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The approximate solution, to first order, of non-linear differential equations is studied
using the method of harmonic balance with generalized Fourier series and Jacobian elliptic
functions. As an interesting use of the series, very good analytic approximations to the
limit cycles of Liénard’s ordmary differential equation (ODE), X+g(Xy=f(X}X, are
presented. Specificially, # is shown that, contrary to an opinion given in a weli-known
textbook on non-linear oscillations, g(X'} not only modifies the period bug influences the
topology. In the gensralized van der Pol equation with f{X)=e{1~X?) and g(X}=
AX +2BX? for £ <91, the presence of zero, one, or three limit cycles is found to depend
on the value of A/ B

1. INTRODUCTION

Simpie harmonic oscillators (SHO} form the basis for understanding various ideal concepts,
but many interesting features of real systems are a consequence of their anbarmonic
character.

The simplest possible non-linear extensions of the SHO are oscillators that obey the
ODEs

X2+ AX?+BX?=E  where X =dX/dy, (LD

and where p = 4 for the anharmonic symmetric and p = 3 for the anharmonic¢ asymmetric
oscillatar (ASO and AAQO). We have used the Jacobi eiliptic functions in a series of
papers to study complete analytical solutions of these equations, and have applied the
results to many different problems including the quantum ASQ [1] and AAO [2], and
such exotic phenomena as the evaporation of the primigenial microscopic black holes [3].

Qur series [4] are also useful for finding approsimate solutions in other branches of
physics, For example, we have used [ 3, 6] these generalized Fourier series with a harmonic
balance method fo find an approximate solution of equations of the type

X+ X3 =e(1-XHX. (1.2)

In this paper we give an interesting example of very good analytic approximations to
the timit cycles of Liénard's ODE

X +¢{X)=ef(X, X). (1.3)

To avoid mathematical difficulties as much as possible, we limit our study to the very
simple case of g(X}=AX +2BX"; i.e., to a generalized van der Pol equation

X+AX42BX = ¢{1-X1X. (1.4)

This relatively simpie equation aliows us to show how well the method works in a first
approximation, As a bonus we found the unexpected result that, contrary to an opinion
given in such a well-known textbook on non-linear oscillations as that of Minorsky [7],
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g{X} not only modifies the period but also influences the topology. For £ <01, whether
there are zero, one, or three limit cycles depends on the value of A/ B. Equations {(1.3)
or (}.4) with £ = 0 are called generating eguations, and their solutions generation solutions.

2. THE ELLIPTIC METHODS

To avoid computational difficulties we Hmit our discussion to a first order approxima-
tion. Nevertheless, the usual Fourier series {our special case of m =0} for the elliptic
functions comtain higher harmonics, which is why this very simple approximation has
proved to be quite good in the cases we have studied.

In the potentials we are considering, V{X)= AX"+ BX* for E < V,... = A*/4B, the
generating sobutions [1, 81 are of the form

X{(t)=a pq{ws; k%), (2.1)

with pg a convenient Jacobian elliptic function determined from the tables of references
{1, 8}]. Therefore, when we use the method of harmonic balance we assume a solution of
the form (2.1) with a, @ and k” to be determined.
Substituting equation (2.1) into equation (1.4} gives
Fila, w, k%, &, a) cos ¢ + Fo{a, w, k%, g, a) sin ¢ + (higher order harmonics) =0,
2.2

where ¢ is the generalized circular function of the case being considered {4}, and o
cotlectively denotes any parameter which appears in the non-linear function f(X, X). We
first take F, =0 and F, =0, using the method of harmonic balance {9].

We shall study the different cases of the guartic ASQ with the form of the potential
given above: e, with E =0 for X =0. We shall distinguish three cases of the quartic
oscillator, as follows: (I} Consisting of two types of the potential, B> 0 and A> 0, and
B>0, A<O0and E>0; (1) B<Oand A>0; (1) B>0, A<0 and E <0. We shall see
that these types have as fundamental generating functions the three elliptic functions cn,
sn and dn respectively.

3. STUDY OF THE THREE TYPES OF QUARTIC OSCILLATOR

3.1. OSCILLATOR TYPE [ :
For this type of oscillator, following references {1, 8], one can take a generating function

X =g cen (we; k), 3.1

where a, w and k* = m are constants to be determined. Substituting expression (3.1) into
equation (1.4) gives

(2Ba’ —2aw?m) cn’ — ea’w cn’ sn dn+ saw sn dn+{Aa + aw*(2m — 1)l en =0,
(3.2)

Fourier expanding each of the quantities up to the first harmonic only gives
{(3/4¥28Ba>~2aw’*m)+{Aa+aw’(2m—~1)]} cos ¢
+{eaw{{4(2m —~ 1) E (m)+4K{(m)m,]/3nm)
~ga*w([4 K{mym,(m—2}+8(m*+m,) E(m)}/15#m*)}sin ¢
+ (higher harmonics) =0, {3.3)

where K(m} and E{m) are the complete elliptic integrals of the first and second kind
respectively, and m,=k'*=1-m is the complementary parameter. This is the usual
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treatment in terms of elliptic functions, where the argument of sin ¢ and cos ¢ in the

Fourier expansion is the amphitude function ¢ =am{at; m), so that cos ¢ =cn (wt; m) =

cn u and sin ¢ = sn (wt; m}=sn u, Setting the coefficient of sin ¢ to zero one obtains
a’=Sm[(2m ~ 1) E(m}+ mK{m)Y{m;(m - DK(m)+2{m*+ mDE(m)]. (3.4)

The coefficient of ces ¢ can be most simply made zero if the two terms in the bracket
are set to zero: i.e., if X is a generating solution. One then obtams w?=Ba*/m and
wh= A/(1~2m), and from these two equations

A/B=(1=2m}a*/m. (3.5)

We have used as generating solution for X the periodic solution of the generating equation
corresponding to the initial condition, with a equal to the maximum amplitude of the
oscillation. For initial conditions ¢orresponding to a known initial velocity the suitable
elliptic function according to references [1, 8] is sd.. When using X = ak’ sd {wi; m)}, the

only change necessary in the foregoing formulae is to the left side of equation (3.4) which

is now a’m,.

3.2, OSCILLATOR TYPE II

For this type of oscillator the generating solution corresponding to the initial condition
with @ equal to the maximum amplitude of the oscillation is [1, 8] X = a ¢d {wt; m). For
an initial condition of known velocily one uses instead

X =asn{wt;, m). (3.6)

Substituting expression {3.6) into equation {1.4) and, with the same approximation as
before; one now obtains a formula similar to formula (3.3). Setting the coefficient of sin ¢
to zero, one obtains

a’=5mi(1+ m)E(m‘) —m, K(mY/{m,(m— 23K {m)+2(m" + m, ) E(m)]. (N

The coefficient of cos ¢ can be most simply made zero if the two terms in the bracket
are set to zero: i.e., if X is a generating solution. One then obtains w” = —Ba’/m and
w?= A/(1+m), and from these two cguations

A/B=—{1+m)a’/m.
If one uses cd for the generating solution, no change is necessary in the foregoing
formulae.

3.3, oscineator Tyeg 11

For this type of oscillator the generating solutions corresponding to periodic motion
are (following references [1,81) X =a dn (wt; m) and X = ak’ nd (wt; m). Substituting
the first of these generating solutions into equation {1.4) gives

(2Ba” —2aw’) dn’ — ewa’m dn’ sn en+ swam dnsnen+[Aa + aw (2~ m)}dn =0,

The Fourier expansion in terms of sin ¢ and cos ¢ is now calculated with the approxi-
mate ¢ for this case, i.e., ¢ = k | cn u du, which gives cos ¢ =dn u and sin ¢ = k sn u (for
details, see reference [4]). If one limits, as before, the expansion to the first harmonic,

{3/4}2Ba’ ~2a° 0 +{Aa+ aw’(2—m)]} cos ¢
+{aew([4{2~m)E{m}—8m K{m)]/37m)
e’ w([4K{m)m,(m ~21+8{m*+ m ) E(m)]/15#m")} sin ¢
+(higher harmonics) = 0.
Setting the coefficient of sin ¢ to zero one gets
a’ = 5[(2— mYE(m)~ 2m,K(m)}/[m (m —2)K{m) +2(m*+ m,)E(m)]. {3.8)
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Assuming once more that X is a generating solution, one obtains now w’= Ba® and
w* = A/(m~2), and from these two equations

A/B={m—2a’. (3.9)

If one uses as generating solution X = ak’nd (wi; m) the only change necessary in the
foregoing formulae is on the left side of equation {3.6) which is now a’m,.

4. ANALYTICAL RESULTS

4.1. OSCILLATOR TYPE 1

Figure 1 shows the ratio A/ B versus m. For A> 0 and B> 0, one knows that m <1/2;
for A<O and B>0, m>1/2. When m =0, A/ B tends to infinity as expected because in
this case B =0. With m = 0 one has the well-known case of the van der Pol oscillator with

X =acn (wf, m=0)=a cos wf,

and our method gives the same results as the usual analysis with ordinary Fourier series.
For m=1/2 one has the quartic oscillator we studied in references [5, 6]. If A< 0 and
B> 0 there is no limit cycle in the upper part of the potential well if A/B < ~2-6. The
possible cycies in the lower part of the well are discussed under oscillator type 1L

2.2. OSCILLATOR TYPE H

In Figure 2, one sees that here A/ B <0 for any values of 0<m <1, and A>0 and
B<{. When m=0, A/B tends to minus infinity, one has the van der Pol oscillator with

X =asn(wt; m=10)=a sin wi,

and our method gives the same results as the usual Fourier series analysis with a’= 4-00,
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Figure 1, The ratio A/ B versus m for the solution on.
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Figure 2. The ratio ~A/ B versus m for the sotution sn.

To have periodic motion, the limit cvcle must lie below the potential maximum: ie,
E < Vipay = — A*/4B. In our first order approximation, one sees additionally in Figure 2
that there is no limit cycle for A/ B> —10-00.

4.3, OSCILLATOR TYPE it

in the example under consideration this is the most interesting case because of the
very limited range of values of A/ B for which there are limit cycles (see Figure 3). Here
we have the double well (E <@ part) of the guartic potennal The limit cycles are
symmetrically situated in each well.

The limit cycles in the lower potential well are limited to the values —2-5000 < A/B <
—1-9994,

~A/8

I+ Gd~ D4 o6 o8 W

Figure 3. The ratio —A/ 8 versus m for the solutiog«fdn.
L
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5. COMPARISON WITH NUMERICAL INTEGRATION

It is instructive to compare these simple analytical approximations with a numerical
integration of the equations. We used the fourth order Runge-Kutta method and illustrate
the results with the value e = 0L

The results for the limit cycles as shown in Figure 4 for the type I oscillator and for
the case A=0-20, and A/B=1-87 from formula {3.5). The {a) curve is the analytical
solution X = 1-9338 en (0-99981; m = 0-40}, The {b) curve represenis the results of the
numerical integration with initial conditions X{1=0)=1-9338 and X{(1=0)=

Figure 5 confirms the non-existence of limit cycles in the case A= -3-0 and B=1-0.
The numerical integration result is for X (¢ =0} :=1-9541 and X{f=0)=0-00. One sees
in Figure 1 that if A/B =3 no limit cycle is possible if B>0. S

{b)
{e}

an

Figure 4. Limit cycles for oscillator type |: (a) analytical solution for X = 1-9338 cn (099981, mt = ¢-40) and
A/ B =187, {b} numerical integration for initial conditions X{1 =0} =1-9338 and X (i =0} =0-00,

LR
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Figure 5. The non-existence of limit cycles for oscillator type 1in the case A/ B = —3-00. Numerical integration
for initiat conditions X {7 = 0)= 1-9541 and X{(t=0)=0-00. :
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Figure 6 shows the results for the type ! oscillator for the case A=2-00and B = ~0-20,
Figure 2 shows that for the value A/B = 100, one has m = (-9990. The (a} curve is the
analytical result X =2-2306 sn (1-00001; m = 0-9990}. The (b) curve gives the numerical
integration results for X{=0)=2-2306 and X{¢=0)=0-00,

Figure 7 checks the non-existence of a limit cycle for the case with A=6-00, B=—1-00,
We give the numerical integration results with initial conditions X{t=0)=2-15 and
X(t=0)=0-00.

The results for the case A= —2-18, and B = 1-00 are shown in Figure 8 for the type 1}
oscillator. The values of formula (3.9} shown in Figure 3 give m =0-86. The (2) curve
represents the analytical solution X = 1-3835 dn (1-3835¢; m = 0-86). The (b) curve gives
the numerical integration results for X (1 =0)=1-3835 and X{t=0)=0-00.

fa) o]

Figure 6. Limit cycles for oscitlator type I1: {a) analytical solution for X = 2-2306 sn (1-601; m = 0-9990} and
A/ B=~10; {b) numerical integration for initial conditions X (¢ =0} =2-2306 and X (1 =0} =000,

oy

Figure 7. The non-existence of mit cycles for oscitlator type Il in the case A/ B = —6+{0. Numerical mtegratlon
for initial conditions X(r=0)=2:2306 and X{r=06}=000,
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Figure 8. Limit cycles for oscillator type HE {a} analytical solution for X = 1-3835 dn {1-38351; m =9-860)
and X{r=0}=1-8260 and X (¢ =0} =000,

b ¥
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Figure 9. Limit cycles for oscillator type 1: (a) analytical solution for X = 1-8260 cn {2:1310s; m =0-74) and
Af B =—218; (b} numerical integration for initial conditions X{t=0}=1-8260 and X{t =0} = 0-00.

Figure 9 represents the resuits for the type I oscillator for A= ~2-18 and B =1-00. The
{a) curve is the analytical result X =1-8260 cn (2-1310¢; m = 0-74). The (b) curve gives
the numerical integration result for X (¢ =0) = 1-8260 and X(f=0)=0-00.

6. CONCLUSIONS

We have described how to generalize the method of harmonic balance to obtain first
order approximations to the periodic solution of differential equations of type (1.3), using
elliptic functions.

We have applied the method to the study of the limit cycles of equation {1.4). The
presence of zero, one, or three limit cycles depends on the value of A/B. For known A
and B, Figures 1.-3 show the number of limit cycles and the approximate analytic solutions,

The maximum amplitude of the oscillations is found to depend only on m, E{m)}, and
K{m).

We have compared the results with numerical integration results {Figures 4-9) and this
comparison shows the analytic approximation to be very good.
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