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Comment on ‘‘Mean first passage time for anomalous diffusion’’
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We correct a previously erroneous calculation@Phys. Rev. E62, 6065~2000!# of the mean first passage time
of a subdiffusive process to reach either end of a finite interval in one dimension. The mean first passage time
is in fact infinite.
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Anomalous diffusion is commonly characterized by t
behavior of the mean squared displacement as a functio
time at long times@1–3#,

^x2&;
2Ka

G~11a!
ta, ~1!

whereKa is a generalized diffusion constant. Ordinary d
fusion corresponds toa51 and, in the more usual notation
K15D. Superdiffusionis associated with motion that i
faster than diffusive,a.1, while subdiffusionoccurs when
a,1. In a recent paper@4#, the mean first passage times
the ends of an interval for a superdiffusive and a subdiffus
random walker on a line were calculated, and these res
have even more recently been applied to the problem
anomalous heat conduction in such a line in the presenc
a temperature gradient@5#. However, there is an error in th
calculation for thesubdiffusiveproblem from which one con
cludes that the mean first passage time reported in Ref@4#
for this case are incorrect.In fact, the mean first passage tim
for the subdiffusive problem is infinite.

To support this observation it is compelling to note tha
continuous time subdiffusive nearest neighbor random w
~CTRW! @3# with a waiting time distribution which has
long tail, i.e., a walk in which the probability density that
particle takes the next step at a timet→` after the previous
step is c(t);Ca /t11a leads exactly to Eq.~1! (Ca is a
constant!. The mean time for the particle to makea single
jump is

T15 lim
t→`

T1~ t !, ~2!

where

T1~ t !5E
0

t

tc~t!dt. ~3!

For larget,

T1~ t !}E t dt

ta
}t12a, ~4!
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so that one obtains the well-known resultT15`, i.e., the
mean time to go from any one location to another even i
single jump is infinite. However, this argument might gen
ate issues about the waiting time for the first step of
process, since one of the differences between a CTRW
the fractional diffusion equation lies precisely in the assum
tions associated with this first step. In a CTRW there is
singular contribution to the probability density that the pa
ticle is still at the originx0 at time t,

P~x,t !;
Ca

a
t2ad~x0!1~other terms!, ~5!

which does not appear in the solution of the fractional dif
sion equation@6#.

To sidestep this problem and show that the divergence
the mean first passage time does not arise only from
term, we also obtain the divergent result starting with t
fractional diffusion equation that was the starting point
Ref. @4#. Although that general formulation was for an arb
trary starting site in the interval (0,L) and in the presence o
an external constant force, the explicit final result was p
sented for a particular initial location,x5L/2, and with no
external force. This explicit result is also the one used in R
@5#. We thus restrict our presentation to this specific case

The mean first passage time fromx5L/2 to eitherx50 or
x5L is given by@7#

T5E
0

L

dxE
0

`

dtP~x,t !5E
0

`

dtS~ t !, ~6!

where

S~ t !5E
0

L

dxP~x,t ! ~7!

andP(x,t) is the solution of the fractional diffusion equatio
@3,8,9#

]

]t
P~x,t !5Ka 0Dt

12a ]2

]x2
P~x,t !, ~8!
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with absorbing boundary conditionsP(0,t)5P(L,t)50 and
initial condition P(x,t50)5d(x2L/2). Here 0Dt

12a is the
Riemann-Liouville operator,

0Dt
12aP~x,t !5

1

G~a!

]

]tE0

t

dt
P~x,t!

~ t2t!12a
, ~9!

andKa is the generalized diffusion coefficient in Eq.~1!. The
quantity S(t) is called the survival probability because,
one sees from Eq.~7!, S(t) is just the probability that the
particle has not been absorbed by the boundaries atx50 and
x5L during the time interval@0,t#.

The solution of Eq.~8! with the given boundary and ini
tial conditions can be found by the method of separation
variables@3,10#:

P~x,t !5
2

L (
n50

`

~21!n sin
~2n11!px

L

3Ea„2Ka~2n11!2p2ta/L2
…. ~10!

HereEa(2z) is the Mittag-Leffler function@for a51 it re-
duces to the exponential exp(2z) and thus yields the usua
solution for the diffusive problem#. It then follows that

S~ t !5
4

p (
n50

`
~21!n

2n11
Ea„2Ka~2n11!2p2ta/L2

…. ~11!

The mean first passage time tox50 or L is then T
5 limt→`T(t), where

T~ t !5E
0

t

dt S~t!. ~12!

To address the convergence ofT(t) for t→` we need to
analyze the long-time behavior ofS(t). Note thatS(t) is
well behaved for finite times~the survival probability goes to
1 for t→0), so that the divergence ofT is due to the behav
ior at long times. For largez the Mittag-Leffler function be-
haves as

Ea~2z!; (
m51

`
~21!m11

G~12am!
z2m, ~13!

and consequently, for larget,
03310
f

S~ t !;
4

p (
n50

`
~21!n

2n11 (
m51

`
~21!m11L2m

G~12am!@Ka~2n11!2p2ta#m

; (
m51

`
~21!m11L2m

G~12am!@p2Kata#m
Z~m!, ~14!

whereZ(m)5(n50
` (21)n/(2n11)2m11. For t→`, and us-

ing the fact thatZ(1)5p3/32, we then have

S~ t !;
1

8G~12a!

L2

Kata
. ~15!

It then follows that for larget we have

T~ t !5E
0

t

dt S~t!;
1

8~12a!G~12a!

L2

Kata21
, ~16!

i.e., T(t)}t12a, exactly as in Eq.~4!. We thus conclude tha
T(t)→` when t→` for any a,1.

We have thus shown that the mean first passage time f
subdiffusive process described by the fractional diffus
equation~or, for that matter, by a continuous time rando
walk! to reach the boundaries of a one-dimensional inter
is infinite. We note that our Eq.~11! appears as Eq.~40! in
Ref. @11#, but the connection between the survival probab
ity and the mean first passage time is never made in
work so a user of the result in Ref.@4# would not necessarily
discover the connection. An expression for the first pass
time density involving the Mittag-Leffler function appears
Eq. ~3.87! in Ref. @10#, but, again, they do not go on t
calculate the mean first passage time, nor do they do
necessary asymptotic analysis of the Mittag-Leffler funct
that would allow them to do so. That these results would
necessarily lead a reader to conclude that the mean first
sage time is infinite is reinforced by the fact that both
these references appear in Ref.@4#. Finally, we note that the
validity of the result in Ref.@4# for the mean first passag
time in the superdiffusive regime has also been questio
recently because it violates a theorem due to Sparre An
sen@12,13#.
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