An accurate and simple equation of state for hard disks
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An equation of state for a fluid of hard disks is proposge:[1— 27+ (27— 1)(7/ 50)?] L. The

exact fit of the second virial coefficient and the existence of a single pole singularity at the
close-packing fractiomyy are the only requirements imposed on its construction. A comparison of
the prediction of virial coefficients and of the values of the compressibility fagtarith those
stemming out of other known equations of state is made. The overall performance of this very
simple equation of state is quite satisfactory.1®95 American Institute of Physics.

I. INTRODUCTION The fact that no analytical solution of the Percus—Yevick
. equation for hard disks is known has prevented the deriva-

Hard disks and hard spheres represent model systemg, of 4 two-dimensional analog of the Carnahan—Starling
usefL_ll for the derlva_tlon of rlgorou_s results in statlstlc_al me'equation, although some attempts in the same spirit have
char_ncs as well aS.II’.] a perturbatpn t_reatme.nf[ of fllﬁldjs_s. been reportea*.m‘zoGiven the vast amount of work pertain-
particular, the coefficient8,, appearing in the virial equation ing to the subject already available in the literat(@ewhich
of state our references are by no means an exhaustivettist pro-
posal of yet another equation of state for hard disks, as done
below, seems hardly justifiable. However, the present belief
that the pressure of the fluid diverges at the crystalline close-
packing densit® (in spite of some controver¥y together
(Wherep is the pressurep is the number densit)k is the with the recent analySiS of SanCh]('%ZNhiCh suggests that the

Boltzmann constant, an@l is the temperatujeare easier to virial series contains information about this divergence,
compute in these systems than for any other intermoleculd?rompted us to take such a step. In the spirit of a generalized
potential. Nevertheless, the number of cluster integrals in{two-poind Pade approximant®> we now propose a very
volved increases so rapidly with order that only the first fewsimple equation of state for hard disks that yields the exact
of such coefficients have been calculated so far. In fact, ifecond virial coefficient and has a pole at the density of
took over twenty-five years to go from the sevénth the  crystalline close-packing, namely

eighth® Also, refinements oBs, Bg andB-, which are not 270—1 -1

known analytically, were performed during this perfods Z=|1-2n+ — 7| 2

is well known, taking just the truncated power series is not a To

very convenient method of approximating the compressibilwhere 7= (w/4) po® is the packing fraction and
ity factor Z, especially for moderate and high densities. 5,=(/3/6) « is the value corresponding to crystalline
Therefore, it is not surprising that many efforts have beerclose-packing. The merits and limitations of this proposal are
devoted to the search of better analytical equations of statgest judged from a comparison with simulation data and
for these systems. Loosely speaking, one may identify withirother equations of state. To this end, we select a few
these efforts two main lines of approach. On the one handisimple” and “complex” equations from the literature and
there is a set of equations of state, which we shall refer to asompute the compressibility factor and the prediction of
“complex,” whose aim is geared towards accuracy, either invirial coefficients up taBg and beyond.

reproducing a number of known virial coefficiehts~?or

fitting simulation result$® On the other hand, in the second

approach, equations of state are proposed or derived ih COMPRESSIBILITY FACTOR AND VIRIAL

which accuracy may be sacrificed in favor of analytical sim-COEFFICIENTS

plicity or the inclu;ion of only a r_educed number of fitting With the purpose of making the paper self-contained, we
parameters. We will call these “simple.” The prototypes in gt this section by quoting, in a unified notation, the equa-
this set are the ones arising in the scaled-particle téend  tions of state that we will compare to ours. In increasing
in the free volume approximatiohas well as closely related order of complexity, we consider the following:
derivations’*®"?* And of course the success of the 1 gealed partic,le theoriGPT) '
Carnahan—Starlif§ equation of state for hard spheres, '

p
Z= pTT=1+sz+B3p2+B4p3+--- (1)

which may also be obtained by combining the compressibil- _ 1 . 3)
ity and virial equations of state arising in the Percus—Yevick (1—7p)?"
3 . .
theory?® is undeniable. 2. HendersorfH)!8-20
B 1+ ay 7]2

30n leave from Laboratorio de EnéegBolar, 1IM-UNAM, Apdo. Postal 34, -7
Temixco 62580, Mor(Mexico). (1- 77)2 ’
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TABLE I. Virial coefficientsb, as obtained from Eq23) (SPT), Eq.(2) (this work), Eq.(4) (H), Eq.(5) (A), Eq.(6) (B-L), Eq.(7) (W), Eq.(8) [Levin (6)],
and Eq.(9) [Pade(3,4)]. Entries with an asterisk indicate that the equation of state yields the corresponding known virial coefficient by construction.

n Knowr? SPT This work H A B-L W Levin(6) Pade(3,4)
2 2 * * * * * * * *
3 3.12801775 3 3.011 * * * * * *
4 4.25785446 4 4.042 4.256 3.912 * * * *
5 5.336897 5 5.105 5.384 4,569 * * * *
6 6.3626 6 6.211 6.512 5.203 * * * *
7 7.351 7 7.371 7.640 5.861 7.392 7.190 7.346 *
8 8.338 8 8.596 8.768 6.563 8.462 7.928 8.300 *
9 — 9 9.899 9.896 7.324 9.598 8.742 9.239 9.348
10 — 10 11.293 11.024 8.152 10.818 9.639 10.175 10.426
aReference 3.
where ay=b;—3=1—(43/m) = 0.1280 and we have with a,=(—1"(8)(1-n/6)°bg/bs_, and
introduced the reduced virial coefficients Pn==m-0 Pn+1-mdm:
by=B,/(B,/2)" "% 7. Pade(3,4) approximant®
17
3. Andrews(A) 52 n
3 1 = Snthn? ©)
U Y ’
z= —=In(1-17) Zh-0Sn7"
(1=nlno)(1—apn) 7 o _
5 where the coefficients, ands, are obtained as to reproduce
370 (1= axn)+ 375 1-nlno the virial coefficients througlyg.
— & _ Y1 _ ' ' . .
Xa7 (I=aano)n 1=anm The first three of these equations belong to the simple class,

©)

with ap= bz~ 3 — 7o '=3— (4V3/7) = 0.2947;
4. Baram and LubafB-L)®
4

D
+ = Pin(1- 7l 7o)+ 2,
n n=1

Z= b - C
1_7]/770 n770 n

X (9l 7o)" "1,

whereC= 74(6bg7o— 5bs) and D =3074(bg 70— bs);
5. Woodcock(W)°®

(6)

~1+39/n

= 7
1—=nlng @)

6
+ 2 (by=4) (7l )" Y

n=2
6. Levin (6) approximant’

24=Opn77n
Z=55 . 8)
n=0an7

while the others are complex. In Table | we list the virial
coefficientsb, up to n=10 as obtained from the different
equations of state and compare them with the currently
known values. We have arranged the columns preserving
the order of complexity and so the third column contains the
values from our proposal. On comparing these values, it is
clear that Eq(2) not only provides reasonable estimates of
the virial coefficients, but also performs better than some of
the more complex equations with a minimum of input. For
instance, it is striking that the seventh virial coefficient pre-
dicted by Eq.(2) is more accurate than the one coming from
Egs. (6) or (7), which explicitly include up to the sixth co-
efficient in their construction.

While the results we have just mentioned are already
suggestive, a more indicative source of performance is the
analysis of the compressibility factor. This is done in Table
II. Here, we have included the simulation data of Erpenbeck
and Lubant® which are considered the most accurate pres-

TABLE Il. Compressibility factorZ as obtained from simulation and from the same equations of state as in Table I.

nolm Simulatiorf SPT This work H A B-L w Levin(6) Pade(3,4)
14 8.306 8.061 8.359 8.494 7.625 8.465 8.290 8.343 8.409
15 6.6074 6.396 6.558 6.696 6.126 6.663 6.574 6.609 6.635
1.6 5.4963 5.329 5.427 5.548 5.155 5.522 5.473 5.495 5.507
1.8 4.1715 4.062 4.107 4.194 3.984 4.179 4.161 4.171 4.174
2.0 3.4243 3.348 3.372 3.436 3.311 3.427 3.420 3.424 3.425
3.0 2.0771 2.054 2.058 2.078 2.057 2.077 2.077 2.077 2.077
5.0 1.4983 1.492 1.493 1.499 1.495 1.498 1.498 1.498 1.498
10.0 1.21068 1.2094 1.2095 1.2107 1.2104 1.2107 1.2107 1.2107 1.2107
20.0 1.09743 1.0973 1.0973 1.0975 1.0975 1.0975 1.0975 1.0975 1.0975
30.0 1.06337 1.06332 1.06333 1.06344 1.06343 1.06344 1.06344 1.06344 1.06344

aReference 10.
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includes the global behavior of the virial series as determined

LIS AL LA S A S S Y B B B B

coefficient by construction, does not perform better than the
b SPT equation.

45 - by the divergence at close packitfgwhile Henderson’s fo-
r cuses on a specific coefficient. One should be cautious, how-
s [ ever, in thinking that taking into account the singularity at
- close packing is enough to devise an accurate equation of
z r state. In fact, the equation proposed by Andrews, &.
25 which contains this feature as well as fitting the third virial

We have mentioned in the Introduction that the hard-disk
F model is a useful tool for the analysis of many problems in
5 bttt statistical mechanics. Therefore, the availability of an accu-
0.68 0.73 n 078 0.8 rate and simple equation of state, such as @y. may be
very valuable if one wants to deal with problems near or
FIG. 1. Compressibility factoZ vs the packing fraction; in an interval  INSide the metastable fluid region, in a perturbation treatment
comprising the metastable fluid region. From top to bottom at the right end0f two-dimensional fluids, etc. For instance, in the applica-
the curves correspond to E() (this work), Eq. (6) (B-L), Eq. (9) [Pade  tion of the generalized effective liquid approximation to

(3:4], Eq.(7) (W), Eq.(4) (H), Eq.(8) [Levin (6)], Eq.(5) (A), and Eq.(3) _di i
(SPT). The solid lines refer to “simple” equations, while the dashed lines hard-disk freezlnﬁf one needs the excess free energy, and

refer to “complex” equations. this quantity may be readily derived from E@) as

ently available. One can see that F2).does a good job over NKT Jo '

the whole density range and is clearly superior to the other op 1

si_mple, and even to some of the complex equations, for_the (2790— 1)In( 1Mo 77) —In(1— 7/ 7o)
higher densities. It is worthwhile to stress that the relative _ 70

error incurred through the use of this equation is always less 2(1— 7o)

than 1.5 % within the interval of densities considered. Given (10)

the fact that beyond,,/7»=1.6 this relative error decreases ) o )
dramatically, it is interesting to compare the various equa#\lso, very recently the adsorption kinetics of disks to a
tions at even higher densities. Therefore in Fig. 1 we havéMmooth two-dimensional surface has been analyzed in terms
plotted the compressibility factor as a function of packing®f the activity coefficient y(7)=expZ—1+A,/NKT)
fraction as given from all the equations of state appearing iffvaluated through the eight term virial serfsA similar
Tables | and II. The density interval goes from a little bit analysus could be carried out using the activity coefficient
below the freezing packing fractionyt=0.70) up to that ~ Obtained from Eqs(2) and (10). .

of random close-packingrzcs=0.82)7 and so it contains Finally, it is interesting to mention that if the same ap-
the metastable fluid region. Here one can easily see that EQroach were used for a hard-rod system, the resulting equa-
(2) is wholly consistent with the Pades,4) approximant, tion of state would be the exact one. However, if one wants
which is considered by SancHézo be very accurate, and to take a similar route in the case of hard spheres the out-
that only Eq.(6) also shares this consistency for all densities.COMe is not so satisfactory.

This is in our opinion rather impressive in view of the sim-

plicity of the equation that we are proposing. ACKNOWLEDGMENTS
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