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Short-time regime propagator in fractals
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The propagatoP(r,t) for fractals in the short-time regime, i.e., the probability of finding at distanae
timet a particle that diffuses in a fractal substrate Wﬁenr/@tl’dw> 1, is studied in order to elucidate its
full functional form. For finitely ramified fractals it is show@nd, for any other self-similar media, conjec-
tured) that the short-time propagator is given Byr,t)~Pqt~9%/2£% exp(—&*) wherev=d,,/(d,,— 1) and
a=v/2—d;, df andd,, being the fractal and random walk dimension of the medium, respectively. The value
for v agrees with that generally accepted. However, our result for the as yet not well established value of
differs from other recent proposals. We have checked these various short-time propagator proposals by com-
paring them to the short-time propagator calculated numerically for the Sierpinsky gasket. Our numerical
results are precise enough to clearly support the validity of the short-time propagator proposéih here
particular, the validity of our relation fo#) and to rule out the otherS1063-651X(98)11305-3]

PACS number(s): 05.40.+j, 61.43.Hv, 05.60v, 64.60.Ak

I. INTRODUCTION of finding the random walker at timeeon a given site of the
fractal separated by a distancdrom the starting site:
The behavior of many physical systems can be described

in terms of the diffusion of a random walker either on a P(ro)=(P(re, tiri t=0))r 1 jr—r|=r 3)
Euclidean or on a fractal mediufii—4]. This last type of
diffusion is usually termed “anomalous” because it does notwhere P(r;,t;r; ,t=0) is the probability that the random
exhibit the characteristic classical features of the diffusion orwalker starting from a site with position vector at timet
Euclidean media. For example, the mean-square displace=0 arrives at a site with position vectof at timet. The

ment of the diffusing particle is given by configurational average is performed over all possible pairs
of starting and destination sites separated by distan@.
(r?y~2Dt%w, (1)  This Green function is of central importance in diffusion

theory because almost any other statistical quantity related to
dy,#2 being the anomalous diffusion exponént random  the diffusion process can be derived froniit2].
walk dimensionandD the diffusion coefficient. The “nona- For many years even the basic form of the propagator on
nomalous” or classical relation is recovered whiky=2. If  fractals was a subject of discussion, but it is now clear that
the medium is a random fractéle., self-similar in a statis- the origin of the discrepancies stemmed from the lack of
tical sense, such as disordered media, for exantpkeana- identification of the existence of two very different regimes
lytical study of the diffusion process is very difficult. Fortu- for the propagator: the short- and long-time reginies
nately, many of its properties can be understood by studyingarge- and smalk regimes, respectively8[6,9]. Numerical
the diffusion in deterministic fractals. The strict self- and theoretical approaches have been employed in order to
similarity of these structures makes it possible to find rigor-know the anomalous diffusion behavior in these two re-
ous analytical results by means of renormalization techgimes.
niques. For example, by means of the renormalization From a theoretical perspective, there is at present a degree
procedure developed by Van den Brogél6], one can find of consensus about the validity of a stretched Gaussian form
the probability density for the time spent by a diffusing par-
ticle to first reach a given distance i.e., the first-passage- P(r,t)~Pyt ™92 exp(—cé”), (4)
time density, ¢(r,t). In particular, in the short-timgor
large<£) regime in whiché=r/\2DtY% is large, it can be for the short-time propagator, where
proved[7] that this quantity is given by
v=v=d,/(d,~1), (5)
P(r,H)~Ag"? " exp(— C&), (2)
£=r/tY%, ds=2d,,/d; is the spectral dimension ard} is
wherev=d,/(d,—1) andA and C are characteristic con- the fractal dimension. However, the expression for the expo-
stants of the fractal mediunffor example,A=1.82 and nenta of the power-law correction to the dominant exponen-
C=0.98 for the two-dimensional Sierpinski gaskéi7]). tial term is still an open question and different approaches to
However, even for deterministic fractals, there are othethe problem lead to different predictiof8—15. In this pa-
important statistical quantities concerning the diffusion pro-per we improve previous argumen{ig] to strengthen the
cess whose behavior is as yet not well known. A prominentalidity of our prescription fore, namely,
example is the quantity termed propagator or Green function,
P(r,t), defined as thé¢configurational averageghrobability a=v/2—d;. (6)
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An obvious way to approach this question is to resort to
numerical studies of the diffusion process. For example,
O’'Shaughnessy and Procacdib6] and Klafter, Zumofen,
and Blumen 9] have numerically studied the propagator for
the short- and long-time regimes, respectively, on the Sier-
pinski gasketthe fractal typically used for testinglt should
be noted that numerical study of this short-time regithe
regime in which we are interested in this pgperespecially
difficult due to the fact that one must allow the particle to
travel for a time long enough to reach the diffusive limit and,
simultaneously, short enough to be inside the lafgegime.
This implies the use of very large fractal lattices in the nu- CC OB B
merical simulations and, above all, requires a procedure to n o n1 n-1 n
g??g?ngh:tg;retg%Ig{}%ertvﬁigﬁt ?;Zégajgig z\?\fotrhkeneo)f[pglgzi _ FIG. 1. The Sierpinski lattice witm generations. The Iabel_ed
enough to the diffusive limit, which hence could invalidate SiteSAn 1, Bns+1, Cor1, aNdDy. are the raps where the moving

particle that starts from the origin O will be finally absorbed. On the

our conclusions. Therefore, it is crucial to have a criterion tositesAn, B,, C,, andD, the net probability fluxes are calculated

gauge this closeness, especially if one is interested, as in thig eery time step in order to numerically compute the function

paper, in numerically elucidating the faint subdominant be, v it r = 21 This figure would be the Sierpinsky lattice with

lhaVIOIr c.)f th.e propa%ator. The .Cme”?n used 'P tnls papgr '(11:3 generations if one assumes that there were no more internal
argey_ '”Sp're‘_’ by t e_c_ompar_lson ot a numerically obta_lne riangles. The sites within the shaded area were used as destinations
mortality function for finite lattices to the known theoretical j, order to compute the functiof(£) = (P(r, )t%2),  ,_ 4w, In

mortality function for infinite lattices[7]. (The mortality  this case the smallest triangles shown represent 8-generation lat-
function is a quantity closely related to the propagator thajces.

will be defined in Sec. Il A. This way of controlling the
quality of our numerical study makdsve believe)the nu-
merical results reported here much more reliable.

propagator, this is not the case for the exponent of the
power-law subdominant term. We find that this exponent is

Finally, we would like to point out here that numerical in good agreement with the proposed in REd] for the
studies of_the type carried out by Klafter al. cannot resolve “true” propagator. Finally, the results are summarized and
the question about the value of because they analyze a iscussed in Sec. V.

guantity that, although almost equal to the true propagator,
has a different power-law correction to the stretched expo-
nential. This shall be discussed in Sec. IV. Il. FIRST-PASSAGE TIME, SURVIVAL PROBABILITY
The plan of the paper is as follows. Section Il, which is AND PROPAGATOR
divided into two subsections, is devoted to tt@proved)
theoretical derivation of the short-time propagator given by
Egs. (4)—(6). In Sec. Il A we present some definitions and It is well known that fractals are invariant undegecima-
known results to be used later. Our theoretical argument folion due to their self-similarity. The decimation procedure in
the short-time propagator is given in Sec. Il B. Section Il isa deterministic fractal is the inverse process to its generation
devoted to the numerical study of the diffusion process in &y means of an “initiator” and a “generator’[17]. For
two-dimensional Sierpinsky gasket in order to check the theexample, after one decimation, the portion of the Sierpinski
oretical predictions. In Sec. Il A we provide a detailed de-lattice shown in Fig. 1 would become the same structure but
scription of the simulation method. In Sec. 1l B we check without the internal triangleétriangles as th®©A,_,B,,_,).
the reliability of our numerical method by calculating the We will denote as zeroth decimated triangles the smallest
mortality function in the short-time regime for finite Sierpin- triangles of the originali.e., undecimated)attice, as first
sky lattices and comparing it to the exa@ the Laplace decimated triangles the smallest ones after one decimation of
spaceyesult. Also, these results are compared with the anathe original lattice, and so on. Also, we will denote astttie
lytical mortality function corresponding to the infinite lattice. decimated Sierpinski lattice that formed Imgh decimated
This allows us to know under what circumstances thetriangles. Obviously, the zeroth decimated lattice is the origi-
method is reliable to the extent of being able to resolve thanal or “microscopic” lattice. We will say that theth deci-
faint subdominant behavior di(r,t). In the first part of Sec. mated lattice is formed by connectiongthe sides of thaith
Il C, we check a key relation used in the theoretical deriva-decimated trianglesandn sites(the points of bifurcation or
tion of the propagator in Sec. Il. In the second part wevertices). Finally, we will denote as Sierpinsky lattice with
present the results of our simulation for the short-time propagenerations og generation Sierpinsky lattice the subset of
gator and conclude that these numerical results are preciske original lattice bounded by gth decimated triangle. As
enough to clearly support the validity of E¢4) with the  usual, thex generation Sierpinski lattice will be called the
dominant and subdominant exponentand« given by Eqs.  Sierpinski gasket. These definitions can be extended without
(5) and(6), respectively. In Sec. IV we discuss the behaviordifficulty to other fractals.
of the function used by Klafteet al. [9] as propagator. It is We describe the diffusion process as a continuous-time
proved theoretically, and verified numerically, that, thoughrandom walk. The diffusing particle gogsmps)from a site
the dominant exponential term agrees with that of the “true” of the original lattice to one of its nearest neighb@éthe

A. Definitions and some short-time results
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Original lattice, tOO after a(Waltlng) time which is a random vide more arguments in its support. u"\mht) be the prob_
variable. It shall be assumed in this paper that the meagpijlity that the random walker that startedrat 0 whent
value of this random variable is finite. Léf(t) be the first- =g s outside the regio® of radiusr after the timet when
passage-timéeFPT) density of the random walker on timth  there exist no trapéree diffusion). It is clear from the above
decimated lattice, i.e., the probability density that a diffusingdefinitions thath(r,t)<h(r,t). In the argument of Ref7],

particle starting at an-site reaches, for the first time, at time . .

t any of its nearest-neighbor sites. We get the FPT density the re_Iatlc_)nh(r,t)_/h(r,t)=const for_larg@ values, nOt.W'.th' .

(1) of the fractal in then—s s limit: g(t)=lim, g (t). standing its crucial role, was a conjecture. Here we fl|! in th|s
gap and go even further by predicting the value of this ratio.

For simplicity’s sake, let us assume thats equal to the

distance between the original sitgite O) and one or more

A property of the two-dimensional Sierpinsky gasket
shared by many other fractalthe d-dimensional Sierpinsky
gasket, the Given-Mandelbrot curve, the hierarchical perco ) S . .

other fractal sites. For example, in Fig. 1rifs the distance

lation model, .. ) is that it is not possible to go from am ) . o .
‘ P g betweenO and A, the regionR is that limited by the tri-

site to a non-nearest-neighborsite via the —1) connec-
tions without previously passing through its nearest-neighbo ngIesOAan andOC,D,,. Letz, be the number qf paths
onnectionsithat a random walker placed on a site of the

n sites. In short, in these fractals sites are isolated by thei ier of R (SitesA.- B C dD.. i leh
nearest neighbors from the rest of the lattice. This propertymn,tl'e[;l0 ] (S|(tjes n:—n: h.”’ andbp In %u;;)(amﬁéz asl
makes it possible to implement the renormalization proce@Valiabie In oraer to exit this region, an e the tota

dure described by Van der Broef%,6]and, in this way, to number of paths that the random walker can use. For ex-
~ ; ~ ample,zo=2 andz=4 for the two-dimensional Sierpinsky
evaluatey, . 1(S) in terms of,(S):

gasket(see Fig. 1)zo=d andz=2d for the d-dimensional
Sierpinsky gasketzo=3 andz=4 for the Given-Mandelbrot
curve andzy=1 andz=2 for the one-dimensional lattice. It

is clear from the definition of the mortality function thatNf
random walkers started at the si@ when t=0, then
Nh(r,t) different particles arrive at the frontier & during

the time interval (@). When arriving at the frontier, these
particles have two options: either they re-erfwith prob-
ability (1—2zy)/z or they exit with probabilityzy/z. Thus,
one could naively expect that the number of particles that are
~ Dl outsideR at timet [i.e.,Nh(r,t)] is (zg/z)Nh(r,t). But this
Y(r8)=RL(S)], ® is not (strictly) true because, for example, we are not count-
ing those particles that, after arriving at the frontier, re-enter
and finally exit fromR by other sites. However, for short
times, one expects that the number of particles with this be-
Ravior is negligible. We can go a step further and estimate
this number. From the definition ofi(r,t) and because
h(r,t)~exp(—¢") for &1, we know that if a number of
order (zo/Z)Nh(r,t) of particles start at a site of the frontier
of R, say the sitéd,,, and move into this regio®, then the
number of these particles that arrive at any of the other sites

_ Lethy() (or mortality function on then-decimated lat- ¢ e frontier, which are separated by a distance of orger
tice) be the probability that a random walker who starts at ahom A. . after the timet (with t, <t) is of order
n» * *

n site is absorbed by traps located on its nearest-neighbor v o ;

o S S (zo/Z2)Nh(r,t)exp(—£,). This is an estimate of the number
sites in the time interval ((?t From the definitions O,ff“(t) of particles that, for ;hort times, exit froR in this indirect
andhy(t) one hashy(t)=fo¢n(t')dt" and thereforenn(s)  \ay. Therefore, taking into consideration thigt~r andt,
=in(s)/s, so that one can use E() to recursively find ~t, we find that the number of particles outside,
hn(s). Leth(r,t), or mortality function of the fractal, be the Nh(r,t), should be £,/z)Nh(r,t){1+O[exp(—&")]}. This
probability that a random walker who starts at a site is abimplies
sorbed by traps located on its nearest neighbors at distance .
in the time interval (@). Thereforeh(t,r)=[fy(t’,r)dt’, h(r,t)

Yns1(S)=R[¥n(9)], (7)

¥(s) being the Laplace transform gf,(t). The renormal-
ization functionR is known for several fractalg7]. For ex-
ample, for the d-dimensional Sierpinsky gasketR(x)
=x?/[d—3(d—1)x+(d—2)%] [18]. The FPT density
(with the first moment chosen a$ dan be obtained by solv-
ing the functional equation

with %(0)=3%'(0)=1, and where=R’(1), ortime rescal-
ing factor, is the factor by which the time to go from a site to

this equation it is possible to deduf#] that the probability
density, ¥(r,t), for a diffusing particle starting at a given
site to reach, for the first time at time any other site of the
medium separated by a distanceis given by Eq.(2) for
large é=r//2Dtdw

0 14
and, from Eq.(2) one finds that h(r,t) ;{1+O[exp(—§ )i (10)
A(dy—1) for £&>1. One can explicitly check this relation for the one-
h B~ —~ —vl2 —Cegv 9 N
(r1) c ¢ Ten-Cy) © dimensional lattice. In this casdy(r,t)=erfc(&/+2) and

h(r,t)=25%_,(-1)™ lerfd (2m—1)¢/y2]  with ¢

for large €. =r//2Dt. But erfc(x) ~exp(—xX)/(\Jwx) for x>1, so that,
in agreement with Eq. (10), h(r,t)/h(r,t)=1/2
B. The propagator for large & +exp(—4?)/3+--- for £&>1. In summary, we conclude that

In this subsection we discuss the proposal of R&ffor  the ratioh/h is equal to a constantg/z) plus exponentially
the short-time-regime propagator, i.e., Eg9—(6), and pro- small terms.
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With these results in hand we can now proceed to calcu-
late the propagator for the short-time regime as in REJ.
Because the propagatBi(r,t) is the probability of finding a
particle at a site of the fractal separated by a distanitem
the starting site at timé, and because the number of sites
situated betweem andr+dr is given by Qrd~dr, it is
clear that

ﬁ(r,t)=9f P(x,t)x%1dx. (11)
' C
Assuming only that the propagator has the form of &, FIG. 2. Basis vectors used in the simulations to locate the sites
this integral leads to of the two-dimensional Sierpinski lattice and the three site types
according to the relative position of their neighb&sL, andC.
. P02
~ _ 2 gatdi—v _ v
h(r,t)~ e ¢ exp(—cg”) (12) neighbors of every sitév,h}. For this criterion, the sites on

the lattice are classified into three different typRs:L, and
for large ¢&. Comparing this expression with that obtained C as shown in Fig. 2. Once the type of each site is known,

from Eq.(9) and Eq.(10), one finds that the updating of the probability distributioR(v,h,t) for
finding the moving particle on sitfy,h} at timet is easily
c=C, (13) performed. If the coordinates and type of every site on a
given generatrix lattice are found by direct enumeration, any
- dy lattice with an arbitrary number of generations may be con-
YT, S (14)  structed by a recursive procedure.
The identification of every site by the two coordinates
oy A {v,h} is not efficient because there are many coordinate pairs
PO:W’ (15)  corresponding to no site in the finitely generated Sierpinski
lattice. Better memory management is achieved if sites are
. numbered from top to bottom and from left to right, so that
a==—d;, (16)  the top vertex of the main triangle is site number 1 and the
2 right vertex is site numbeN,,,=3(3"1+1)/2. The one-

particle distributionP(N,t), N being the identification num-
ber of a given site, is updated in parallel following the simple
rule (CK or master equation)

where() = 3d; for the two-dimensional Sierpinski gasket. In
the next section we shall check these expressionf(fioit)

[cf. Eq.(9)], for h(r,t) [cf. Eq.(10)], and forP(r,t) [cf. Eq.

(4) with Egs.(13)-(16)], by means of numerical simulation 1
of the diffusion process in the two-dimensional Sierpinsky P(Nt+1)=— X P(M,1). (17)
gasket. 4 neighbors

In order to find the neighbor numbekd we still need the
coordinates and types of all sites that have been stored on the
corresponding vectors:(N), h(N), andT(N).

A. Numerical solution of the CK equation In Eq. (17) we have assumed the microscopic first passage
distribution is#g(t) = 6(t—1). No influence of this particu-

lar distribution on the statistical quantities of the infinjte
fractal) lattice is expected, as has been analytically proved by
renormalization methodkb,6], but in the finitely generated
lattices used in the numerical solutions unavoidable finite
hsize effects dependent afy(t) appear.

IIl. NUMERICAL RESULTS FOR THE SIERPINSKY
GASKET

We carried out our simulations of the diffusion process
numerically by solving the Champan-KolmogordCK)
equation. We considered Sierpinski lattices embedded in
=2 dimensions with a numbeg=4, 6, and 8 of generations.
Notice that if we take the length of the base of the zerot
decimated triangle as the length unit, théni®the length of
the base of the trianglghe gth decimated trianglen which
the lattice is inscribed andds the distance from the origin
O to the absorbing traps. The Sierpinski structures used in In this subsection we test our implementation of the nu-
the simulations are a subset of a portion of a hexagonal latmerical method described in the previous subsection by
tice inside the main triangle. Two cordinates locate each sitehecking to what extent we are able to reproduce known
by taking the generators of the hexagonal lattice as a basresults on the mortality function for finite and infinite lat-
and the top vertex of the main triangle as the origin. Nevertices. Moreover, this test will serve to decide under what
theless, it is convenient to change to the orthogonal basisonditions one should expect that our numerical results de-
{e, ,&,} as in Fig. 2 because this divides the lattice into hori-scribe the short-time propagator for an infinite lattice.
zontal sets of sites with a fixed coordinate. In order to To this end a Sierpinski lattice witlp=4, 6, 8 generations
update the probability distributiof(v,h,t) at every time was considered. The particle starts moving from Gitend is
step we have to know the relative positions of the nearedinally absorbed by traps placed on sitgg, By, C4, and

B. The mortality function
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In h(g)+C &

30 05 TTo 15 20 25 10 15 2.0 25
Ing In§

FIG. 3. The mortality function subdominant behavior FIG. 4. The subdominant behavior of the mortality function
h(r,t)exp(C&) as obtained from simulation agairgsfor Sierpinski  h(r,t) (the upper curveand the functiorh(r,t) (the lowest curve)
lattices withg=4, 6, and 8 generationgontinuous line), besides for the Sierpinski lattice withg=8. The dotted line is the exact
the exact asymptotic behavior in the largémit for the Sierpinski  asymptotic behavior ofi(r,t) for the Sierpinski gasket.
gasket(dotted line). The circles correspond to results obtained nu-

merically inverting the exact Laplace transfofry(s). ity function for the infinite lattice, i.e., almost coincident

. . - . with In h,(&§+C¢&", that is, with Inh(§)+C¢&”. Thus, one ex-
Dy, with the ngarest ne!ghbors of the origin belor_1g|ng Fc.) thepects that, inside this interval of confidence, the behavior of
same decimatiorisee Fig. 1). Hence, the following initial

" e Ay .= . the mortality function on the Sierpinski gasket is well ap-
conditions are satisfied by the probability distribution proximated by the corresponding one on the Sierpinski lat-

P(N.Y): tice with eight generations given the fact that for this finite
1, N=N, lattice and for this range of we are able to resolve the
P(N,t=0)= 0 NN (18)  exponent of its faint subdominant behavior. For example, a
) 0

linear fit of Inhg(§)+C¢” inside the confidence interval

whereNy=N.,..—29 is the identifying number of the origin [1.3,1.8 leads to the estimation af/2=0.87, in remarkably
site. good agreement with the exact value for the infinite lattice

The boundary condition imposed by the trap sites is takert/2=In 512(In 5-In 2)]=0.878. On the other hand, the
into account by ignoring these sites in the sum of B&f) fact that the line forhg(¢) is separate fronin(£) by an al-
whenN corresponds to one of their neighbors. The probabilImost constant distance on the above interval means that dif-
ity flux towards the trap$(r,t) is measured at every time fusion on this finitely generated Sierpinski lattice cannot ac-
step. Its sum fromi=1 to a givent is the mortality function ~count for the amplitudeA(d,,—1)/C of the short-time-

h(r,t). regime mortality functionsee also Fig. ¥ Obviously, this
In Fig. 3 we have plotted on a double-logarithmic scaledistance shrinks as the number of generations is increased.
the results foh(r,t)exp(C") againsté as obtainedi) from Outside the confidence interval and for larger values of

simulations for Sierpinski lattices witg=4, 6, and 8;(ii) In £ we see that the line loses its straightness and begins to
from the exact asymptotic expression for the laggamit for curve. We attribute this behavior to the appearance of finite-
the infinite lattice size effects, i.e., as a manifestation of the fact that the diffu-
sion is really taking place on a finite lattice. The figure
clearly shows that these finite-size effects appear edrler

for smaller values ot) for the smaller lattices. Inside these
regions of¢ values, the simulation results are not reliable in
with A=1.82 andC=0.98 [7]; and (iii) from numerical the sense that they are not able to describe the behavior of

Laplace inversion oﬁg(s)=z,~bg(s)/s, which can be calcu- the mortality function on the infinite lattice, i.e., on the Sier-
lated exactly by means of renormalization equations as walinski gasket. For example, if we had used the values of
shown in Sec. Il Alcf. Eq.(7)]. (It is important to note that hg(&) aroundé=2.5 to predict the power-law correction ex-
the agreement of our numerical results with the “exact” ponent ofh(&) we would wrongly find a much lower value
ones obtained by numerical Laplace inversion for the thre¢han — v/2.

finite lattices is a good test of the reliability of our simula-  Finally, it is worthy of note that there exists a maximém
tions.) This figure clearly shows that, for example, it is not value beyond whicting(§) is equal to zero. This value is the
possible to use the Sierpinski lattice with four generationgne assigned to éballistic, nondiffusive)particle traveling
(g=4) to study the diffusion on the Sierpinski gasket for thefrom the origin to a trap along an straight line, that is, the
large< regime because the exact asymptotic behavior idirst particle to reach the traps. These particles arrive at the
never reached. However, we see that there exists an intervéiRps in a minimum time equal to the value of the distante 2
of £ values(that we shall call interval of confidengesay from the origin to the traps, SO that,.=291 "YW =29/

In £€€[1.3,1.8, where Inhg(§+C¢ vs In¢ is almost a wherev=d,,/(d,—1). This implies that the width of the
straight line that runs parallel and is almost coincident withinterval of ¢ values where one can confidently extrapolate to
the theoretically known subdominant behavior of the mortalthe asymptotic largé regime grows exponentially with.

A(d,—1)

In h(é)+Cé&=In C

14
- z In f, (19)



57 SHORT-TIME PROPAGATOR IN FRACTALS 5165

-1.0— T T -0.4 T T T

05+

In f(€)+C &'
In f,(€)+C £
S
3

. . L d -1.0L# . .
15 20 25 0.0 0.5 1.0 15

Nk In&

FIG. 5. Subdominant behavior of the propagaRir,t) ob- FIG. 6. Subdominant behavior d?,(r,t) at t=1000. Here
tained from an average over all sites within the shaded area in Fig.a(€) denotesP,(r,t)t%? Simulations were carried out on an
1 andt<2x 10°. The squarécircle) symbols denote the simulation 8-generation lattice. The straight line has a slopergfs=0.321.
results when the shaded triangle is an 8-generation (6-gengration
lattice. as a typical value inside the extrapolation interval.
An additional check of these results was obtained from a
C. The propagator P(r,t) and the h(r,t) function direct simulation of the propagator. We took into account
hat the propagatoP(r,t) is a structure-averaged quantity.
hus, we define a functiofi(¢) including all the¢ depen-
dence of the propagator as

In Sec. Il B we have shown that starting from the genera
form of the propagator given in E@4) and taking into ac-
count the key result of Eq10), it can be proved thak
=v/2—d; and thaty coincides with the widely accepted f(&)=(P(r,t;r=0,t=00t%?), | . 11, (20)
valuev=d,/(d,—1). In this subsection we present numeri-
cal evidence supporting the validity of E(L.0) and simula-
tion results for the propagator itself, which shows that Where the average is performed over all destination lattice
adjusted values indeed agree with our proposal for the Siesites and time steps. A space-time average is necessary in
pinski gasket embedded in two dimensions. order to eliminate the local space structure observed with the

In order to compute a numerical value for the probability usual snapshot methddee Fig. 6).
of finding the moving particle at a distance from the origin  The Chapman-Kolmogorov equation was solved in the
larger thanr at timet, A(r,t), we have calculated the net 11-generation Sierpinski latticghe largest lattice that our
flux entering the border sites,, B, C,, andD, (see Fig. computer can work withstarting with the probability distri-

1) at every time step. Then a numerical integration of this Pution P(r=0,t=0)=1, P(r,t=0)=0 if r#0. Two cases
were considered. In the first, the average was restricted to the

f/lvlft);] Irezdzsé tsvfgr%rgx;??ﬁi \éilrt:]%serfdg]grétgr’]etra_mtﬁé of .the time intervalt<2x10° and to the sites within the shaded

) ' . triangles of Fig. 1, which are 8-generation triangles. We ig-
triangles formed by the vertice®, A,,, andB, or O, C,, . . ) L
andD,,. In Fig. 4 we have plotted the subdominant behaviornored the 8-generation triangles adjacent to the origin in or-

n 7" ) L i der to allow the diffusive regime to be reached. In the second

of the mortality function and the functioh(r,t) in the g case, we carried out the same calculations but now with the
=8 case(the entire lattice used ih(r,t) simulation was a shaded triangles being 6-generation triangles and the same
g=11 Sierpinski lattice). The plotted curves are almost partime interval.
allel straight lines in th& value region where extrapolation In Fig. 5 the simulation results for the subdominant be-
to the infinite lattice is significant. This means thgtr,t)  havior of f(¢) [i.e., Inf(§+cé” vs In¢] are plotted for both
andh(r,t) are proportional in the largé asymptotic limit. ~ cases. We find a behavior very close to that we have seen for
At very short times, i.e., forE=¢n,,, the two functions the mortality function in Fig. 3which is not very surprising
ﬁ(r,t) and h(r,t) tend to zero. The relatiorlﬁ(g)/h(g) taking into account that, as was discussed in Sec. Il B, the

~(20/2)&% 92 follows from Egs.(9), (10), and(12) [no- two.quan_titifas are c!osely related): a line that is almost
(20/2)¢ 4s49), (10) (12) straight within a certain interval and that becomes curved for

tlce}hatv:') by Eq.(14)]. A linear fit of the numerical data larger values ofé. We will interpret this behavior in the
for h(£)/h(§) on a double-logarithmic scale using the con-same way as was done for the mortality function. Thus, we
fidence interval Ife[1.3,1.9 gives us numerical estima- take the interval of values where the plot of If(§)+c&” vs
tions for the exponen¢é= a+d¢— v/2 and the proportional- | ¢is almost straight as the confidence interval in which the
ity constantz,/z. We have found that latter exponent is propagator(including its subdominant tefnfor an infinite
indeed small £=0.02) as expected, which in turn means |attice is well described by the propagator for the finite lat-
that our proposala=wv/2—d¢ is probably correct in the tice. We interpret the fact that the line is curved for larger
infinite-generation lattice as the difference found on theyalues(outside the confidence interyals a manifestation of
finite-generation lattice has its origin in finite-size effects al-the fact that the diffusion is really taking place on a finite
ready described in the previous subsection. It is also notgattice; i.e., we are here seeing finite-size effdoistice that
worthy thath(&)/h(£) is equal, within the error bars, to the these effects appear for smaller valuestdbr the smallest
theoretically expected constary/z=1/2, whereé is taken lattice case). For the case in which 8-generation triangles are
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used, we see that inside a certéoonfidence)interval, say cific sites, which lies on the sid€8A,,0B,, ... of the

In £€[1.7,2.1], the line is approximately a straight line. A triangles in Fig. 1. In the particular case of the two-
linear fit within this interval, assuming the values of dimensional Sierpinski gasket it is intuitively clear that the
=In 5/(In 5—In2) andc=0.98, leads taw=—0.79 andP,  propagation along the sides of the main triangle is faster than
=0.67, which compare reasonably well with our theoreticalalong a path forming an angle with them as a consequence of
predictions of Eq.(15) for the two-dimensional Sierpinski the triangular holes appearing in all scales that the diffusing
gasket ¢=—0.707,P,=0.444). It is worth noting that the particle must go around. As the propagator is defined as the
fitted values are very sensitive to the values used fand v. structural average of the transition probability between two
For example, if the improved valuyd 9] c=0.981 is used, sites(3), it can be expected th&(r,t) <P(r,t).

the linear fit leads tax=—0.74 andPy=0.63, which are We start by showing analytically that, although the two
even closer to our theoretical predictions. This sharply con*propagators” are very close, they exhibit different power-
trasts with other theoretical predictions such as those of Refaw corrections to the same stretched exponential. In Refs.
[9] [a=akzms=(d;—d,/2)/(d,—1)=0.321, Ref. [12] [5,6] Van den Broeck developed a renormalization scheme
[@=(ds—d;) v/2=—0.193, or Ref.[15](a=0), which are for P,(2",t), the probability of finding the random walker
clearly ruled out. precisely at the nearest neighbors of the origin afteteci-

The (relatively) large difference between our theoretically mations of the two-dimensional fractal latti¢gee Fig. 1 at
predictedP, and the numerically obtained value may be due timet. He found that the following exact asymptotic relation
apart from the uncertainties in the linear fit in Fig. 5, to thein the Laplace space holds:
fact that the amplitude of the propagator in the short-time

regime for our 8-generation lattice case could be substan- Pa(r,s) 1/d,, 21
tially different from that of the gasket, as is the case for the BA(0,9 ~ex —ersTh. (21)
amplitude of the mortality function(this was discussed

above in Sec. Il B). Taking into account that the probability distribution of return

A feature in this figure not present in that of the mortality to the origin isP,(0t)=P(0f)~t~9%? and inverting the
function (Fig. 3)is the irregular behavior of the subdominant Laplace transform in Eq21) for P (r,t) we find that this
propagator for k1.5 in the 7-generation lattice case. This pseudopropagator is in fact given by E@8) and (5), but
irregularity does not appear in the 6-generation lattice cas@ith o= ayxzg=(d;—d,/2)/(d,—1).
either. We attribute this behavior to boundary effects: for In order to check the above statements numerically, i.e.,
large times there is a small but non-negligible probabilitythat the subdominant behavior &, (r,t) does not corre-
(notice that we are resolving subdominant teyrtisat the spond to that of the true propagator, we have plotted
random walker that is inside our shaded 8-generation latticgP , (r,t)t%?+ c£” att=1000 against Irf in Fig. 6. A rough
has come to this region after visiting the boundary of ourand almost periodic structure is observed, which is possibly
11-generation lattice, thus “realizing” that he is moving in- an effect of the bottlenecks that occur at those sites corre-
side a box, not an infinite lattice. For the 6-generation latticesponding to the transition between thegeneration and the
case, the distance between the frontier and the region ith+ 1)-generation latticésuch as the ones labeled in Fig. 1
which we are computing the propagatae., the shaded tri- Nevertheless, the general trend is well represented by a pref-
angle)is so large that these boundary effects are really negactor ¢* with «=0.3 in agreement with the theoretical pre-
ligible, only showing up for even larger timé¢se., for even  diction ayz5=0.321 for the two-dimensional Sierpinski gas-
smaller values o). Obviously, because the mortality func- ket, but in clear disagreement with the exponent —0.8
tion is evaluated for absorbing boundary conditions, thesgound numerically for the averaged propaga®{r,t).
boundary effects never appear in Fig. 3.

V. CONCLUSIONS

IV. THE PROPAGATOR P, In this paper we have studied the Green function or propa-

In this section we explain why our numerical simulations 9ator on deterministic fractals, which is one of the most fun-
and those carried out by Klaftet al. [9] disagree with re- damental quantities in the statistical description of the diffu-
spect to the value of the power-law subdominant exponent o$ion of random walkers. Starting from an exact result for the
the short-time propagator. The key point is that those authorgrge< limit (or short-time regimpof the mortality function
analyze a quantity that is not the true or configurationallyon a fractal with traps, Eq9), and taking into account Eq.
averaged propagator. That quantity, which we will denote byt10), we derived an expression for the propagator in the
P, (r.1), is defined as the probability of finding at tim¢he ~ asymptotic regime é>1: P(r,t)~Pot™ %% exp(—c)
diffusing particle at distance along the sideof the main ~ With @=v/2—d; andv=d,,/(d,—1). The same functional
triangle, which has a vertex at the starting point of this dif-form for the short-time propagator has recently been pro-
fusing particle. It should be noted that those authors are comfosed by other authors but with very different relations be-
pletely aware that this quantity is not the true or configurafweena and the characteristic parameters of the fractal struc-
tionally averaged propagator. However, it seems that thejure in which the diffusion is taking pladéractal dimension
assume that the two quantities have the same asymptotfl . Spectral dimensiods, random walk dimension,).
form. This is a risky assumption for a disordered medium In order to elucidate this controversy we carried out simu-
because not all directions are equivalent due to the presendétions in a two-dimensional Sierpinski lattice. Specifically,
of holes that serve as obstacles to diffusion, and the functioWe calculated numerically the mortality function, the closely
PA(r,t) only describes the propagation up to tery spe- relatedh(r,t) function, and the propagator. By comparing
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the simulation results for the mortality function with its exact consequence of the local microscopical disorder. Only its
asymptotic behavior we were able to delimit a rangefof average over the whole latti¢the propagatorjs a meaning-
values where the diffusive behavior on a finite lattice is simi-ful statistical quantity with a simple analytical behavior.

lar to that on the infinite Sierpinski gasket. The numerical Simulations showed that the dominant term expf? ap-
results for h(r,t) in the 8-generation Sierpinski lattice Pears in the propagatd?(r,t) and in the pseudopropagator

showed that the relatioh(r,t)/h(r,t)~1/2 is probably true PA(r (’jt) (a_nd_alsoSi_n the nllplrtal_ity fL:)nCti?]n aﬂd firsg—dpas_sage-
for the largeé limit in the two-dimensional Sierpinski gas- M€ density)in a Sierpinski lattice, but that the subdominant

ket. This gives indirect support to our proposed short-timd?0Wer-law exponent takes very different values. The analyti-

propagator. More direct support came from numerical simuC8l results of Sec. II suggest that the same is true in any
eterministic fractal.

lation of the propagator itself in the 11-generation Sierpinsk . .
propag g P An extension of these results to other deterministic frac-

lattice. A structural average over a significant portion of this | Gi Mandelbrot Sierpinski ket
lattice was performed, and the numerical estimates found fofs (e.g., Given-Mandelbrot curve, Sierpinski gaskets em-

a andP, were consistent with the theoretical predictions ofbedded _in higher dimepsioher even random fractake.g.,
this paper [a=w/2—di=—0.707, Py=z,d,Al(zQ) percolation aggregatess necessary in order to check the
707, w

=0.444], but clearly ruled out other recent theoretical pro-pOSSible universality of théshort-time) propagator expres-
posals ' sion proposed in this paper. Work along this line is in

The functionP,(r,t), which describes the propagation Progress.
along the sides of the main triangle, was also simulated and
the results agreed with the same propagator form of(&Q.
but with = ayzg=(d;—d,/2)/(d,—1)=0.321. We thus Partial support from the DGICYTSpain)through Grant
deduce from the above discussion that the probability oNo. PB94-1021, and from the Junta de Extremadura-Fondo
finding a random walker at a given site at time stepro-  Social Europeo through Grant No. EIA94-39 is acknowl-
vided that it started from another given site at titme0, edged. The research of L.A. was supported by the Ministerio
depends explicitly on the positions of those two sites as @e Educacio y Ciencia(Spain).
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