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Comment on “Mean first passage time for anomalous diffusion”
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We correct a previously erroneous calculatieiys. Rev. 62, 6065(2000] of the mean first passage time
of a subdiffusive process to reach either end of a finite interval in one dimension. The mean first passage time
is in fact infinite.
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Anomalous diffusion is commonly characterized by theso that one obtains the well-known resitilf=<, i.e., the
behavior of the mean squared displacement as a function @fiean time to go from any one location to another even in a
time at long timeg1-3|, single jump is infinite. However, this argument might gener-

ate issues about the waiting time for the first step of the
) 2Ky, process, since one of the differences between a CTRW and
(X9~ mt ' oy the fractional diffusion equation lies precisely in the assump-
tions associated with this first step. In a CTRW there is a
whereK , is a generalized diffusion constant. Ordinary dif- Singular contribution to the probability density that the par-
fusion corresponds te=1 and, in the more usual notation, ticle is still at the originx, at timet,
K,=D. Superdiffusionis associated with motion that is
faster than diffusiveg>1, while subdiffusionoccurs when
a<1. In a recent papd#], the mean first passage times to
the ends of an interval for a superdiffusive and a subdiffusive
random walker on a line were calculated, and these resulighich does not appear in the solution of the fractional diffu-
have even more recently been applied to the problem ofion equatiori6].
anomalous heat conduction in such a line in the presence of To sidestep this problem and show that the divergence of
a temperature gradief®]. However, there is an error in the the mean first passage time does not arise only from this
calculation for thesubdiffusiveproblem from which one con- term, we also obtain the divergent result starting with the
cludes that the mean first passage time reported in [Ref. fractional diffusion equation that was the starting point in
for this case are incorredn fact, the mean first passage time Ref. [4]. Although that general formulation was for an arbi-
for the subdiffusive problem is infinite. trary starting site in the interval (I0) and in the presence of

To support this observation it is compelling to note that aan external constant force, the explicit final result was pre-
continuous time subdiffusive nearest neighbor random wallksented for a particular initial locatiox=L/2, and with no
(CTRW) [3] with a waiting time distribution which has a external force. This explicit result is also the one used in Ref.
long tail, i.e., @ walk in which the probability density that a [5]. We thus restrict our presentation to this specific case.
particle takes the next step at a time o after the previous The mean first passage time from L/2 to eitherx=0 or
step is #(t)~C,/t1"® leads exactly to Eq(1) (C, is @ x=L is given by[7]
constant The mean time for the particle to makesingle

P(x,t)~ %twﬁ(xo)ﬂotherterm}s 5)

jump is L % w
T:f dxf dtP(x,t)=j dtS(t), (6)
T,=limT(1), 2 o e °
t—oo
where
where
L
: st= | “axPoxy ™
Ti(t)= J T()dr. 3) °
0
andP(x,t) is the solution of the fractional diffusion equation
For larget, [3,8,9
tdr J 1- &
Tl(t)ocf —octt (4 —P(x,t)=K, oD;” *—P(x,1), (8)
T4 ot ax?
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yvi_t_h absorl:_)i_ng boundary conditioi®0,t) = P(L,i)_z(_) and 42 (-1 & (—1)m*ip2m
initial condition P(x,t=0)=&§(x—L/2). HereD; " *isthe  S(t)~— > ol P
Riemann-Liouville operator, mn=0 Nt 1 m=1 I'(1-am)[K,(2n+1)“7t?]

© (_1)m+1|_2m
By 1o P(x,7) ~ Z(m), 14
oD} P(xi)-WELdTW' ® # T amier " |

whereZ(m)=3"_,(—1)"/(2n+1)?>™**, Fort—c, and us-
ing the fact thaZ(1)= 7°/32, we then have

andK , is the generalized diffusion coefficient in Ed). The
quantity S(t) is called the survival probability because, as

one sees from Eq.7), S(t) is just the probability that the 1 L2
particle has not been absorbed by the boundarizs-& and S(t)~ 8 (1—a) K (= (15
x=L during the time intervaJ0t]. Kot
The solution of Eq.(8) with the giVen bOUndary and ini- It then follows that for |argd we have
tial conditions can be found by the method of separation of
variables[3,10]: t 1 2
Tm= JodT S g d—w ket O

- o (2n+1)wx
nZO (=1)%sin L i.e., T(t)=xt1~* exactly as in Eq(4). We thus conclude that
T(t) - whent—co for any a<1.

P(x,t)=

N

XE  (—K,(2n+1)27%t9/L2). (10 We have thus shown that the mean first passage time for a

_ _ ) _ subdiffusive process described by the fractional diffusion
HereE,(—2) is the Mittag-Leffler functior{for =1 itre-  equation(or, for that matter, by a continuous time random

duces to the exponential expg) and thus yields the usual walk) to reach the boundaries of a one-dimensional interval

solution for the diffusive problein It then follows that is infinite. We note that our Eq11) appears as Eq40) in
. Ref.[11], but the connection between the survival probabil-

4 (=" N
S(t)= P ngo on+1 E.(—Ka(2n+1)?7%%/L%). (1) \york so a user of the result in R¢#] would not necessarily

ity and the mean first passage time is never made in that

discover the connection. An expression for the first passage

—lim,_..T(t), where Eqg. (3.87 in Ref. [10], but, again, they do not go on to

calculate the mean first passage time, nor do they do the

t necessary asymptotic analysis of the Mittag-Leffler function
T(t)= fodT S(7). (120 that would allow them to do so. That these results would not

necessarily lead a reader to conclude that the mean first pas-

sage time is infinite is reinforced by the fact that both of
these references appear in Réf]. Finally, we note that the
validity of the result in Ref[4] for the mean first passage

To address the convergenceTft) for t—o we need to
analyze the long-time behavior &(t). Note thatS(t) is
well behaved for finite timeg&he survival probability goes to
1 fort—0), so that the divergence @fis due to the behav-
ior at long times. For large the Mittag-Leffler function be- sen[12,13
haves as T
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time in the superdiffusive regime has also been questioned
recently because it violates a theorem due to Sparre Ander-



