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Abstract

We study a generalization of the standard trapping problem of random walk theory in which
particles move subdi!usively on a one-dimensional lattice. We consider the cases in which the
lattice is 0lled with a one-sided and a two-sided random distribution of static absorbing traps
with concentration c. The survival probability �(t) that the random walker is not trapped by time
t is obtained exactly in both versions of the problem through a fractional di$usion approach.
Comparison with simulation results is made.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The trapping of Brownian particles by static traps randomly distributed over either
a Euclidean or a disordered substrate is a fundamental problem of non-equilibrium
statistical mechanics and chemistry with a very wide range of applications [1–5]. This is
also one of the oldest problems in random walk theory which was essentially formulated
by Smoluchowski at the beginning of past century in his theory of coagulation of
colloidal particles [1–3,5]. This model has proven useful in research areas such as the
trapping of mobile defects in crystals with point sinks [6–8], the kinetics of luminescent
organic materials [7], the kinetics of photosynthetic light energy to oxygen conversion
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[9], anchoring of polymers by chemically active sites [10], atomic di$usion in glasslike
materials [11], and others [12]. Some generalizations of the basic model have also
been considered recently. The case of a gated (ungated) random walker trapped by a
distribution of ungated (gated) 0xed traps has been proposed in connection with the
kinetics of reactions between complex molecules whose active groups are screened
as the molecules di$use [13]. The trapping problem with many random walkers has
also been studied in one dimension [14] and the corresponding trapping statistics have
been found on Euclidean and fractal lattices [15–17]. The multiparticle predator–prey
problems in which a single 0xed trap, the “lamb”, is captured by one of a set of
N random walkers or “lions” initially placed at a given distance from the prey was
also discussed by Krapivsky and Redner [18,19]. Another quite interesting and diGcult
variation of the standard trapping problem is that where the particle di$uses in a sea
of di!usive traps [5,20].

Trapping reactions between molecules embedded in biological samples and disor-
dered materials are usually handicapped by the porous and statistical fractal structure
of these media [4]. In some cases this gives rise to subdi$usion of the particles, i.e.,
the mean square displacement 〈r2(t)〉 of the particles from the original starting site is
no longer linear on time, but veri0es a generalized Fick’s second law:

〈r2(t)〉 ≈ 2K�

	(1 + �)
t� ; (1)

where � (with 0¡�¡ 1) is the (anomalous) di$usion exponent and K� is the di$usion
coeGcient. Of course, there are many other instances in which subdi$usion processes
appear [21–25]. A useful approach for understanding subdi$usion processes is by means
of the continuous time random walk (CTRW) model in which the random walker
performs jumps with a waiting time distribution with a broad long-time tail:  (t) ∼
t−(1+�) for large t [1–3,21,26,27]. The long-time tail of this waiting time distribution
incorporates, in a statistical sense, the e$ect of the bottlenecks and the dead-ends in the
di$usion of the random walker embedded in the disordered structure, and the model is
compatible with Eq. (1). For subdi$usive random walkers the continuum description
given by the ordinary di$usion equation is replaced by the fractional di$usion equation
[27]

9
9t W (x; t) = K�0D

1−�
t

92

9x2 W (x; t) ; (2)

where 0D
1−�
t is the Riemann–Liouville fractional derivative of order 1 − � [27–29],

0D
1−�
t W (x; t) =

1
	(�)

9
9t

∫ t

0
d�

W (x; �)
(t − �)1−� (3)

and W (x; t) is the probability density that the particle that started at 0 at time 0 is at
x at time t.

Our objective in this paper is to 0nd analytical expressions for the survival probability
�(t) de0ned as the probability that no trap site has been reached by the subdi!usive
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random walker by time t. Two variations of the classical trapping problem (sometimes
called Rosenstock’s trapping problem) are considered: (i) the “one-sided” trapping
problem [14] in which only one half-line of a one-dimensional lattice is 0lled with a
random distribution of static traps (this process could mimic the excitation or produc-
tion of defects on one side of a 0ber by irradiation, the other side being shielded);
and (ii) the “two-sided” trapping problem corresponding to the trapping of a single
subdi$usive random walker placed initially at x = 0 between two half-lines (x¡ 0 and
x¿ 0) randomly 0lled with static traps. We 0nd exact analytical solutions for both
problems and compare them with simulations. As precedents of these results we would
cite the work of Blumen et al. (see Refs. [12,30,31] and references therein) about
the trapping of particles on Euclidean and fractal substrates for random walkers with
waiting time distributions with broad long-time tails:  (t) ∼ t−1−�, 0¡�¡ 1. Another
recent related work is that of Sung et al. [32] in which the nonclassical dynamics of
reactions occurring in disordered media is studied by means of a theory based on the
fractional di$usion equation.

The paper is organized as follows. In Section 2, the exact solution of the one-sided
trapping problem is obtained and compared with simulation results. In Section 3, we
build the extended Rosenstock’s approximation for the survival probability of the par-
ticle in the one-sided trapping problem by calculating an exact expression for the
moments of the one-sided span (the number of distinct sites visited by the random
walker in a given direction). In Section 4, we obtain the exact survival probability of
the subdi$usive random walker for the two-sided case in integral form. This integral
is evaluated in the asymptotic long-time and short-time limits in order to get simple
closed expressions. The paper ends with some conclusions and remarks in Section 5.

2. The one-sided trapping problem

In the one-sided trapping model quenched traps are randomly distributed on, say, the
right-hand side of a one-dimensional lattice (x¿ 0) with concentration c. The random
walker is placed initially upon site x=0 and performs jumps to its nearest neighbor sites
with a waiting time distribution  (t) until it reaches a trap site where it is absorbed.
The survival probability is given by [1]:

�(t) =
t∑

r=1

e−�rP(t|r) ; (4)

where �= −ln (1 − c) and P(t|r) is the probability that the span of the random walker
in the positive direction (the largest distance reached by the random walker for x¿ 0)
is equal to r after t time steps. Now let 	(t|r) be the probability that the site x = r
has not been visited by the random walker by time t (the so-called 0xed-trap survival
probability). Because [33]

P(t|r) =
d	(t|r)

dr
; (5)
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Eq. (4) takes the following form in the continuous limit:

�(t) =
∫ ∞

0
e−�r d	(t|r)

dr
dr ; (6)

or, integrating by parts,

�(t) = �
∫ ∞

0
e−�r	(t|r) dr ; (7)

because 	(t|0) = 0, 	(t|∞) = 1 and e−�r → 0 as r → ∞. For subdi$usive particles,
the function 	(t|r) can be written in terms of Fox’s H function [34]:

	(t|r) = 1 − H 10
11

[
r√

K�t�=2

∣∣∣∣∣
(1; �=2)

(0; 1)

]
: (8)

The time Laplace transform of 	(t|r) is [35] 1

	̃(s|r) =
1
s

[
1 − exp

(
−r

√
s�

)]
: (9)

Then the Laplace transform of �(t) is readily calculated from Eqs. (7) and (9):

�̃(s) =
1

s + �
√

K�s1−�=2
(10)

so that [36]

�(t) = E�=2(−�) ; (11)

where � ≡ �
√

K�t� and E�(z) is the Mittag–LeNer function with parameter � [36,28].
For � = 1, the Mitagg–LeNer function becomes [27,28]:

�(t) = e�
2
erfc(�) ; (12)

with � = �
√
Dt, (K1 ≡ D), and we recover the result for the survival probability of a

normal di$usive random walker in the one-sided trapping problem [4]. For very long
times, the asymptotic expansion of the Mittag–LeNer function [28] allows us to write

�(t) =
n∑

k=1

(−1)k+1

	(1 − k�=2)
�−k + O(�−1−n) : (13)

Thus, an asymptotic time regime is reached for t�1=(K��2)1=�, where the survival
probability exhibits a power-law decay

�(t) ≈ 1
	(1 − �=2)

1
�
√

K�t�
: (14)

This is an algebraic Ouctuation slowdown corresponding to the Donsker–Varadhan
limit [1,2,37]. We compare in Fig. 1 the exact survival probability for a subdi$usive

1 Equation (9) can be obtained by other approaches: see (Ref. [35]).
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Fig. 1. Survival probability �(t) versus � = �
√

K�t�. The circles are simulation results for subdi$usive
walkers with � = 1

2 . The squares are simulation results for normal di$usive walkers with  (t) = e−t . The
lines are the corresponding exact results given by Eqs. (11) (solid line) and (12) (dashed line), respectively.

random walker with a waiting time distribution with the form of the Pareto law

 (t) =
�

(1 + t)1+� (15)

and � = 1
2 . Taking the distance between nearest neighbor sites (jump length) as 1, the

subdi$usion constant is K1=2 =1=[2	( 1
2 )]=1=

√
4�. The concentration of traps used was

c = 0:01.

3. The Rosenstock’s approximation for the one-sided trapping problem

Let S(t) be the number of distinct sites on the positive half-line visited up to time t
by a random walker who started at x = 0 at time t = 0. Then, the survival probability
of the random walker is given by �(t) = 〈(1 − c)S(t)〉 = 〈e−�S(t)〉, the average being
performed over all realizations of the random walker’s exploration of the lattice from
time 0 until time t. By means of the cumulant expansion technique [1,2] the following
equivalent form (0rst expressed in this way by Zumofen and Blumen [38]) is derived:

�(t) = exp

[ ∞∑
n=1

(−1)n
�n�n

n!

]
; (16)

where �n, n=1; 2; : : : denote the cumulants of S(t): �1 =〈S(t)〉, �2 =〈S2(t)〉−〈S(t)〉2 ≡
 2(t); : : : : If we keep the 0rst n + 1 terms of the sum in Eq. (16) we arrive at the
nth-order Rosenstock approximation [1,2,30]. The error made by using this approx-
imation is O(�n+2�n+2). Thus, the condition �n+2�1=�n+2 must be ful0lled for the
nth-order Rosenstock approximation to be reasonable.

For the Rosenstock approximation to be useful for the subdi$usive case, it is nec-
essary to know the cumulants or, equivalently, the moments of S(t) for subdi$usive
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particles. The next step is thus to derive exact expressions for the moments 〈Sm(t)〉,
m = 1; 2; : : : of the one-sided span of a subdi$usive random walker, i.e., the territory
explored in a given direction. The probability density of the one-sided span, P(t|r),
was given in Eq. (5) in terms of the survival probability. Hence

〈Sm(t)〉 =
∫ ∞

0

d	(t|r)
dr

rm dr = −
∫ ∞

0

d
dr

(1 − 	(t|r))rm dr (17)

or, integrating by parts,

〈Sm(t)〉 = m
∫ ∞

0
[1 − 	(t|r)]rm−1 dr ; (18)

where we have taken into account that 	(t|0) = 0 and limr→∞ rm[1 − 	(t|r)] = 0
as a consequence of the stretched exponential behavior of 1 − 	(t|r) as r → ∞ for
subdi$usive particles [34]. From Eq. (18) and the explicit expression of the survival
probability in Eq. (8) we obtain

〈Sm(t)〉 = msm(K�t�)m=2 ; (19)

with

sm =
∫ ∞

0
zm−1H 10

11


z

∣∣∣∣∣∣
(1;

�
2

)

(0; 1)


 dz : (20)

In order to calculate the coeGcients sm, m = 1; 2; : : : we observe that the Laplace
transform of the Fox H function appearing in the integrand in Eq. (20), H̃ (u), is a
generating function of these coeGcients

H̃ (u) =
∞∑
m=1

(−1)m−1 um−1

(m − 1)!
sm : (21)

Taking into account some properties of the Fox functions [39,40,27] we 0nally identify
H̃ (u) with a two-parameter Mittag–LeNer function as follows:

H̃ (u) = E�=2;1+�=2(−u) ; (22)

where, in the last identity, we have used the relation [27]

E�#(−u) = H 11
12

[
u

∣∣∣∣∣
(0; 1)

(0; 1); (1 − #; �)

]
(23)

between the two-parameter Mittag–LeNer functions and the Fox functions [27]. The
function E�#(u) admits the following series expansion [27,28]:

E�#(u) =
∞∑
k=0

zk

	(�k + #)
; �¿ 0; #¿ 0 : (24)
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From Eqs. (21), (22) and (24) we 0nd

sm =
(m − 1)!

	(1 + m�=2)
; m = 1; 2; : : : ; (25)

so that from Eq. (19) we 0nally obtain

〈Sm(t)〉 =
m!

	(1 + m�=2)
(K�t�)m=2 : (26)

Obviously, for �=1 we recover the exact result for the moments of the one-sided span
of a di$usive random walker [14]:

〈Sm(t)〉 =
	[(m + 1)=2]√

�
(4Dt)m=2 : (27)

From Eq. (26) one can calculate the cumulants �n, n = 1; 2; : : : of the one-sided span
distribution, and their direct substitution into Eq. (16) yields the general expression for
the Rosenstock approximation for subdi$usive particles:

�(t) = exp

{ ∞∑
n=1

(−1)n

n!
an�n

}
: (28)

The 0rst three coeGcients an are

a1 =
1

	(1 + �=2)
;

a2 = − 1

[	(1 + �=2)]2 +
2

	(1 + �)
;

a3 =
2

[	(1 + �=2)]3 − 6
	(1 + �=2)	(1 + �)

+
6

	(1 + 3�=2)
: (29)

It is interesting to note that from Eqs. (11) and (28) we get the following identity:

ln E�=2(�) =
∞∑
n=1

an

n!
�n ; (30)

which provides a series expansion of the logarithm of the Mittag–LeNer function.

4. The two-sided trapping problem

In this section we calculate the exact survival probability of a single subdi$usive ran-
dom walker placed initially between two half-lines populated with a random distribution
of traps with concentration c. We will use parallel arguments to the standard ones for
di$usive random walkers [2,41]. We must also mention that an alternative approach
was proposed by Anlauf [42] to 0nd the long-time behavior for the one-dimensional
trapping problem with a di$usive particle.

As a starting point we evaluate the probability W (x; t|x0; t =0) that a random walker
starting from x0 at t = 0 inside a box 06 x6L with absorbing boundaries is at x at



S.B. Yuste, L. Acedo / Physica A 336 (2004) 334–346 341

time t. The function W (x; t|x0; t = 0) satis0es the fractional partial di$erential equation
(the subdi$usion equation):

9
9t W (x; t|x0; 0) = K�0D

1−�
t

92

9x2 W (x; t|x0; 0) ; (31)

with the boundary conditions W (0; t|x0; 0) = W (L; t|x0; 0) = 0, and the initial condi-
tion W (x; 0|x0; 0) = &(x − x0) with 0¡�6 1. Eq. (31) is straightforwardly solved by
separation of variables [27]:

W (x; t|x0; 0) =
2
L

∞∑
n=1

sin
(n�x0

L

)
sin

(n�x
L

)
E�

(
−K�

n2�2

L2 t�
)

; (32)

where we have taken into account that the solution of the fractional di$erential equation
dT=dt = −K��2

0D
1−�
t T is given by a Mittag–LeNer function T (t) = E�(−K��2t�). The

survival probability of a subdi$usive random walker starting from x0 ∈ (0; L) is given by∫ L
0 W (x; t|x0; 0) dx. Let �L(t) be the survival probability of the random walker averaged

over all con0gurations of traps which contain the origin inside a hole of length L. Then
�L(t) =

∫ L
0

∫ L
0 W (x; t|x0; 0) dx dx0, and Eq. (32) yields

�L(t) =
8
�2

∞∑
n=0

1
(2n + 1)2 E�

(
− (2n + 1)2�2

L2 �2K�t�
)

: (33)

The survival probability of the subdi$usive random walker in the two-sided trapping
problem is 0nally given by an average of �L(t) over the distribution of hole lengths in
the random trap con0gurations. This distribution is ((L)=�2Le−�L [2], and consequently
we have

�(t) = �2
∫ ∞

0
Le−�L�L(t) dL

=
8�2

�2

∞∑
n=0

1
(2n + 1)2

∫ ∞

0
Le−�LE�

(
−#n

L2

)
dL (34)

with #n = K�(2n + 1)2�2t�, n = 1; 2; : : :. This is the exact integral representation of the
survival probability of the subdi$usive particle in the two-sided trapping problem.

4.1. Long-time behavior of �(t)

For � = 1 the Mittag-LeNer function reduces to an exponential and the integrals
in Eq. (34) are estimated asymptotically for large times by means of the Laplace
method [2]. However, this approach is not possible for � �= 1. In order to perform
a long-time asymptotic evaluation of the integrals in Eq. (34), we use the following
series expansion of the Mittag–LeNer function:

E�

(
−#n

L2

)
=

p∑
m=1

(−1)m+1L2m

#m
n 	(1 − �m)

+ O
(
L2

#n

)1+p

; (35)
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which is valid for #n=L2 → ∞ in the range 0¡�¡ 2 [28]. Inserting this series
expansion into Eq. (34), integrating term by term, and after some rearrangements we
0nd

�(t) =
2
�2

p∑
m=1

(4 − 2−2m)+(2m + 2)	(2m + 2)
(−1)m+1	(1 − �m)�2m�2m + O(�−2p−2) ; (36)

where we have taken into account that
∑∞

n=0 1=(2n+ 1)2m+2 = (1 − 2−2m−2)+(2m+ 2),
+(s) being Riemann’s zeta function. The dominant term is

�(t) ∼ 1
2	(1 − �)�2K�

t−� ; (37)

which is valid for ��1. Therefore we 0nd an algebraic Ouctuation slowdown of the
survival probability corresponding to the Donsker–Varadhan [37] limit with an expo-
nent two times greater than that of the one-sided long-time behavior in Eq. (14). The
two-sided result �(t) ∼ t−� is well known and has been interpreted as an “avoided
crossing e$ect”: trapping cannot be more eGcient that the probability

∫ ∞
t  (t) dt ∼ t−�

of remaining at the initial site (see Refs. [12,30,31] and references therein). However,
note that this “avoided crossing e$ect” is absent for the one-sided trapping problem
since the probability of trapping �(t) ∼ t−�=2 decays even more slowly than the prob-
ability of remaining at the initial site.

4.2. Short-time behavior of �(t)

A simple analytical expression for the short-time behavior of �(t) can also be
derived. To do so, we calculate the time derivative of �L(t) in Eq. (33) obtaining

d
dt

�L(t) = − 8
L2 K�0D

1−�
t J (�) ; (38)

where we have taken into account that Mittag–LeNer functions are the solution of the
fractional relaxation equation [27] and

J (�) =
∞∑
n=0

E�(−4a2(n + 1=2)2) (39)

with a2 =K��2t�=L2. The major contribution to the sum de0ning J (�) in Eq. (39) when
a is small comes from large n. Hence, to 0nd the lowest-order term in the small-a
behavior of J (�), we can approximate the sum by an integral:

J (�) ∼
∫ ∞

0
E�[ − 4a2x2] dx =

1
2a

Ẽ�(u = 0) ; (40)

where Ẽ�(u) =
∫ ∞

0 e−uyE�(y2) dy is the Laplace transform of E�(y2). To
calculate Ẽ�(u) we will exploit the relation between the Mittag–LeNer and the Fox H
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functions [27,40]:

E�(−y2) =
1
2
H 11

12

[
y

∣∣∣∣∣
(0; 1=2)

(0; 1=2); (0; �=2)

]
: (41)

From Eq. (41) and the properties of Fox functions [39,40] we 0nd

Ẽ�(s) =
1
2
H 21

22

[
s

∣∣∣∣∣
(1=2; 1=2); (1 − �=2; �=2)

(0; 1); (1=2; 1=2)

]
: (42)

Inserting the result in Eq. (42) into Eq. (40), we 0nally arrive at the following explicit
expression for J (�):

J (�) ∼ 1
4a

�
	(1 − �=2)

=
1

4	(1 − �=2)
L√
K�

t−�=2 ; (43)

where we have calculated the value of the Laplace transform for s = 0 by resorting to
the general series expansion of Fox functions [27]. From Eqs. (38) and (43) we can
also write

d
dt

�L(t) ∼ − 2
	(�=2)

√
K�

L
t�=2−1 ; (44)

where the fractional derivative has been performed according to the rule: 0D.
t t

/ =
	(1 + /)t/−.=	(1 + / − .) which is valid for arbitrary real parameters / and . [27].
By integrating Eq. (44) with the initial condition �L(t = 0) = 1 we 0nd

�L(t) ∼ 1 − 4
�	(�=2)

√
K�t�

L
; (45)

and performing the average in Eq. (34) over trap con0gurations we 0nally obtain the
short-time behavior of the survival probability of a subdi$usive random walker in the
two-sided trapping problem

�(t) ∼ 1 − 4�
�	(�=2)

(46)

or, for ��1,

�(t) ∼ exp
(

− 2�
	(1 + �=2)

)
: (47)

This expression is just the zeroth-order Rosenstock approximation �(t) = exp[ − �
〈S↔(t)〉] [see Eq. (16)] because the average two-sided span 〈S↔(t)〉 is simply twice
the average one-sided span 〈S(t)〉 and, by Eq. (26), 〈S(t)〉 = (K�t�)1=2=	(1 + �=2). In
Fig. 2 we compare simulation results for subdi$usive random walkers in the case �= 1

2
with the numerical integration of the exact integral representation of �(t) given by
Eq. (34), the long-time behavior given in Eq. (36), and the Rosentock short-time
behavior in Eq. (47).
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Fig. 2. Survival probability �(t) versus � = �
√

K�t� for subdi$usive random walkers with � = 1
2 for the

two-sided trapping case. The symbols are simulation results for c = 0:01 and 5 × 104 trials. The solid
line corresponds to the numerical integration of the exact expression (34). The dashed and dash–dotted
line are the long-time behavior predictions obtained by keeping a single term and three terms in Eq. (36),
respectively. The dotted line is the short-time behavior given by Eq. (47).

5. Conclusions and remarks

In this paper we considered the one-dimensional trapping problem for subdi$usive
particles. In this problem a single subdi$usive random walker starting at x = 0 on a
lattice randomly 0lled with absorbing static traps with a density c performs a random
exploration until he encounters one of these traps. The quantity of main interest is
the survival probability 0(t) of the particle. We have considered two versions of the
problem: the one-sided case in which only one half-line is 0lled with traps, and the
two-sided case corresponding to a random 0lling of both sides of the line x¿ 0 and
x¡ 0. In the context of ordinary di$usive random walkers, this problem has a long
tradition, and many applications to physics and chemistry have been discussed [1–4].

Great interest has also arisen recently around subdi$usive anomalous processes (for
example, as a way of mimicking transport in disordered media), and a continuous frac-
tional di$usion description has been put forward (see Ref. [27] and references therein).
It thus seems convenient to extend the fruitful trapping model to the case of subdif-
fusive particles. We achieved this objective for the trapping of a single subdi$usive
random walker in one dimension and, by means of the fractional di$usion formalism,
exact analytical expressions were found in terms of the special functions character-
istic of fractional calculus. There is a possibility for these results to be checked in
di$usion experiments performed in constrained geometries and/or disordered materials
[25]. From another point of view, the trapping problem could also be interpreted as a
pseudo-0rst-order reaction of the form A + T → T , where A is the random walker and
T is the trap. There is also an increasing interest in reaction–subdi$usion processes
[43,44], and our exact results apply to a special class of these processes.
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The long-time behavior of the survival probability �(t) has been a subject of par-
ticular interest in the ordinary di$usive trapping problem [1,2,37,42]. In this regime
an anomalous Ouctuation slowdown, known as the Donsker–Varadhan limit, has been
reported. In the one-sided and two-sided subdi$usive models we found the algebraic
decays �(t) ∼ t−�=2 and �(t) ∼ t−�, respectively. For normal di$usive particles, the
algebraic decay �(t) ∼ t−1=2 was found in Ref. [14] for the one-sided trapping case
and interpreted as due to the long explorations carried by the random walkers on
the half-line free of traps [14]. A stretched exponential decay is the corresponding
behavior for the long-time two-sided trapping of di$usive particles [42]. The two-sided
subdi$usive result �(t) ∼ t−� is well known and has been interpreted as an “avoided
crossing e$ect” (see Refs. [12,30,31] and references therein). This e$ect is absent for
the one-sided trapping problem since the probability of trapping �(t) ∼ t−�=2 for this
case decays even more slowly than the probability of remaining at the initial site.

The present work can continue along several directions. First, the generalization
of the subdi$usive trapping problem to the case of N ¿ 1 independent subdi$usive
random walkers could be analyzed as has already been done in the di$usive case
[14]. Application of the same techniques to higher dimensional spaces is also an
obvious approach, but we consider it unlikely to produce exact closed expressions
for the relevant quantities. Trapping models of subdi$usive particles in which the trap-
ping process is stochastically “gated” is also an interesting 0eld. The e$ect of “gates”
in di$usion-limited reactions has recently been considered in connection with reactions
of complex molecules in biological media [13]. The chemically active groups of these
molecules may be screened by the inactive parts, giving rise to e$ective reactivities
described by Poisson processes. The media where these reactions takes place are usu-
ally disordered and reaction–subdi$usion models should provide a better description of
these processes.
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