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Simple equation of state for hard disks on the hyperbolic plane
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It is well known that hard-core systems1 represent useful
models that allow both the derivation of some rigorous re-
sults in statistical mechanics as well as the computation of
some particular quantities such as virial coefficients. For
monocomponent hard-core systems there cannot be a gas-
liquid transition due to the lack of an attractive part in the
intermolecular potential, but they show crystalline and/or
amorphous phases, and the way these phases arise and even
their actual existence are still open problems.

Insight into the thermodynamic behavior of hard-core
systems has in the past been sometimes gained by consider-
ing similar systems in higher dimensions.” The rationale is
that one may obtain a rough idea of the thermodynamic be-
havior of, say, three-dimensional hard-core fluids at high
densities by looking at models in higher dimensions in which
the same phenomenology is present but at a lower density,
and thus the problem may become mathematically more trac-
table. In a different context but nevertheless dealing with a
somewhat related question, Modes and Kamien® addressed
the connection between the equation of state and disordered
packings of hard disks. Since in simulations of monodisperse
hard disks it is difficult to prevent crystallization, the consid-
eration of a curved surface, in this case a hyperbolic plane
with a curvature near a known regular tesselation, serves to
frustrate global crystalline order and allows them to find the
equation of state via molecular dynamics. Further, they also
developed a free area theory for the packing derived from the
nearby tesselation. Studies in the hyperbolic plane in connec-
tion with glass-forming liquids and bulk behavior of physical
systems have also recently been reporte,d.4

A few years ago we proposed a simple and accurate
equation of state for a hard-disk fluid.” This equation is built
so as to yield the exact second virial coefficient and also to
have a single pole singularity at the close-packing fraction,
namely,

PIpkT =1 =byq— (1 = by Yna) T T ] (1)

where p is the pressure, p is the number density, kp is the
Boltzmann constant, 7 is the absolute temperature, b,=2 is
the reduced second virial coefficient, n=ay(o)p is the pack-
ing fraction, with ay(o)=(m/4)0” the area of a hard disk
with a diameter o, and nmax=\f'377/ 6=0.9069 is the value
corresponding to crystalline close packing. The major aim of
this Note is to provide an answer to the question of whether
a proposal such as Eq. (1), properly generalized, may also be
useful for hard disks on the hyperbolic plane.
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The development goes as follows. First, we note that on
a two-dimensional manifold with constant intrinsic curvature
K<O0, the area of a disk with a diameter o is ag(o)
=2m|K| '[cosh(|K|"?0/2)~1] and that the packing fraction
is given by n=ag(o)p. Furthermore, on such a manifold the
associated (reduced) second virial coefficient depends on the
(reduced)  diameter  |K|'?0,  namely, b,(|K|"?0)
=ag(20)/ 2aK(U).3 Thus, for a given value of the reduced
diameter |K|?c, the only other requirement in our formula-
tion is the corresponding value of 7., irrespective of the
fact whether the resulting configuration is an ordered one or
not. As far as we know, this value is only known analytically
for the so-called {p,q} tesselations (restricted in the hyper-
bolic plane by the condition 1/p+1/¢g<1/2), in which the
packing corresponding to the highest possible density and
the associated reduced diameter are given by 7.«
=[cos(m/q)/sin(m/p)-1]/(p/2-1-p/q)  and  |K|'?c
=2 cosh™![cos(7/q)/sin(/p)], respectively.3

The top panel of Fig. 1 shows the compressibility factor
Z=p/pkgT as a function of the packing fraction 7, obtained
from the free area theory of Modes and Kamien® and from
the use of Eq. (1), in the case of three isostatic tesselations,
that is, tesselations with p=4. Clearly, the compressibility
factors in both approaches are quite close for high packing
fractions, but they differ substantially at low ones. We also
compare the results for the packing fraction dependence of Z
obtained with (to our knowledge) the only presently avail-
able simulation data of Modes and Kamien® for two values
(|K|"20=1.062 and |K|"25=1.060) of the hard-disk diameter
which are close to the one corresponding to the isostatic {4,5}
tesselation, namely, |K|"?0=1.0613. The performance of
both theories with respect to the simulation is rather poor
with, if any, a very slight superiority of our approach. Nev-
ertheless, no definite statement about such a comparison
should be made at this stage given the very small number of
particles (one to nine) used in the simulations and the intrin-
sic difficulties associated with simulations on the hyperbolic
plame.4

To further test the performance of both theories in a
more controllable situation, in the bottom panel of Fig. 1 we
present the results obtained in the Euclidean limit (|K|'?o
=0) using the hexagonal {6,3} tesselation. Of course in this
limit in our approach we recover the results of our earlier
proposal for the equation of state of a hard-disk fluid,” which
we had proved to be rather accurate. The free area theory,3
on the other hand, performs very poorly.
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FIG. 1. (Color online) Top panel: Compressibility factor Z as a function of
7 for the isostatic {4,10°}, {4,10}, and {4,5} tesselations (|K|"?c=1.7628,
1.6169, and 1.0613 and 7,,,,=0.4142, 0.5750, and 0.7206, respectively);
solid lines: Eq. (1); dashed lines: free area theory of Ref. 3; the symbols are
simulation results also obtained in Ref. 3 for |K|"?0=1.060 (squares) and
|K|"?0=1.062 (diamonds). Bottom panel: Compressibility factor Z as a
function of 7 for the (Euclidean) hexagonal {6,3} tesselation (|K|"*0=0,
Dmax=V377/6); solid line: Eq. (1); dashed line: free area theory of Ref. 3; the
symbols are the simulation results from Ref. 7.

While the philosophy behind the derivation of our equa-
tion of state is totally different from that of the free area
theory of Modes and Kamien,’ they both share the property
of having a pole at 7= 7, In fact, from Eq. (1) it follows
that Z=[2—b,(|K|"*0) Dax] (1= 9/ o) ™" while the free
area theory yields Zpee area=2(1—= 7/ 12)~" for 7 close to
Dmax- Note that if [K|"20=1.0613 then [2-b,(|K|"?0)7,,]”!
=2.20. This explains why at high packing fractions the nu-
merical values of the compressibility factor obtained with
both approaches are not all that different. One should point
out that the free area theory has been constructed with the
particular aim of performing well at high densities while ours
attempts to capture both the low and high density limits. On
the other hand, Z.. 4eq 1S Nonanalytic at =0 (for the above
value of |K|'"?0, Zgee area=1.2627"%+1.4328 9+1.5941 7>
+--+) and incorrectly predicts Zgee area(0)=0, whereas by
construction Z given by Eq. (1) yields the exact second virial
coefficient b,(|K|"?0) and also allows us to estimate the
higher order virial coefficients b,(|K|"?>). Thus, from Eq.
(1) and again for |K|"20=1.0613, we get b5(1.0613)=3.55,
b4(1.0613)=5.36, and bs(1.0613)=7.76. Comparing with the
numerical values obtained by Modes and Kamien® for
|K|'20=1.10, namely, b5(1.10)=3.39, b,(1.10)=4.62, and
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bs5(1.10)=5.83, we find that our estimates are of the right
order of magnitude although their accuracy seems to be
worse than the one we got for the Euclidean case.” As a final
comment one should add that Eq. (1) may lead to (unphysi-
cal) negative values of Z in the interval
77max/|:bZ(|[<|1/20-) Mmax ~ ]]< 77< Tmax if b2(|K|l/20-) 77max>2‘
This may well be a limitation of our formulation but the
point certainly deserves further study.

In summary, in this Note we have presented an extension
of our former equation of state for a hard-disk fluid to deal
with the same system on the hyperbolic plane. In contrast
with the free area theory of Ref. 3, which is rather more
complicated and devised to perform well in the high density
region only, the main assets of our proposal are its simplicity
and the fact that it caters both for low and high packing
fractions. Our results indicate that it might be as accurate and
even improve on the performance of the free area theory of
Modes and Kamien.® A deeper assessment of its full value is
not possible at this stage due to the lack of simulation results
for different values of |K|"?c. We hope that our simple
theory will encourage the performance of such simulations.
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"For a very recent review of the properties of these systems, one may look
at Theory and Simulation of Hard-Sphere Fluids and Related Systems,
edited by A. Mulero (Springer, Berlin, 2008).
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