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Average shape of fluctuations for subdiffusive walks
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We study the average shape of fluctuations for subdiffusive processes, i.e., processes with uncorrelated
increments but where the waiting time distribution has a broad power-law tail. This shape is obtained analyti-
cally by means of a fractional diffusion approach. We find that, in contrast with processes where the waiting
time between increments has finite variance, the fluctuation shape is no longer a semicircle: it tends to adopt a
tablelike form as the subdiffusive character of the process increases. The theoretical predictions are compared
with numerical simulation results.
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I. INTRODUCTION

Complex systems are often described by their lack o
characteristic length or time scale over many orders of m
nitude, which gives rise to events whose distribution in si
is a power law with no characteristic size~fractal behavior!.
Examples are everywhere@1#: seismic activity, turbulence
solar flares, Brownian motion, length of rivers and blo
vessels, . . . . In particular, a power-law distribution with no
characteristictemporalsize events appears in the analysis
stock price changes@2,3#, river floods@4# , Barkhausen noise
@5,6#, glassy systems@7–9#, atomic cooling@10#, and fluo-
rescence of quantum dots@11,12#. In these cases the resultin
dynamics is strongly intermittent, with bursts of activi
separated by long quiescent intervals.

When these temporal intervals are waiting timesdt be-
tween jumps of sizedx, then the stochastic processx(t) can
be seen as the trajectory of a subdiffusive random wa
~provided that the variance ofdx is finite!. A typical subdif-
fusive trajectory is shown in Fig. 1. Systems that exhi
anomalous subdiffusion characterized by an anoma
Fick’s second law

^x2~ t !&;
2Kg

G~11g!
tg, ~1!

where 0,g,1 are ubiquitous in nature@13,14#. @Kg is the
~generalized! diffusion constant andg is the anomalous dif-
fusion exponent.# Also, models based on subdiffusive ra
dom walkers are useful for understanding complex syste
Two nice examples are the ‘‘trap model,’’ proposed to e
plain aging in disordered systems@7–9#, and the comb
model, to understand diffusion phenomena in complex str
tures such as percolation clusters@15#.

Recently@6,5,16,18# the study of the average shape of t
fluctuations of stochastic processesx(t) has been considere
as a useful tool to gain insight into the system that gener
the fluctuation. Thus, it has been argued@18# that the average
shape of fluctuations is a better tool for discriminating b
tween theories than critical exponents.
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In Ref. @16# Baldassarriet al. consider the average shap
for a stochastic process of the formx(t11)5x(t)1dx,
wheredx is a random variable. Let us denote the avera
shape of fluctuations of time spanT by ^x(t)&T . Baldassarri
et al. find that the shape follows the scaling law

^x~ t !&T5Ta/2f ~ t/T!, ~2!

wherea is the diffusion exponent andf is asemicirclewhen-
everdx follows a distribution with finite variance~Gaussian
walks! or a distributionl(dx) with a broad power-law tail,
l(dx);(dx)2m21 with 0,m,2, so that the variance is
infinite ~Lévy flights!. This result had already been obtaine
by Fisher for Gaussian walks@19#@Sec. 7.1#. The fact that the
average shape of fluctuations is a semicircle for both Ga
ian walks and Le´vy flights is a nicely surprising result tha
led us to wonder to what extent it might hold for other wal
with uncorrelated jumps. In particular, we investigated t
average shape of subdiffusive stochastic processes~subdiffu-
sive walks! of the form

x~ t1dt !5x~ t !1dx, ~3!

wheredx are uncorrelated increments that follow a distrib
tion with finite variance anddt is a random variable whos
distribution c(dt) has a broad power-law tail:c(dt)
;(dt)212g with 0,g,1. Figure 1 shows the positionx(t)
for a stochastic process of this kind withg50.9 and with
jumps of unit length (d561) made with equal probabilities

FIG. 1. Subdiffusive trajectory withdx561 andg50.9.
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II. AVERAGE FORM OF A SUBDIFFUSIVE FLUCTUATION

The average shape of a fluctuation can be calcula
through the expression@16,17#

^x~ t !&T5 lim
x0→01

E
0

`

dx xV~x,tu$x~0!%;x0,0,x0 ,T!

E
0

`

dx V~x,tu$x~0!%;x0,0,x0 ,T!

~4!

where V(x,tu$x(0)%;x0,0,x0 ,T) is the probability that the
walker with trajectory$x(0)% for t,0 is atx at time t pro-
vided that he was atx0.0 at time 0 and atx0 at time T
without ever touching the axis atx50 in the time interval
(0,T). The upper line in Eq.~4! means average over all th
trajectories $x(0)% that reach x0 at time t50. Let
F(x,tu$x(t8)%;x8,t8) be the probability that the walker with
trajectory$x(t8)% for t,t8 and who was atx8.0 at timet8
reachesx.0 at time t without ever touching the axis atx
50; let V(x,tux0,0,x0 ,T) be the probability that the walke
is at x at time t provided that he was atx0.0 at time 0 and
at x0 at timeT without ever touching the axis atx50 in the
time interval (0,T); and letF(x,tux8,t8) be the probability
that the walker who was atx8 at timet8 reachesx.0 at time
t without ever touching the axis atx50. For walks without
memory ~Markovian walks! V(x,tu$x(0)%;x0,0,x0 ,T)
5V(x,tux0,0,x0 ,T), F(x,tu$x(t8)%;x8,t8)5F(x,tux8,t8),
and one can writeV(x,tux0,0,x0 ,T) as F(x,tux0,0)F(x,T
2tux0,0), so that Eq.~4! becomes@16,17#

^x~ t !&T5 lim
x0→01

E
0

`

dx x F~x,tux0,0!F~x,T2tux0,0!

E
0

`

dx F~x,tux0,0!F~x,T2tux0,0!

. ~5!

This equationis not exactfor subdiffusve walks because the
are not Markovian. However, for subdiffusive walks, th
memory, i.e., the effect of the fact that att8 the particle was
at x8 on the probability that the particle at timet.t8 is atx,
decays as (t2t8)2g/G(12g) @13#. This implies that the ap-
proximation of F(x,tu$x(t8)%;x8,t8) by F(x,tux8,t8), and,
consequently, the accuracy of Eq.~5! for subdiffusive walks,
improves whent2t8 increases andg is close to 1.

The probabilityF(x,tux0,0) can be calculated by mean
of the method of imagesF(x,tux0,0)5P(x2x0 ,t)2P(2x
2x0 ,t) @20,21#, P(x2x0 ,t) being the probability density
that the free process~without boundary conditions! that at
time t<0 was atx0 is at x at time t. For subdiffusive pro-
cesses, and fort2g/G(12g)!1 @22#, P(x,t) can be written
in terms of Fox’sH function as@13#

P~x,t !5
1

A4Kgtg
H11

10F uxu

AKgtg U~12g/2,g/2!

~0,1! G . ~6!

Taking into account that the Laplace transform ofP(x,t) is
03110
d P~x,u!5
ug/221

A4Kg

exp~2Aug/Kguxu! ~7!

one finds forx>0

F~x,uux0,0!5
ug/221

A4Kg

$e2a(x02x)@Q~x!2Q~x2x0!#

1e2a(x2x0)Q~x2x0!2e2a(x1x0)%, ~8!

wherea[Aug/Kg andQ(x) is the Heaviside step function
As we are interested in the limitx0→0 with x.x0, we ex-
pand the term inside the bracket in powers ofx0 and get

F~x,uux0→0,0!5x0

ug21

Kg
e2Aug/Kgx, ~9!

which implies

F~x,tux0→0,0!5
x0

Kgtg
H11

10F x

AKgtg U~12g,g/2!

~0,1! G . ~10!

Inserting this expression into Eq.~5! and carrying out the
integrations@23# one finds that the average shape of a s
diffusive stochastic process~subdiffusive random walk! is
given by

^x~ t !&T5Tg/2f g~ t/T!5AKgTggg~ t/T!, ~11!

where

gg~ t/T!5

S t

TD g/2

H22
11F S t/T

12t/TD g/2U ~21,1!,S 12g,
g

2D
~0,1!,S 0,

g

2D G
H22

11F S t/T

12t/TD g/2U ~0,1!,S 12g,
g

2D
~0,1!,S g

2
,
g

2D G .

~12!

In Fig. 2 we plot the~normalized! average shape of fluctua
tions for several classes of subdiffusive processes. We
that the shape tends to a tablelike form asg decreases, i.e., a
the subdiffusive character of the process increases.

Of course, forg→1 one recovers the Gaussian res
f 1(t/T)5A16D/pAt/T(12t/T) @16,19# because the uppe
and lower Fox’sH functions in Eq.~12! become 2z/p (1
1z2)2 andz/2Ap (11z2)3/2, respectively.

The areaN(T) of the average fluctuation of durationT is
given by

N~T!5E
0

1

dŝ x~sT!&T , ~13!

wheres5t/T. From Eq.~11! one finds
4-2
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N~T!5ngAKgTg, ~14!

where ng5*0
1dsgg(s). Then, the normalized average flu

tuation is given by

^x~ t !&T

N~T!
5

gg~ t/T!

ng
. ~15!

We have not been able to calculateng analytically. In Table I
we give some values evaluated numerically.

III. SIMULATION

We carried out simulations of the fluctuations of the s
chastic process~3! where dx takes the values11 or 21
with equal probabilities and where the waiting timedt be-
tween jumps follows the Pareto distributionc(t)5g/(1
1t)11g. In this case, the diffusion constantKg is given by
Ref. @13# Kg51/@2G(12g)#. The simulation results follow
the pattern found in the precedent section: the fluctua
shape tends toward a tablelike form asg decreases~see inset
in Fig. 2!.

In Figs. 3 and 4 we compare the theoretical predictio
and the simulation results forg50.9 andg50.75, respec-
tively. The agreement is reasonable. We attribute the dif
ences to, first, the approximate nature of Eq.~5! for non-
Markovian processes and, second, to a slow convergence
requires longerT to set in. This can be clearly appreciated
Fig. 5 where one sees that the well-established theore
semicircular shape is approached, although very graduall
T increases . It is even more gradual for smallerg. We have
not explored larger values forT because of the excessiv
computer time required.

In the simulations we also calculated the areaN(T) of the

FIG. 2. Normalized average fluctuation for subdiffusive pr
cesses for several values ofg. The shape is normalized so that i
area is 1, i.e., we plot̂x(t)&T /N(T). The lines are the theoretica
result for ~at t/T51/2 and from top to bottom! g51,0.9,0.75,0.5.
Inset: simulation results for these same values ofg.

TABLE I. The coefficientng5*0
1dsgg(s) calculated by numeri-

cal integration.

g 1/4 1/3 1/2 2/3 3/4 4/5 9/10 1
ng 0.493 0.501 0.537 0.612 0.668 0.708 0.798Ap/2
03110
-
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FIG. 3. Normalized average fluctuation for the subdiffusive p
cess withg50.9. The line is the theoretical result and the symb
are simulation results forT5104,105,106,107,108.

FIG. 4. Normalized average fluctuation for the subdiffusive p
cess withg50.75. The line is the theoretical result and the symb
are simulation results forT5104,105,106,107,108.

FIG. 5. Normalized average fluctuation for a process withg
51. The line is the semicircular form theoretical result and t
symbols are simulation results forT5103 ~triangles!, 105 ~squares!,
and 107 ~circles!.
4-3
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fluctuation. In Fig. 6 we plotN(T) for several values ofT
and for two values ofg. The agreement between simulatio
and theory is reasonable again.

IV. CONCLUSIONS

We have analyzed the average shape of the fluctuation
time series generated by the stochastic process~3! with a

FIG. 6. AreaN(T) of the fluctuation forg50.75 ~circles! and
g50.9 ~squares!. The lines are the corresponding theoretical p
diction; see Eq.~14!.
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03110
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power-law waiting time distributionc(t);t212g where 0
,g,1 ~subdiffusive walks!. Although the spatial incre-
mentsdx in this stochastic process are uncorrelated, we fi
that, in contrast with Gaussian walks and Le´vy flights, the
average shape of a fluctuation is no longer a semicircle
form becomes flatter at the top and steeper at the extreme
the subdiffusive character of the process increases~i.e., asg
decreases!.

Some possible sequels of the present work are obvio
one could consider the effect of correlated incrementsdx ~as
done by Baldassarriet al. @16#! or investigate the averag
shape of a fluctuation for Le´vy walks ~in which udxu anddt
are proportional and follow a broad power-law tail!. How-
ever, for these cases, the task of getting analytical res
even approximate, such as those reported in the present p
certainly looks formidable.
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