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A method of Krylov-Bogoliubov type which gives the approximate solution in terms 
of Jacobi elliptic functions is used to study the quasi-pure-cubic oscillators: 

+ c3x3+ ef(x, ~)= 0. Explicit approximate solutions with the perturbative terms x, x 2, 
I~1~ (quadratic damping) and sgn (.~) (Coulomb damping) are given and are compared 
with the numerical (or exact) solution. A simple and accurate expression is derived for the 
time at which the oscillations with Coulomb damping cease. 

1. INTRODUCTION 

Most  analytical methods for the study of non-linear oscillators are applicable only to the 
quasi-linear (weakly non-linear) case 

~ + ctx + e f (x ,  Yc)=0, (I.1) 

where e is a small parameter and c~ > 0. This paper is concerned with a less well studied 
class of  (strongly) non-linear oscillators, the quasi-pure-cubic oscillators, the equation for 
which is 

+ c3 x3 + e f (x ,  .~) = 0, (1.2) 

where e is a small parameter and c3 > 0. Some work on this equation has been published 
recently [1-4]. The method to be used is the elliptic Krylov-Bogoliubov (EKB) method 
[5], the formulae of which for approximate solutions will be summarized in section 2. It 
must be noted that in the method expounded in reference [5] the averaged equation of  the 
phase is not correct when c~ # 0 and c3 # 0 because the averaging procedure is applied to 
an expression that is not periodic. Coppola and Rand have shown how to surmount this 
difficulty in reference [6]. In section 3 the solution and other interesting features (obtained 
by using the EKB method) of  quasi-pure-cubic oscillator with four typical [7, 8] perturb- 
ative terms are presented. Quasi-pure-cubic oscillators with f ( x ,  .~)= ~ (linear damping) 
andf (x ,  Yc) = (a - flx2)yc (van der Pol oscillator) have already been studied in reference [5]. 

2. THE EKB METHOD FOR QUASI-PURE-CUBIC OSCILLATORS 

The EKB solution of  equation (1.2) has the form [5] 

x ( t ) = A ( t )  cn [~'(t), I / 2 ] = A  cn, 

where 

~,(t)  = o ( t )  - ¢ ( t ) ,  ;o 12(t)-- o~(s) ds, 
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(2.1) 

co 2 = c3A 2. (2.2-2.4) 
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The time derivative of the solution is 

.~=-toA sn dn. (2.5) 

The values of A(t) and ~b(t) are obtained by solving 

A= e lfo'K to 4K f(A cn, -Ato sn dn) sn dn dg,  (2.6a) 

J fo 'K Ato 4K f(A cn, -Ato sn dn) cn d~, (2.6b) 

where K = K(1/2) = 1.85407... is the complete elliptic integral of the first kind of modulus 
m = 1/2, and cn = cn (g, 1/2), sn -- sn (~, 1/2) and dn = dn (g, 1/2) are Jacobi elliptic 
functions of modulus m--1/2 [9, 10]. 

We consider two special types of quasi-pure-cubic oscillators (1.2), as follows. 
(i) Type I:f(x, 2)---j~(x). From equations (2.6) one has 

A=0,  $_= e 1 f f  K Ato 4K J~(A cn) cn d~. (2.7a, b) 

Defining 

• ( A ) -  1 1 fo 4K Ato 4K J~(A cn) cn d~,  (2.8) 

one finds that $ ( t ) =  c o t  + $o, and then the EKB approximate solution is 

x(t)=A cn [(to-eO)t-d~o, 1/2]. (2.9) 

(A zero subscript in a function denotes the value of this function at the initial time t = 0.) 
The values of A and $0 are obtained from the initial conditions of the oscillation. 

(ii) Type I I : f (x ,  ~) =f2(~). For this case, equations (2.6) become 

. ~ = e  1 fo *z ca 4K J2(-Ato sn dn) sn dn d~,, 6=0.  (2.10a, b) 

Then the solution is 

x(t)=A(t) cn [-Q(t)-~bo, 1/2], (2.11) 

where 

fo fo g2(t)= to(s) ds=x/~3 A(s) ds (2.12) 

and A(t) is the solution of equation (2.10a). 

3.1. EXAMPLE A: f(x, ~)=x 

The equation is 

3. E X A M P L E S  

X+C3X3+ex=O. (3.1) 
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The oscillator is of type I. From equation (2.8) one finds that [10] 

1 1 l "')K 2 E -  K a 
. . . .  cn 2 d~,= - - -  , (3.2) 

co 4K J0  coK co 

where K = K ( I / 2 )  and E = E ( 1 / 2 ) =  1.35064.. .  is the complete elliptic integral of the 
second kind with modulus m = 1/2. Then a = 0.4569 . . . .  The approximate EKB method 
solution is 

x (  t) = A cn [(1 + e a  / co2)cot - dpo, 1/2]. (3.3) 

As is known, the exact solution of this oscillator is 

x ( t )  = A cn [o.t-~b0, m] (3.4) 

with o .2 = E + c3A 2 and m = c3A2/(2o.2). 
In Figures 1 and 2 are plotted the approximate solution given by equation (3.3) and the 

exact solution given by equation (3.4). The approximate solution is better for larger 
oscillations because the pcrturbative term is less important. The differences between the 
approximate and exact solutions come principally from the difference between the periods 
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Figure 1. Approximate ( ) and exact ( O)  solutions of the quasi-cubic-oscillator ~ + x 3 + 0 - 1 x = 0 ,  with 
initial conditions x ( 0 ) =  2 and ~ (0 )=  0. The approximate solution is obtained by using formula (3.3). The exact 
solution is obtained by using formula (3.4). 
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Figure 2. Approximate ( ) and exact (O)  solutions of the quasi-cubic-oscillator ~ + x 3 + 0. I x = 0, with 
initial conditions x(O) = 1 and .~(0) = O. These solution are obtained as indicated in the caption to Figure 1. 
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of  the two solutions. In the oscillator of  Figure l the approximate period, T ~ - - - 4 K ( I / 2 ) /  
[co+(ea) /co]  is Ta=3.62, whereas the exact T = 4 K ( m ) / c r  is T=3.64.  However, for the 
oscillator of  Figure 2, the difference is, as expected, larger: T =  6.9 and T, = 7-I. 

3.2. E X A M P L E  B :  f(x, k ) = x :  

The equation is 

5i + c3 x 3 + e x  2 = O. (3.5) 

The oscillator is of  type I. From equation (2.8) one easily finds [10] that @ = 0. Then the 
solution is given by 

x ( t ) = A  cn [cot-@o, 1/2] (3.6) 

with co 2= c3.42. This is the exact  solution of  the non-perturbed (e = 0) oscillator. A similar 
result is obtained with this same perturbative term x 2 for quasi-linear oscillators: the 
Krylov-Bogol iubov method gives an approximate solution that is the exact solution of  the 
linear (non-perturbed, e = 0) oscillator [7]. In Figures 3 and 4 are plotted the approximate 
solution given by equation (3.6) and the numerical solution obtained by using a fourth 
order Runge-Kut ta  method. As in example A, the approximate solution is worse for 
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Figure 3. Approximate (- ) and numerical (O) solutions of the quasi-cubic-oscillator .~+ x3+ 0. ix ~= 0, 
with initial conditions x(0)= 3 and 2(0)= 0. The approximate solution is obtained by using formula (3.6). The 
numerical solution is obtained by using a Runge-Kutta method of fourth order. 
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xN'x Figure 4. Approximate ( - - )  and numerical (©) solutions of the quasi-cubic-oscillator ~+0,1x 2=0, 
with initial conditions x(0) = 1 and .f(0) = 0. These solution are obtained as indicated in the caption to Figure 3. 
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smaller amplitudes because the perturbation ex  2 of the cubic force is comparatively larger. 
For quasi-linear oscillators the opposite is the case: smaller amplitudes imply better 
approximate solutions. 

3.3. E X A MPL E  C: f(x, .~)= I$c[.~ ( Q U A D R A T I C  D A M P I N G )  

The oscillator is 

g + c3x3 + e]£]~=O.  (3.7) 

The oscillator is of  type II. The amplitude equation (2.10a) is [10] 

~=_6:.42C0 1 f0 ~z 4---K Isn dn[ sn 2 dn 2 d ~ , = - g A  3, (3.8) 

where 

Integrating expression (3.8) one obtains 

A (t) = Ao/[l + 2gA2t]'/2, 

with 

(3.9) 

(3.1o) 

12(0 = (x/r~ffg)[(I/A) - (I/A0)]. (3.1 l) 

It is of intcrcst to note that the decaying amplitude for the quasi-pure-cubic oscillator 
is proportional to t -'/2, whereas for the quasi-linear oscillator it is proportional to t-' 
[7, 8]. In Figures 5-7 are plotted the fourth order Runge-Kutta numerical solution and 
the approximate solution given by equation (2. I I) with equations (3.10) and (3. I I). The 
approximate solutions arc good even for perturbativc parameters as large as e = I. 

3.4. E X A MPL E  D: f(x, ~)=sgn (.f) (COULOMB D A M P I N G )  

The equation is 

5i + c3x ~ + ~ sgn (~) = 0. (3.12) 
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Figure 5. Approximate ( ) and numerical ( O )  solutions of the quasi-cubic-oscillator .~ + x 3 + 0.1 [ .~ [ ~, with 
initial conditions x (0 ) - - !  and . f (0)=0.  The approximate solution is obtained by using formula (2.11) with 
expressions (3.10) and (3.1 I). The numerical solution is obtained by using a R unge-Kutta method of fourth 
order. 
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Figure 6. Approximate ( ) and numerical (O)  solutions of the quasi-cubic-oscillator 5~+x3+ I.~1~=0, 
with initial conditions x(0) = 1 and .~(0) = 0. These solution are obtained as indicated in the caption to Figure 5. 
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Figure 7. Approximate ( ) and numerical (O) solutions of the quasi-cubic-oscillator .~+x~+ 1.~t.~=0, 
with initial conditions x(0) = 2 and k(0) = 0. These solution are obtained as indicated in the caption to Figure 5. 

The  osc i l la tor  is o f  type II. The  ampl i tude  equa t ion  is [10] 

where  

"4=-eo~l f0 )K 

In tegra t ing ,  one finds 

sgn ( - A t o  sn dn)  sn dn d ~ =  - - 7 ,  (3.13) 
A 

g =  e / (x /~3  K).  (3.14) 

A = x / A 2 - 2 g t  . (3.15) 

The  osci l la t ions  cease at  the t ime td where A = 0; that  is, 

t~ = .,1o~/2 g. 

Subs t i tu t ing  equa t ion  (3.15) in equa t ion  (2.12) one ob ta ins  

~ ( t )  = (x/~3/3 g)(Ao 3 - Aa). 

(3.16) 

(3.17) 



Q U A S I - P U R E - C U B I C  O S C I L L A T O R S  

T A B L E  1 

Detention time for the oscillator ~ + x 3 + c sgn (.~) = 0 
evaluated by numerical integration, [td],, and by means of 
the approximate expression (3.16), [ta]a=KA~/(26), for 
several values of the initial amplitude Ao and perturbative 

parameter e 

e .40 [ta]. [ta]. 

0.1 4 148.4 148.3 
0.1 2 37.7 37.1 
0.2 2 18.4 18.5 
0.3 2 12.5 12.4 
0.5 4 30.0 29.7 
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The approximate solution is then 

x(t)={A, (t) cn [12(t)-d?°' l/2]' O<~t<~tdl't >I ta ) (3.18) 

where A and g2 given by expressions (3.15) and (3.17). 
In Table 1 are listed the detention times evaluated numerically, [td]n, and approximately 

by expression (3.16), [td]a, for different oscillators and initial conditions. The detention 
time is proportional to A~, in contrast with the quasi-linear oscillator for which it is 
proportional to A0 [7, 8]. In Figures 8-11 are plotted the approximate solutions given by 
expression (3.18) and the numerical solutions obtained by using a fourth order 
Runge-Kutta method. The approximate solutions are good for a wide range of perturb- 
ative parameters e and initial amplitudes. 

4. CONCLUSIONS 

The EKB method applied to the quasi-pure-cubic oscillators is fruitful (remember, for 
example, the accurate expression for the oscillation detention time of the Coulomb damped 
oscillator) and simple (we have been able to find analytic approximate solutions for the 
four oscillators studied). However there were two factors that made this method somewhat 
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Figure 8. Approximate ( ) and numerical (O)  solutions of  the quasi-cubic-oscillator ~ + x 3 + 0.1 sgn (-'0 = 
0, with initial conditions x (0 )=  1 and .~(0)=0. The approximate solution is obtained by using formula (3.18). 
The numerical solution is obtained by using a Runge-Kutta method of  fourth order. 



274 s. BRAVO YUSTE 

~: 0 

- I  

- 2  
0 

i i i 

1 1 i -~ 
10 20 30 40 

Time 

Figure 9. Approximate ( - - )  and numerical (O)  solutions of  the quasi-cubic-oscillator .f + x 3 + 0.1 sgn (~) = 
0, with initial conditions x(0) =2  and ~(0) =0. These solution are obtained as indicated in the caption to Figure 8. 
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Figure 10. Approximate ( ) and numerical (O) solutions of the quasi-cubic-oscillator 
+ x ~ + 0.2 sgn (.~)= 0, with initial conditions x ( 0 ) =  2 and ~(0) = 0. These solution are obtained as indicated in 

the caption to Figure 8. 
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Figure I 1. Approximate ( ) and numerical (O)  solutions of  the quasi-cubic-oscillator 
5i + x~ + 0.3 sgu (.~)= 0, with initial conditions x(0)--2  and ~(0)= 0. These solution are obtained as indicated in 
the caption to Figure 8. 
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more difficult to use for quasi-pure-cubic oscillators than the usual KB method for quasi- 
linear oscillators. The first was that, in deriving the EKB approximate solution, we have 
to handle integrals with elliptic functions rather than circular functions (as in the usual 
KB method). The second was that, for quasi-pure-cubic oscillators where ,4 #0 ,  i.e., where 
the oscillation frequency is time-dependent, the explicit expression for the cn argument of  
the EKB approximate solution requires an extra integration, V = . O - ¢ ,  with 
12=Sco( t )dt ,  as compared with the usual Krylov-Bogoliubov method in which 
£2 = x/b~ t. However, these difficulties are not very serious, as we have demonstrated in the 
examples of  section 3. 
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