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Average shape of fluctuations for subdiffusive walks
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We study the average shape of fluctuations for subdiffusive processes, i.e., processes with uncorrelated
increments but where the waiting time distribution has a broad power-law tail. This shape is obtained analyti-
cally by means of a fractional diffusion approach. We find that, in contrast with processes where the waiting
time between increments has finite variance, the fluctuation shape is no longer a semicircle: it tends to adopt a
tablelike form as the subdiffusive character of the process increases. The theoretical predictions are compared
with numerical simulation results.
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I. INTRODUCTION In Ref.[16] Baldassarret al. consider the average shape
for a stochastic process of the forw(t+1)=x(t)+ X,
Complex systems are often described by their lack of avhere 6x is a random variable. Let us denote the average
characteristic length or time scale over many orders of magshape of fluctuations of time spanby (x(t));. Baldassarri
nitude, which gives rise to events whose distribution in size®t al. find that the shape follows the scaling law
is a power law with no characteristic sigieactal behavior.

Examples are everywhefd]: seismic activity, turbulence, (X(1))r=TY2f(t/T), (2
solar flares, Brownian motion, length of rivers and blood
vessels. .. . Inparticular, a power-law distribution with no wherec is the diffusion exponent arfds asemicirclewhen-

characteristitemporalsize events appears in the analysis ofever §x follows a distribution with finite variancé€Gaussian
stock price changd®,3], river floods[4] , Barkhausen noise walks) or a distribution\ (8x) with a broad power-law tail,
[5,6], glassy systemf7—9], atomic cooling[10], and fluo-  N(8x)~(8x) #~1 with 0<u<2, so that the variance is
rescence of quantum ddts1,12. In these cases the resulting infinite (Levy flights). This result had already been obtained
dynamics is strongly intermittent, with bursts of activity by Fisher for Gaussian walk49][Sec. 7.1. The fact that the
separated by long quiescent intervals. average shape of fluctuations is a semicircle for both Gauss-
When these temporal intervals are waiting timétsbe-  ian walks and Ley flights is a nicely surprising result that
tween jumps of sizéx, then the stochastic proces&) can  led us to wonder to what extent it might hold for other walks
be seen as the trajectory of a subdiffusive random walkewith uncorrelated jumps. In particular, we investigated the
(provided that the variance dix is finite). A typical subdif- average shape of subdiffusive stochastic processdxliffu-
fusive trajectory is shown in Fig. 1. Systems that exhibitsive walks of the form
anomalous subdiffusion characterized by an anomalous

Fick's second law X(t+ 8t) =x(t)+ X%, 3
5 2K, y 1 where dx are uncorrelated increments that follow a distribu-
OA0)~ ra+ y)t : (D tion with finite variance andt is a random variable whose

distribution (6t) has a broad power-law taily(t)
where 0<y<1 are ubiquitous in naturgl3,14. [K, is the ~(6t) 7177 with 0<y<1. Figure 1 shows the positiot(t)
(generalizeg diffusion constant and is the anomalous dif- for a stochastic process of this kind with=0.9 and with
fusion exponeni.Also, models based on subdiffusive ran- jumps of unit length §= = 1) made with equal probabilities.
dom walkers are useful for understanding complex systems.

Two nice examples are the “trap model,” proposed to ex- 80 . .

plain aging in disordered systenj§—9|, and the comb 60 1

model, to understand diffusion phenomena in complex struc-

tures such as percolation clust¢ts. 40 1
Recently[6,5,16,18 the study of the average shape of the 20 |

fluctuations of stochastic process€s) has been considered <

as a useful tool to gain insight into the system that generates 0 ™

the fluctuation. Thus, it has been argié8] that the average 20} _

shape of fluctuations is a better tool for discriminating be-

tween theories than critical exponents. -40r )l
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"Email address: acedo@unex.es FIG. 1. Subdiffusive trajectory withx=+1 andy=0.9.
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Il. AVERAGE FORM OF A SUBDIFFUSIVE FLUCTUATION

The average shape of a fluctuation can be calculated

through the expressiqgri6,17]

fxdx XQ(X,t[{x(0)};X0,0%0,T)
0

(X(t))r=lim

X0~>O+

4
fo dx Q(x,t[{x(0)};X0,0X%g,T)

where Q(x,t|{x(0)};X0,0%o,T) is the probability that the
walker with trajectory{x(0)} for t<O0 is atx at timet pro-
vided that he was axy,>0 at time 0 and ak, at time T
without ever touching the axis at=0 in the time interval
(0,T). The upper line in Eq(4) means average over all the
trajectories {x(0)} that reach x, at time t=0. Let
F(x,t|{x(t")};x',t") be the probability that the walker with
trajectory{x(t’)} for t<t’ and who was ax’ >0 at timet’
reachesx>0 at timet without ever touching the axis at
=0; let Q(x,t|x0,0%o,T) be the probability that the walker
is atx at timet provided that he was af,>0 at time 0 and
at Xq at timeT without ever touching the axis at=0 in the
time interval (0T); and letF(x,t|x’,t") be the probability
that the walker who was at’ at timet’ reachex>0 at time

t without ever touching the axis at=0. For walks without
memory (Markovian walk$  Q(x,t|{x(0)};X0,0Xg,T)
=Q(X,t[X0,0%0,T),  FOGH{X() X, t") =F(x,t|x',t"),
and one can writeQ)(X,t|Xy,0Xq,T) as F(X,t|xq,0)F(x,T
—1[x0,0), so that Eq(4) becomeg16,17]

f dx x F(X,t|Xq,00F(X,T—1|Xq,0)
0

(x(1))r=lim .

XO—>0+

JdxF(x,t|x0,0)F(x,T—t|x0,0)
0

This equationis not exacfor subdiffusve walks because they
are not Markovian. However, for subdiffusive walks, the

memory, i.e., the effect of the fact thattatthe particle was
atx’ on the probability that the particle at timbe-t’ is atx,
decays ast(—t') ~¥/I'(1— ) [13]. This implies that the ap-
proximation of F(x,t|{x(t")};x’,t") by F(x,t|x’,t'), and,
consequently, the accuracy of E§) for subdiffusive walks,
improves whert—t' increases ang is close to 1.
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U7/2_1
P(x,u)= exp(— VUK, |x|) 7
VaK,,
one finds forx=0
yl2—1

F(%,u[x0,0)= {72090 (x) — O (x—Xo)]

Y
+ efa(xfxo)(a(x_ XO) _ efa(x+x0)},

®

wherea=\u”/K, and®(x) is the Heaviside step function.
As we are interested in the limit,—0 with x>X,, we ex-
pand the term inside the bracket in powersxgfand get

ur1

F(X,u|xo—0,0) =X K g~ VUK 9)
Y
which implies
Xo 10 X (1_’)’,’)//2)
F(X,t|Xq—0,00= —H1j —= . (10
Kt” VK, t7[(0.D)

Inserting this expression into E@5) and carrying out the
integrations[ 23] one finds that the average shape of a sub-
diffusive stochastic processubdiffusive random walkis
given by

(X(O))r=T"2f (t/T)= VK, T (t/T), (11
where
Y
t\ 72 T |72 (_1’1)’(1_%5)
11
o |
(0,1),(0,5)
g,(t/T)= "
11 (—t/T " (0,1),<1_%§)
22 l—t/T) vy
<°’1>’(§'§)

(12

In Fig. 2 we plot the(normalized average shape of fluctua-
tions for several classes of subdiffusive processes. We see

The probability F(x,t|x,,0) can be calculated by means that the shape tends to a tablelike forrmedecreases, i.e., as

of the method of image& (x,t|Xq,0)=P(x—Xq,t) —P(—X
—Xg,t) [20,21, P(x—Xgq,t) being the probability density
that the free proces&wvithout boundary conditionsthat at
time t<0 was atxg is atx at timet. For subdiffusive pro-
cesses, and fdr ¥/I"(1—y) <1 [22], P(x,t) can be written
in terms of Fox'sH function as[13]

(1—yI2,y/2)
(0,1

|
VKLt

10

P(x,t)= \/4Kyt7H11

Taking into account that the Laplace transformRgi,t) is

the subdiffusive character of the process increases.

Of course, fory—1 one recovers the Gaussian result
f(t/T)= 16D/ t/T(1—t/T) [16,19 because the upper
and lower Fox'sH functions in Eq.(12) become /7 (1
+7%)? andz/2 7 (1+2%)%? respectively.

The ared\(T) of the average fluctuation of duratidnis
given by

1
N(T)= Jo ds(x(sT))t, (13

wheres=t/T. From Eq.(11) one finds
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FIG. 3. Normalized average fluctuation for the subdiffusive pro-
cess withy=0.9. The line is the theoretical result and the symbols
are simulation results fof = 10*,10°,10°,10', 1CP.

FIG. 2. Normalized average fluctuation for subdiffusive pro-
cesses for several values of The shape is normalized so that its
area is 1, i.e., we plofx(t))t/N(T). The lines are the theoretical
result for (att/T=1/2 and from top to bottomy=1,0.9,0.75,0.5.
Inset: simulation results for these same valuey.of

N(T)=nK,T?, (14

wheren = f(l)dsgy(s). Then, the normalized average fluc-
tuation is given by

(X()r  g,t/T)
N(T)  n

(19

Y

We have not been able to calculatganalytically. In Table |
we give some values evaluated numerically.

<x(t)>. / N(T)

Ill. SIMULATION
Wg carried out simulations of the fluctuations of the sto- 0-00.0 02 04 06 08 1.0
chastic proces$3) where 6x takes the valuest1 or —1 T
with equal probabilities and where the waiting tirde be-
tween jumps follows the Pareto distributiop(t) = v/(1 FIG. 4. Normalized average fluctuation for the subdiffusive pro-

+t)1+ Y. In this case, the diffusion ConstaNty is given by  cess withy=0.75. The line is the theoretical result and the symbols
Ref.[13] K,,=1[2I'(1— y)]. The simulation results follow are simulation results fof = 10",1¢%, 1¢°, 10/, 10%.

the pattern found in the precedent section: the fluctuation
shape tends toward a tablelike formaslecreasetsee inset

in Fig. 2.

In Figs. 3 and 4 we compare the theoretical predictions
and the simulation results foy=0.9 andy=0.75, respec-
tively. The agreement is reasonable. We attribute the differ-
ences to, first, the approximate nature of Eg). for non-
Markovian processes and, second, to a slow convergence that 10

requires longef to set in. This can be clearly appreciated in e

Fig. 5 where one sees that the well-established theoretical z 08
semicircular shape is approached, although very gradually, as AT 06
T increases . It is even more gradual for smajleMe have % 04

not explored larger values foF because of the excessive
computer time required. 0.2
In the simulations we also calculated the agd) of the

00 I 1 1 I
0.0 0.2 0.4 0.6 0.8 1.0

TABLE I. The coefficientn, = [§dsg,(s) calculated by numeri- T
cal integration.

FIG. 5. Normalized average fluctuation for a process wjith
y 1/4 1/3 1/2 2/3 3/4 4/5  9/10 1 =1. The line is the semicircular form theoretical result and the

n, 0.493 0501 0.537 0.612 0.668 0.708 0.79¢x/2 symbols are simulation results for=10° (triangles, 1¢° (square}
and 10 (circles.

Y
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1000 - - - - - ;/ power-law waiting time distribution(t)~t~1~” where 0
<y<1 (subdiffusive walks Although the spatial incre-
mentséx in this stochastic process are uncorrelated, we find
that, in contrast with Gaussian walks andvidlights, the

100

average shape of a fluctuation is no longer a semicircle: its
= form becomes flatter at the top and steeper at the extremes as
z 1 the subdiffusive character of the process incredises asy

decreases

Some possible sequels of the present work are obvious:
one could consider the effect of correlated increméixt$as
done by Baldassarmt al. [16]) or investigate the average
shape of a fluctuation for vy walks (in which | 8x| and 6t
T are proportional and follow a broad power-law tatHow-
ever, for these cases, the task of getting analytical results,
even approximate, such as those reported in the present paper
certainly looks formidable.

FIG. 6. AreaN(T) of the fluctuation fory=0.75 (circles and
v=0.9 (squares The lines are the corresponding theoretical pre-
diction; see Eq(14).
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