan of the paper is as follows. The two theories
introduced in the next section, some details being releg
to Appendices A and B. The Monte Carlo method we h
employed is succinctly described in Sec. III. The theore
results are compared with the simulation data and discu
in Sec. IV. The main conclusions of the paper are sum
rized in Sec. V.

II. ANALYTICAL THEORIES FOR THE PAIR
CORRELATION FUNCTION OF SQUARE-WELL
FLUIDS

For fluids with a square-well potential of the form

usrd = 5 ` if r ø s,

− e if s , r ø ls,

0 if r . ls,

h s1d

wherel is the potential range in units of the particle dia
eters ande is the potential depth, several approaches
been devised to derive analytical expressions for the s
tural properties. In this paper we will focus on two theor
both having in common that analytical expressions for
r.d.f. in Laplace space are provided.

The first of those theories is attributed to Tang and
27,28

l:
sTLd, who combined perturbation theory with the mean

© 2005 American Institute of Physics10-1
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spherical approximationsMSAd to derive an analytical ex
pression for the first-order r.d.f.g1srd in the expansion i
power series of the inverse of the reduced temperatuT*

=kT/e. Taking for the zeroth-order termg0srd the Percus
Yevick sPYd solution,54,55 the resulting truncated series
the r.d.f. of the SW fluid is

gsxd = g0sxd + g1sxd
1

T* , s2d

wherex=r /s. The expressions for the Laplace transform
xg0sxd andxg1sxd are given in Appendix A. The TL theory
expected to be accurate for moderate to large pote
widths since the series in powers of 1/T* converges slowl
for short-ranged SW potentials.56

For the opposite situation, that is, for SW potential w
rangesl close to 1, a procedure has been proposed57 to de-
termine the structure of an SW fluid from that of an equ
lent fluid of sticky hard spheres, using for the latter Baxt
analytical solution of the PY equation.58 To this end, the
parameters of the equivalent fluid are determined from
condition that the second virial coefficients of the two flu
must be equal. This approximation provides good result
the structure factor of SW fluids withlø1.2, at least fo
moderate to low densities, but is not appropriate for ob
ing the r.d.f., so it will not be considered in this paper.

As a second theory, we will consider the one develo
by Yuste and Santos,29 which provides an alternative analy
cal expression for short-ranged SW fluids and reduce
Baxter’s solution in the sticky hard-sphere limit. We w
refer to this theory as the Yuste–SantossYSd model and i
will be presented next with some detail.

The starting point in the YS model is the expression
the Laplace transformGstd of xgsxd in the form

Gstd = t
Fstde−t

1 + 12hFstde−t = o
n=1

`

s− 12hdn−1tfFstdgne−nt, s3d

whereh=sp /6drs3 is the packing fraction,r being the num
ber density, andFstd is an auxiliary function given by29,30

Fstd = −
1

12h

1 + A + K1t − sA + K2tde−sl−1dt

1 + S1t + S2t
2 + S3t

3 . s4d

The coefficientsK1, K2, S1, S2, andS3 are determined from
consistency conditions as functions ofh, T* , l, andA ssee
Appendix Bd. To close the model, the parameterA is further
fixed at its zero density valueA=e1/T*

−1 for the sake o
simplicity.29,30 Expressions4d reduces to the exact solutio
of the PY equation in the limit of hard spheressl→1 or
T* →`d,54,55 as well as in the limit of sticky hard spher
fl→1 and T* →0 with T* ,−1/ lnsl−1dg.58 Therefore, the
approximations4d can be considered as an extension to fi
widths of Baxter’s solution of the PY equation for stic
hard spheres.

The inverse Laplace transform of Eq.s3d allows us to

obtain the r.d.f. in the form
l

r

gsxd = x−1o
n=1

`

s− 12hdn−1fnsx − ndQsx − nd, s5d

where the functionfnsxd is the inverse Laplace transform
tfFstdgn andQsxd is Heaviside’s step function. Note that,
determine the r.d.f. forx,n+1, only the firstn terms in the
summations5d are needed. In the analysis of Sec. IV, we
consider reduced distancesx,3, so that only the function
f1 and f2 will be needed. They are given in Appendix B.

III. MONTE CARLO SIMULATIONS

We have performedNVTMonte CarlosMCd simulations
of the r.d.f. of SW fluids with rangesl=1.05 and l
=1.1–2.0swith a stepDl=0.1d for sreducedd number dens
ties r* ;rs3=0.1–0.8 swith a stepDr* =0.1d and severa
temperatures in the supercritical region. To this end, a sy
consisting of 512 particles was considered. The part
were initially placed in a regular configuration in a cu
volume with periodic boundary conditions, with fixed te
perature and density. After equilibration, the r.d.f. was d
mined from measurements performed over 53104 cycles
each of them consisting of an attempted move per par
Results for the contact valuesgs1+d of the r.d.f., as well a
for their valuesgsl−d andgsl+d at both sides of the potent
range, were obtained from extrapolation and are report
Table I.59 From these values, the compressibility factoZ
=pV/NkT can be obtained from the virial theorem for
SW fluid as

Z = 1 + 2
3pr*hgs1+d − l3fgsl−d − gsl+dgj. s6d

Values ofZ thus obtained were reported elsewhere,48 excep
for the rangel=1.05.

IV. RESULTS AND DISCUSSION

The objective is to determine the limits of applicabi
of the TL and YS theories. We are mainly interested in
domain ofmoderatetemperatures. By that we mean temp
tures within the rangeTc

*sld&T* &3Tc
*sld, whereTc

*sld de-
notes the critical temperature of the SW fluid with rangl.
This critical temperature has been measured in com
simulations for several ranges.39–44,53Table I of Ref. 24 give
a rather extensive compilation of data. A simple analy
estimate forTc

*sld was derived in Ref. 30

Tc
*sld =

1

lnF1 +
3 + l + 2Î2l

lsl − 1ds9 − 2l + l2d
G . s7d

Figure 1 is aT* -l plot where the open circles repres
the three temperaturesstwo in the casesl=1.9 andl=2d we
have considered in the simulations for each value ofl. The
simulation data ofTc

*sld,24 as well as the theoretical estim
s7d, are also shown. For each value ofl we have typically
considered three temperatures:T1

* *Tc
* , T2

* <1.5T1
* , and T3

*

<2T1
* , so thatT3

* *3Tc
*sld.

Before comparing the simulation data of the full r.
with the theoretical predictions, it is worth focusing on

+ +
contact valuegs1 d. Figures 2 and 3 showgs1 d as a function
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TABLE I. MC simulation data ofgs1+d, gsl−d, andgsl+d for the values ofl, r* , andT* considered in the paper.

r* 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.9

l=1.05
T* =0.5
gs1+d 7.304 7.323 7.343 7.501 7.662 7.771 8.081 8.524 9.0
gsl−d 7.278 7.250 7.210 7.317 7.374 7.400 7.587 7.832 8.1
gsl+d 0.987 0.980 0.979 0.988 0.999 0.999 1.030 1.059 1.1

T* =0.7
gs1+d 4.382 4.609 4.899 5.194 5.557 6.009 6.505 7.223 8.0
gsl−d 4.321 4.562 4.765 4.986 5.237 5.539 5.842 6.263 6.6
gsl+d 1.034 1.081 1.142 1.195 1.257 1.325 1.401 1.504 1.5

T* =1.0
gs1+d 2.964 3.215 3.552 3.891 4.336 4.833 5.457 6.258 7.2
gsl−d 2.923 3.153 3.417 3.679 4.009 4.356 4.759 5.197 5.6
gsl+d 1.071 1.162 1.255 1.355 1.477 1.599 1.746 1.912 2.0

l=1.10
T* =0.5
gs1+d 7.254 7.080 6.628 6.461 6.088 5.836 5.667 5.620 5.8
gsl−d 7.179 6.919 6.463 6.219 5.816 5.519 5.307 5.180 5.1
gsl+d 0.973 0.931 0.875 0.840 0.787 0.746 0.718 0.701 0.6

T* =0.7
gs1+d 4.135 4.153 4.174 4.222 4.334 4.529 4.746 5.064 5.6
gsl−d 4.097 4.064 4.028 4.007 4.028 4.096 4.135 4.202 4.2
gsl+d 0.979 0.970 0.964 0.961 0.966 0.980 0.988 1.007 1.0

T* =1.0
gs1+d 2.829 2.963 3.134 3.320 3.565 3.868 4.263 4.778 5.4
gsl−d 2.790 2.862 2.974 3.068 3.186 3.316 3.463 3.589 3.7
gsl+d 1.026 1.058 1.090 1.128 1.172 1.220 1.273 1.316 1.3

l=1.20
T* =0.7
gs1+d 4.126 4.007 3.805 3.562 3.449 3.297 3.281 3.457 3.9
gsl−d 4.030 3.822 3.555 3.299 3.122 2.924 2.810 2.738 2.6
gsl+d 0.968 0.914 0.850 0.792 0.748 0.700 0.675 0.657 0.6

T* =1.0
gs1+d 2.671 2.662 2.666 2.721 2.799 2.941 3.173 3.564 4.2
gsl−d 2.628 2.551 2.489 2.447 2.415 2.388 2.372 2.326 2.2
gsl+d 0.968 0.942 0.918 0.900 0.888 0.880 0.871 0.856 0.8

T* =1.5
gs1+d 2.016 2.092 2.212 2.355 2.541 2.807 3.168 3.692 4.5
gsl−d 1.956 1.973 1.991 2.019 2.042 2.059 2.063 2.028 1.9
gsl+d 1.004 1.012 1.021 1.036 1.050 1.057 1.059 1.039 0.9

l=1.30
T* =1.0
gs1+d 2.660 2.592 2.485 2.435 2.414 2.492 2.703 3.136 4.0
gsl−d 2.584 2.433 2.259 2.138 2.033 1.948 1.865 1.737 1.4
gsl+d 0.952 0.896 0.830 0.786 0.748 0.716 0.685 0.639 0.5

T* =1.5
gs1+d 1.957 1.982 2.033 2.105 2.245 2.476 2.829 3.409 4.3
gsl−d 1.872 1.834 1.792 1.754 1.720 1.680 1.611 1.486 1.2
gsl+d 0.966 0.940 0.919 0.901 0.883 0.863 0.828 0.763 0.6

T* =2.0
gs1+d 1.711 1.770 1.880 2.012 2.214 2.497 2.916 3.558 4.5
gsl−d 1.622 1.618 1.611 1.606 1.582 1.555 1.489 1.368 1.1
gsl+d 0.990 0.981 0.979 0.972 0.962 0.944 0.903 0.829 0.7

l=1.40
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TABLE I. sContinued.d

r* 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.9

T* =1.0
gs1+d 2.899 2.840 2.640 2.398 2.246 2.245 2.515 3.162 4.3
gsl−d 2.679 2.488 2.227 1.966 1.783 1.669 1.544 1.332 1.0
gsl+d 0.986 0.918 0.819 0.725 0.657 0.616 0.568 0.491 0.3

T* =1.5
gs1+d 1.928 1.916 1.917 1.977 2.075 2.307 2.716 3.442 4.5
gsl−d 1.836 1.742 1.656 1.583 1.518 1.441 1.328 1.149 0.9
gsl+d 0.945 0.894 0.849 0.811 0.778 0.740 0.681 0.589 0.4

T* =2.0
gs1+d 1.665 1.705 1.788 1.889 2.070 2.362 2.834 3.584 4.7
gsl−d 1.588 1.533 1.489 1.444 1.400 1.331 1.227 1.067 0.8
gsl+d 0.960 0.929 0.905 0.877 0.852 0.807 0.743 0.646 0.5

l=1.50
T* =1.5
gs1+d 1.952 1.909 1.884 1.888 1.989 2.263 2.783 3.640 4.9
gsl−d 1.832 1.695 1.570 1.464 1.382 1.281 1.150 0.993 0.8
gsl+d 0.941 0.870 0.804 0.751 0.709 0.659 0.590 0.510 0.4

T* =2.0
gs1+d 1.661 1.660 1.720 1.820 2.006 2.336 2.880 3.740 5.0
gsl−d 1.563 1.478 1.403 1.338 1.274 1.185 1.063 0.922 0.7
gsl+d 0.945 0.894 0.851 0.814 0.771 0.719 0.646 0.558 0.4

T* =3.0
gs1+d 1.444 1.521 1.628 1.795 2.046 2.424 2.998 3.825 5.0
gsl−d 1.351 1.313 1.268 1.230 1.171 1.090 0.982 0.857 0.7
gsl+d 0.968 0.938 0.909 0.878 0.839 0.781 0.704 0.614 0.5

l=1.60
T* =1.5
gs1+d 2.064 2.026 1.949 1.894 2.004 2.339 3.002 3.996 5.3
gsl−d 1.869 1.696 1.528 1.387 1.293 1.200 1.099 1.015 0.9
gsl+d 0.958 0.872 0.784 0.713 0.665 0.618 0.565 0.521 0.4

T* =2.0
gs1+d 1.655 1.673 1.702 1.795 2.007 2.393 3.037 3.985 5.3
gsl−d 1.542 1.446 1.350 1.271 1.199 1.110 1.015 0.932 0.8
gsl+d 0.940 0.873 0.819 0.770 0.726 0.673 0.615 0.564 0.5

T* =3.0
gs1+d 1.439 1.498 1.602 1.762 2.040 2.463 3.087 3.987 5.2
gsl−d 1.329 1.269 1.218 1.165 1.100 1.021 0.933 0.850 0.7
gsl+d 0.953 0.912 0.873 0.834 0.788 0.732 0.669 0.611 0.5

l=1.70
T* =2.0
gs1+d 1.716 1.714 1.752 1.833 2.077 2.538 3.250 4.253 5.6
gsl−d 1.551 1.432 1.322 1.237 1.165 1.101 1.045 1.017 1.0
gsl+d 0.944 0.870 0.802 0.749 0.706 0.668 0.634 0.617 0.6

T* =3.0
gs1+d 1.430 1.494 1.598 1.779 2.083 2.549 3.222 4.160 5.4
gsl−d 1.318 1.251 1.184 1.131 1.069 1.009 0.956 0.928 0.9
gsl+d 0.949 0.893 0.849 0.810 0.766 0.725 0.685 0.664 0.6

T* =5.0
gs1+d 1.299 1.403 1.554 1.779 2.114 2.567 3.220 4.108 5.3
gsl−d 1.177 1.139 1.097 1.052 1.000 0.941 0.893 0.860 0.8
gsl+d 0.964 0.934 0.898 0.861 0.818 0.771 0.731 0.703 0.7

l=1.80
T* =2.0
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of the reduced density for the temperatures represent
Fig. 1, as obtained from our MC simulations, as well as f
the TL and YS theoriesfcf. Eqs.sA6d, sA9d, andsB5dg. We
observe that forl=1.05 andl=1.1 the nonperturbative Y
model presents a very good agreement with the simul
data for the three temperatures considered, whereas th

TABLE I. sContinued.d

r* 0.10 0.20 0.30 0.40

gs1+d 1.839 1.916 1.880 1.932
gsl−d 1.599 1.468 1.326 1.233
gsl+d 0.974 0.892 0.805 0.745

T* =3.0
gs1+d 1.449 1.522 1.629 1.828
gsl−d 1.320 1.238 1.175 1.124
gsl+d 0.942 0.888 0.840 0.803

T* =5.0
gs1+d 1.297 1.411 1.562 1.809
gsl−d 1.169 1.126 1.085 1.042
gsl+d 0.956 0.921 0.886 0.854

l

T* =3.0
gs1+d 1.492 1.570 1.692 1.908
gsl−d 1.323 1.247 1.182 1.142
gsl+d 0.949 0.895 0.848 0.818

T* =5.0
gs1+d 1.309 1.416 1.587 1.847
gsl−d 1.170 1.123 1.087 1.058
gsl+d 0.958 0.920 0.889 0.867

l

T* =3.0
gs1+d 1.564 1.699 1.824 2.032
gsl−d 1.346 1.282 1.217 1.192
gsl+d 0.968 0.918 0.873 0.853

T* =5.0
gs1+d 1.325 1.450 1.633 1.907
gsl−d 1.178 1.131 1.105 1.098
gsl+d 0.960 0.926 0.905 0.899

FIG. 1. The open circles represent the values of the reduced temperaT*

we have considered for each value of the rangel. The crosses are simu
tion data for the critical temperatureTc

*sld ssee Ref. 24d and the solid line i

the theoretical estimates7d. Note the logarithmic scale of the vertical axis.
n

L

perturbation theory is rather poor, especially for low t
peratures. Forlù1.2, however, the YS model behaves w
for small and moderate densities but starts to fail in the h
density domain, especially for the lowest temperature
failure being more dramatic as the well width increases
terestingly, the TL theory becomes more accurate prec
in that high-density region where the YS model is less
able. Thus, for a given rangel, there exists a certain thres
old densityr0

*sld such that the YS model is accurate forr*

&r0
*sld and inaccurate forr* *r0

*sld, while the opposit
situation occurs in the case of the TL theory. Of course,
qualitative description applies for the range of “moder
temperatures defined above, since the results obtained
both theories tend to coincide as the temperature incre

According to Figs. 2 and 3, the location ofr0
*sld roughly

coincides with the region where either the isotherms c
sfor lø1.7d or have the least separationsfor 1.8ølø2.0d.
This means that the simulation data ofgs1+d in the region
r* <r0

*sld are practically insensitive to the temperature
they are close to its hard-sphere valueg0s1+d. For larger den
sities,r* *r0

*sld, the simulation data show that the influe
of temperature is small and hence the TL perturbation th

*

0.50 0.60 0.70 0.80 0.9

2.199 2.708 3.487 4.508 5.8
1.175 1.144 1.141 1.183 1.3
0.714 0.694 0.693 0.716 0.7

2.162 2.670 3.392 4.325 5.6
1.079 1.046 1.043 1.079 1.1
0.773 0.751 0.747 0.772 0.8

2.152 2.646 3.318 4.214 5.4
1.005 0.978 0.970 1.003 1.1
0.822 0.800 0.794 0.821 0.9

0

2.274 2.815 3.533 4.450 5.5
1.123 1.132 1.174 1.265 1.4
0.805 0.811 0.841 0.908 1.0

2.222 2.733 3.404 4.268 5.3
1.044 1.049 1.089 1.174 1.3
0.855 0.859 0.891 0.961 1.0

0

2.424 2.973 3.669 4.493 5.4
1.199 1.245 1.322 1.425 1.5
0.861 0.892 0.949 1.024 1.1

2.300 2.814 3.471 4.304 5.3
1.109 1.152 1.225 1.326 1.4
0.910 0.944 1.005 1.089 1.1
=1.9

=2.0
becomes accurate in that domain. On the other hand, forr
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&r0
*sld the MC values ofgs1+d are strongly sensitive

temperature, as expected from the fact that at zero de
gs1+d=e1/T*

, while perturbation theories givegs1+d=1
+1/T* . The strong deviation of the nonperturbative
theory from the MC data in the density regionr* *r0

*sld,
especially forlù1.4, is in part due to the fact that in the Y
model the parameterA in Eq. s4d is assumed to be indepe
dent of density, and so it is assigned its zero-density v
A=e1/T*

−1. A better agreement is expected ifA is allowed to
depend on density, but this would imply either to impose
extra consistency conditionsfor instance, continuity of th
first derivative of the cavity functiond or to apply an empiri
cal fit, which is outside the original spirit of the YS model
second reason has to do with the construction of the
model as an extension of Baxter’s solution of the PY inte
equation for sticky hard spheres, so that in principle
intended to be a model for narrow wells.

A plot of r0
*sld is presented in Fig. 4. It can be int

preted as a sort of “phase” diagram in which the curve s
rates the respective regions where the TL and YS theorie
reliable for moderate temperatures in the intervalTc

*sld
* *
&T &3Tcsld. We observe that as the rangel decreases, the
y

-
e

YS region tends to span the whole fluid density domain
addition, r0

* presents a minimumr0
* <0.4 at l<1.7, so the

YS theory does a fairly good job ifr* &0.4, even for wid
potentials.

Once we have analyzed the performances of the TL
YS theories in connection with the contact valuegs1+d, let us
proceed to investigate the r.d.f.gsxd itself. The results ar
presented in Figs. 5–10. Since in this paper we are m
interested in short-ranged SW potentials, we have paid
cial attention to the ranges 1.05ølø1.3 sFigs. 5–8d. As
representative examples of a moderate and of a wide
we have consideredl=1.5 sFig. 9d and l=2.0 sFig. 10d,
respectively. For each value ofl we have restricted ou
selves to the lowest temperature represented in Fig. 1 a
the densitiesr* =0.2, 0.4, and 0.8sexcept in the casel
=2.0, wherer* =0.8 has not been considered because th
model fails to have a solution in that cased. In agreemen
with the analysis of Figs. 2 and 3, one can see that th
theory works well for small potential widthsslø1.2d for the
whole density range. For larger potential widths, the pe
mance of the theory is still fair at lowsr* =0.2d and even

*

FIG. 2. Comparison of the contact v
ues gs1+d of the r.d.f. obtained from
the TL sdashed linesd and YS ssolid
linesd theories with Monte Carlo da
as functions of the reduced densityr*

for different temperatures and w
widths l=1.05–1.5.
moderatesr =0.4d densities. However, the YS theory fails,
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and even can become entirely unphysical, at high den
sr* =0.8.r0

*d. Of course, at temperatures higher than th
of Figs. 5–10 the performance of the theory at high dens
improvessnot shownd.

By contrast, the TL theory presents the opposite be

FIG. 4. Plot of the threshold densityr0
*sld as a function of the potenti

rangel. For each value ofl, r0
* is defined as the density around which

MC contact valuesgs1+d are practically insensitive to the temperature.
low saboved the curve, the YSsTLd theory can be considered as reliable.

line is a guide to the eye.
s

-

ior to that of the YS theory, since its accuracy increase
the density and the potential width grow. Of course, it
improves if the temperature increases, as expected fr
perturbation theory. According to Figs. 5–10, the TL the
does a better job than the YS model atr* =0.8 forlù1.3, in
agreement with the phase diagram of Fig. 4.

V. CONCLUSIONS

In this paper we have presented extensive Monte C
simulations for the structural properties of square-well fl
with rangesl, reduced densitiesr* , and reduced temper
tures T* in the intervals 1.05ølø2, 0.1ør* ø0.8 and
Tc

*sld&T* &3Tc
*sld, respectively. The MC data have be

used to assess the accuracy of two theories that provid
plicit expressions of the r.d.f. in Laplace space, the TL
turbation theory,27,28 and the nonperturbative YS model.29

The results show that both theories complement
other, as the YS theory works well where the TL theory f
and vice versa. More specifically, the YS theory exhibi
good agreement with the MC data at any fluid density if
potential well is sufficiently narrowssay,lø1.2d, as well as

*

FIG. 3. Same as in Fig. 2, but forl
=1.6–2.
for any width if the density is small enoughssay,r ø0.4d.
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This can be further refined by noticing that the YS the
works well if r* &r0

*sld, wherer0
*sld is the density aroun

which the simulation data for the contact valuegs1+d show
the least influence on temperature. On the other hand
r* .r0

*sld the YS theory rapidly deteriorates, especially
temperatures near the critical one, while the TL theory
comes very accurate.

The complementarity between the TL and YS theorie
interesting because they present some formal similariti
their formulation and arespracticallyd equally easy to imple
ment ssee Appendices A and Bd. The latter theory, howeve
has some advantages over the former one. First, th
theory is especially useful for describing colloidal disp
sions modeled as short-ranged SW fluids. Second, it pro
a simple analytical expression for the second shells2øx
ø3d of the r.d.f., whereas this is not the case for the
theory.28 Last, it seems feasible to improve the performa
of the YS theory at high densities by imposing additio

FIG. 5. Comparison of the r.d.f. obtained from the TLsdotted linesd and YS
ssolid linesd theories with Monte Carlo datascirclesd for l=1.05 andT*

=0.5. Note that the TL curves are interrupted afterx=2.
constraints to the Laplace transform of the r.d.f. to determine
r

S

s

the parameterA in Eq. s4d as a function of density. Instead,
order to improve the TL theory it would be necessary
obtain higher order terms in the expansion of the r.d.f. o
SW fluid in power series of the inverse of the reduced
peratureT* , and this seems too complicated at present.
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APPENDIX A: EXPLICIT EXPRESSIONS IN THE
TANG–LU THEORY

Let us define the Laplace transformGssd of xgsxd

Gstd =E
1

`

dxe−txxgsxd. sA1d

+

FIG. 6. Same as in Fig. 5, but forl=1.1 andT* =0.5.
The contact valuegs1 d is given fromGssd as
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gs1+d = lim
t→`

tetGstd. sA2d

The exact solution of the PY equation for h
spheres54,55 reads

G0std = t
Lstde−t

Sstd + 12hLstde−t , sA3d

whereh=sp /6drs3 is the packing fraction and

Lstd = 1 + 2h + s1 + h/2dt, sA4d

Sstd = − 12hs1 + 2hd + 18h2t + 6hs1 − hdt2 + s1 − hd2t3.

sA5d

The corresponding contact value is

g0s1+d =
1 + h/2

s1 − hd2 . sA6d

EquationsA3d provides the zeroth-order term in the
27,28

FIG. 7. Same as in Fig. 5, but forl=1.2 andT* =0.7.
perturbation theory. The first-order term is
G1std = −
s1 − hd4e−t

Q0
2std H t4s1 + ltd

S2s− td
e−sl−1dt

− o
i=1

3
ti
3

st + tidS1
2stid

F tis1 − ltid
t + ti

+ tis1 − ltid

3
S2stid
S1stid

− 4 + s1 + 4ldti + lsl − 1dti
2G

3 esl−1dtiJ , sA7d

whereS1std;S8std, S2std;S9std, the primes denoting deriv
tives with respect tot, and

Q0std ;
Sstd + 12hLstde−t

s1 − hd2t3
. sA8d

In Eq. sA7d the summation extends over the three zero
+

FIG. 8. Same as in Fig. 5, but forl=1.3 andT* =1.0.
Sstd, denoted byti. The contact valueg1s1 d is
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g1s1+d = s1 − hd4o
i=1

3
ti
3

S1
2stid

Ftis1 − ltid
S2stid
S1stid

− 4

+ s1 + 4ldti + lsl − 1dti
2Gesl−1dti sA9d

By analytical inversion ofG1std one can get explicit ex
pressions forg1sxd inside the shellsnøxøn+1, which be
come increasingly more complicated asn grows. The expres
sion for the first shell 1øxø2 can be found in Ref. 28.

APPENDIX B: EXPLICIT EXPRESSIONS IN THE
YUSTE–SANTOS MODEL

By imposing the exact conditionGstd− t−2, t for small t,
whereGstd is defined by Eq.sA1d, one can express the p
rametersK1, S1, S2, and S3 appearing in Eq.s4d as linea

29,30

FIG. 9. Same as in Fig. 5, but forl=1.5 andT* =1.5.
functions ofA andK2
K1 =
1

1 + 2h
F1 +

h

2
+ 2hsl3 − 1dK2 −

h

2
sl4 − 4l + 3dAG

+ K2 − Asl − 1d, sB1d

S1 =
h

1 + 2h
F−

3

2
+ 2sl3 − 1dK2 −

1

2
sl4 − 4l + 3dAG ,

sB2d

S2 =
1

2s1 + 2hd
h− 1 +h + 2fl − 1 − 2hlsl2 − 1dgK2

− fsl − 1d2 − hsl2 − 1d2gAj, sB3d

S3 =
1

1 + 2h
H−

s1 − hd2

12h
− F1

2
sl2 − 1d − hl2sl − 1dGK2

+
1

12
f4 + 2l − hs3l2 + 2l + 1dgsl − 1d2AJ . sB4d

From Eq.sA2d, we have

gs1+d =
K1

12hS3
. sB5d

By application of the Heaviside expansion theorem,
inverse Laplace transform oftFstd reads

f1sxd = f10sxdQsxd + f11sx + 1 −ldQsx + 1 −ld, sB6d

FIG. 10. Same as in Fig. 5, but forl=2.0 andT* =3.0.
where
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f1ksxd = −
1

12h
o
i=1

3
C1kstid
S8stid

tie
tix. sB7d

Here, ti are the three distinct roots ofSstd;1+S1t+S2t
2

+S3t
3 fnot to be confused with the polynomialsA5dg and

C10std ; 1 + A + K1t, C11std ; − sA + K2td. sB8d

Analogously, the inverse Laplace transform oftfFstdg2 is

f2sxd = f20sxdQsxd + f21sx + 1 −ldQsx + 1 −ld

+ f22sx + 2 − 2ldQsx + 2 − 2ld, sB9d

where

f2ksxd =
1

s12hd2o
i=1

3 FxC2kstid + C2k8 stid

− C2kstid
S9stid
S8stid

G etix

fS8stidg2 , sB10d

where we have set

C20std ; tfC10stdg2, C21std ; 2tC10stdC11std,

sB11d
C22std ; tfC11stdg2.

Insertion of Eqs.sB6d and sB9d into Eq. s5d gives the
r.d.f. gsxd in the interval 1øxø3. Note that the contributio
f22sxd is needed inside that interval only ifl,

3
2. For x.3

the evaluation off3sxd , f4sxd , . . ., is required. Alternatively
one can make use of the efficient method discussed by A
and Whitt60 to invert Laplace transforms numerically.

To close the model, we need to determine the param
A andK2. The former is assigned its zero-density limit va
namelyA=e1/T*

−1.29 To determineK2 we impose the cont
nuity condition of the cavity function atx=l, which implies

gsl−d = e1/T*
gsl−d. sB12d

This yields

s1 − e−1/T*
df10sl − 1d = − f11s0d = −

K2

12hS3
. sB13d

Since the rootsti depend onK2 through the coefficientsS1,
S2, andS3, Eq. sB13d is a transcendent equation forK2 that
needs to be solved numerically. Acedo and Santos hav
cently proposed a simplified version of the YS mo
whereby the exact conditionsB12d is replaced by a simple
one that allowsK2 to be obtained analytically.30 This is es
pecially useful for determining the thermodynam
properties.10,30In this paper, however, since we are intere
in the structural properties, we enforce conditionsB12d and
determineK2 from Eq. sB13d.
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