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We study how an evanescence process affects the number of distinct sites visited by a continuous-time random
walker in one dimension. We distinguish two very different cases, namely, when evanescence can only occur
concurrently with a jump, and when evanescence can occur at any time. The first is characteristic of trapping
processes on a lattice, whereas the second is associated with spontaneous death processes such as radioactive
decay. In both of these situations we consider three different forms of the waiting time distribution between
jumps, namely, exponential, long tailed, and ultraslow.
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I. INTRODUCTION

One of the most thoroughly studied properties of random
walkers is the territory explored as the walk proceeds. In
the traditional walk taking place on a lattice on which the
walker moves by taking steps from one lattice site to another,
this territory is measured by counting the number of sites
visited after n steps. In particular, it is the average of this
quantity over an ensemble of walkers, which we will denote
by Sn, that has been most extensively studied (see, e.g., [1],
chapter 6]). The asymptotic (n → ∞) results Sn ∝ n1/2,
∝n/ ln(n), and ∝n in one, two, and three dimensions, respec-
tively, are then used to calculate other important related quan-
tities such as the asymptotic survival probability of a target
surrounded by diffusing traps. Note that the Sn all diverge as
n → ∞. The transcription to continuous time is accomplished
by going from n to t using the waiting time distribution.
In continuous space and time the results for the average
number of distinct sites visited can be translated to the average
volume of the Wiener sausage generated up to time t with
an appropriate transcription of sites and steps to volume and
time [2,3].

Our interest lies in the calculation of these quantities, but
now when the walker can instantaneously die in the course
of the motion, at which point no new sites (or volume) are
visited (we use “evanesce” as a synonym of “die” throughout
the paper). An immediate experimental situation where a
stochastic description including evanescence is appropriate is
that of walkers or diffusing particles subject to radioactive
decay [4] or photon emission [5]. Many other natural phenom-
ena in physics, chemistry, biology, and ecology may also be
formally regarded as evanescent stochastic processes. Exam-
ples include luminescence quenching [6], absorption (such as
light absorption in tissues [7]), scavenging reactions [8,9],
degradation processes associated with morphogen gradient
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formation [10,11], irreversible detachment of motor proteins
from their polymer tracks [12], and stochastically moving
preys hunted by a collection of predators [13].

The number of experimental situations where random mo-
tion and evanescence are relevant is so vast that the importance
of developing an overarching theoretical framework for these
otherwise unrelated phenomena cannot be overemphasized.
Furthermore, in many of the above instances as well as
in others transport takes place in complex or labyrinthine
environments, implying that the occurrence of anomalous
diffusion is a rather frequent phenomenon. Particularly in
biological systems, motion frequently occurs in crowded or
disordered media, as a result of which anomalous diffusion is
very often subdiffusive. The hope that a phenomenological
description in terms of a continuous-time random walk
(CTRW) model with a long-tailed waiting time distribution
captures the main features of transport in these systems is well
justified. It is also the case that CTRW models are less elusive
than other models of subdiffusive transport when it comes to
considering the combined effects of memory and chemical
reactions (death processes). Indeed, the integral equations
underlying CTRWs lend themselves particularly well to the
inclusion of evanescence processes [14–16].

In recent work [17,18] we carried out the calculation of
Sn (or, equivalently, of the volume of the Wiener sausage
generated by a particle diffusing in continuum space) for
particles that can evanesce either exponentially, typical of a
unimolecular decay, or according to a power law, indicative
of a more complex evanescence process. We discussed the
consequences of the modifications introduced by the evanes-
cence process in exploration properties of random walkers and
related quantities such as the survival probability of a target
surrounded by evanescent diffusing particles [19,20]. In this
work we extend those results to subdiffusive evanescent ran-
dom walkers performing a CTRW. We consider three examples
of waiting time distributions for our walkers: exponential, long
tailed, and ultraslow. The first one is associated with a linear
time dependence of the mean square displacement at long
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times, characteristic of ordinary diffusion, whereas the latter
two result in subdiffusive behavior.

We also differentiate walkers according to a second charac-
teristic, namely, when exactly the walker may evanesce. In one
case we assume that death can only occur at the moment of
stepping. In contrast, in the second case we decouple the two
processes, the walking and the evanescing, so that the walker
can die at any moment. The first situation can be regarded as
characteristic of trapping processes on the lattice. An example
is the case of walkers that have a finite probability of being
absorbed or converted into an inert species by the substrate
every time they step from one site to another (see, e.g., Sec. 5 in
[21]). Another example occurs on surfaces where some jumps
lead to irreversible escape from the surface. These can formally
be treated as a reaction resulting in particle disappearance at
the time of a jump [22]. On the other hand, the decoupled
case corresponds to particle disappearance processes which
do not depend on transport properties, such as, for instance,
radioactive decay of a diffusing isotope [4]. In this context,
the extent of the region where the isotope remains potentially
emissive before decaying into a stable species (tantamount to
the number of distinct sites visited) is of special interest.

Interestingly, there are cases where the precise nature of
the coupling between evanescence processes and transport is
unknown. In some of these it has been established that the
above two choices may give entirely different results [15],
leading to the possibility of experimental determination of
the coupling. One such example occurs in the formation
of morphogen gradients (morphogens are special signaling
molecules of importance in embryogenesis): In Ref. [10],
irreversible degradation (“death”) of subdiffusive morphogens
was assumed to occur only when the morphogens perform a
transition between one binding site and the next, leading to
the absence of stationary morphogen concentration gradients
in the long-time limit. By way of contrast, in Ref. [11] we
assumed that degradation could occur at any time during
transport, resulting in the formation of a stationary gradient.

We organize our paper as follows. In Sec. II we introduce
exponential evanescence in the context of an ordinary random
walk (Markovian case), so that our new results can be seen
in the proper context. In Sec. III we extend the analysis to
CTRWs with different waiting time distributions: exponential,
long tailed (inverse power law decay with time), and ultraslow
(inverse power law decay with the logarithm of time). In
Sec. III A we consider these three cases when evanescence
events can only occur concurrently with a step, and in Sec. III B
when evanescence can occur at any time independently of the
stepping process. In Sec. IV we summarize our results and
conclude with some additional observations.

II. MARKOVIAN CASE WITH
EXPONENTIAL EVANESCENCE

We recently dealt with the problem of the distinct number
of sites visited by an ensemble of ordinary random walkers
that evanesce according to the exponential decay [17,18],

ρ(n) = exp(−λn), (1)

for the surviving fraction of walkers (or the probability that a
walker survives after n steps). We do not repeat the calculation

done earlier except to provide some results relevant for this
work. Specifically, we consider an ordinary nearest neighbor
random walk. Let Pn(s|s0) be the probability of finding a
nonevanescent walker at site s after n steps given that it started
at site s0 at step n = 0, and let P̂ (s|s0; ξ ) be the generating
function for this probability,

P̂ (s|s0; ξ ) =
∞∑

n=0

Pn(s|s0)ξn. (2)

Let Sn denote the average number of distinct sites visited
by an ensemble of nonevanescent random walkers and S∗

n

the same average but for evanescent walkers (the asterisk is
used to indicate that the relevant quantity refers to evanescent
walkers). The generating functions for Sn and S∗

n are defined
as

Ŝ(ξ ) =
∞∑

n=0

Snξ
n, Ŝ∗(ξ ) =

∞∑
n=0

S∗
nξn. (3)

We showed [17] that these generating functions are related to
the generating function P̂ (s0|s0; ξ ) for the probability of return
to the origin of a nonevanescent random walker as follows:

Ŝ(ξ ) = 1

(1 − ξ )2

1

P̂ (s0|s0; ξ )
, (4)

Ŝ∗(ξ ) = 1

(1 − ξ )

1

(1 − e−λξ )

1

P̂ (s0|s0; e−λξ )
. (5)

The discrete Tauberian theorem (see, e.g., [1], p. 118]) for the
nonevanescent case yields the asymptotic results mentioned
in the previous section for the average number of distinct
sites visited, all of which diverge as n → ∞, while for the
evanescent problem we find the finite value,

S∗
∞ = 1

(1 − e−λ)

1

P̂ (s0|s0; e−λ)
. (6)

In dimension d = 1 we have the well-known result,

P̂ (s0|s0; ξ ) =
∞∑

n=0

Pn(s0|s0) ξn = (1 − ξ 2)−1/2, (7)

whence

Ŝ∗(ξ ) = (1 + e−λξ )1/2

(1 − ξ )(1 − e−λξ )1/2
, (8)

and

S∗
∞ =

(
1 + e−λ

1 − e−λ

)1/2

. (9)

In addition to the asymptotic finite average number of
distinct sites visited, it is possible to calculate the subdominant
term that describes the long-time (n → ∞) approach to the
asymptotic result. We find [18]

S∗
n ∼ S∗

∞ −
√

2
Ie−λ (n + 1,1/2)

(1 − e−λ)1/2
, (10)

where Ix(a,b) stands for the regularized Beta function. This
result agrees with numerical simulation results even for rather
moderate values of n [18]. For small values of λ one gets the
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simpler expression,

S∗
n ∼

√
2

λ
− 1

λ

√
2

πn
e−λn. (11)

III. CTRW WALK IN ONE DIMENSION WITH
EXPONENTIAL EVANESCENCE

A nearest neighbor CTRW is defined by the distribution of
stepping times ψ(t). This is the probability density that a step
occurs exactly t time units after the previous step. If the time
t = 0 is chosen to coincide with a step, then we can implement
the recursion relation [23, p. 96]:

ψn+1(t) =
∫ t

0
ψn(t ′) ψ(t − t ′) dt ′, (12)

for the probability density ψn(t) that step n occurs exactly at
time t . If t = 0 is not a stepping time then one has to treat
the first step differently. We will henceforth assume that t = 0
is a stepping time to avoid a further complication that can be
addressed using well-known methods [24], but that does not
add much to the points we wish to highlight in this paper. The
Laplace transform of this convolution clearly leads to [25,26]

ψ̃n(u) = [ψ̃(u)]n. (13)

Here a tilde indicates a Laplace transform with respect to time
and u is the transform variable.

The time t may not be exactly a stepping time, that is, the
nth step might occur at a time t ′ < t . Thus, the probability that
exactly n steps have been executed by the walker by time t is

χn(t) =
∫ t

0
ψn(t ′) �(t − t ′) dt ′, (14)

where �(t − t ′) = 1 − ∫ t−t ′

0 ψ(t ′′) dt ′′ is the probability that
the walker has not moved in the time interval t − t ′ since the
nth stepping time t ′. It then follows that the Laplace transform
of χn(t) is

χ̃n(u) = 1 − ψ̃(u)

u
[ψ̃(u)]n, (15)

a familiar random walk result [27]. We go on to use this result
in the next subsection.

A. Evanescence associated with steps

Consider the case where evanescence can only occur
concurrently with a jump and not when the walker is standing
still waiting between jumps. The average number of distinct
sites visited by an ensemble of evanescent walkers up to time
t , S∗(t), is then given by the decomposition,

S∗(t) =
∞∑

n=0

S∗
nχn(t), (16)

where χn(t) is the probability that a nonevanescent walker has
jumped exactly n times between times 0 and t . A similar de-
composition is valid for S(t) in terms of Sn for nonevanescent
walkers. This is a consequence of the spatial Markovianity of
the random walk and the well-known subordination principle
concerning the relation between the dependence on physical
time and on operational time; see, e.g., [24]. The information

about the evanescence is thus entirely contained in S∗
n . It

follows that the Laplace transform of S∗(t) then is

S̃∗(u) = 1 − ψ̃(u)

u

∞∑
n=0

[ψ̃(u)]n S∗
n = 1 − ψ̃(u)

u
Ŝ∗(ψ̃(u)),

(17)

completely analogous to the familiar expression for
nonevanescent walkers [27]. Using the explicit form (8) of
the generating function we obtain

S̃∗(u) = 1

u

[1 + e−λψ̃(u)]1/2

[1 − e−λψ̃(u)]1/2
. (18)

Note that the time dependence of ρ(t), the probability that
a walker survives up to time t , depends on how many steps a
walker has taken up to that time, and is thus dependent on the
waiting time distribution ψ(t). We now go on to implement
these results for a variety of waiting time distributions.

1. Exponential waiting time distribution

First we consider the waiting time distribution associated
with ordinary diffusion, namely, an exponential,

ψ(t) = ω e−ωt . (19)

The mean waiting time is T = ∫ ∞
0 t ψ(t) dt = ω−1, that is, ω is

the mean number of steps per unit time. The Laplace transform
of the waiting time distribution then is ψ̃(u) = ω/(ω + u), so
that

S̃∗(u) = 1

u

[u + (1 + e−λ)ω]1/2

[u + (1 − e−λ)ω]1/2
. (20)

This result can be analytically inverted [28, p. 210, formula
40] to obtain

S∗(t) = e−ω t I0(e−λω t)

+ω(1 + e−λ)
∫ t

0
e−ω t ′ I0(e−λω t ′) dt ′, (21)

where I0(·) is a modified Bessel function. When t → ∞, the
first term on the right vanishes, and we are left with [29,
p. 708, formula 4])

S∗(∞) = ω(1 + e−λ)
∫ ∞

0
e−ω t ′ I0(e−λω t ′) dt ′

=
(

1 + e−λ

1 − e−λ

)1/2

. (22)

This result agrees with Eq. (9), as it should, since an unbiased
CTRW with exponential stepping times is equivalent to an
ordinary random walk in the long-time limit.

It is useful for later comparison to calculate the way in
which the asymptotic result for the distinct number of sites
visited is approached at long times. This can be done by
rewriting Eq. (21) as follows:

S∗(t) = S∗(∞) − ω(1 + e−λ)
∫ ∞

t

e−ω t ′ I0(e−λω t ′) dt ′

+ e−ω t I0(e−λω t). (23)
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Next we implement the asymptotic expansion for large |z|,

Iν(z) ∼ ez

√
2πz

{
1 − 4ν2 − 1

8z
+ . . .

}
. (24)

Keeping only the leading long-time contribution to the asymp-
totic expansion, we see that∫ ∞

t

e−ω t ′ I0(e−λω t ′) dt ′

∼ ω−1 1

1 − e−λ

exp [(e−λ − 1) ωt]√
2πe−λωt

, (25)

and using the above approximation in Eq. (23), we find

S∗(t) ∼ S∗(∞)

− 2e−λ

1 − e−λ

exp [(e−λ − 1) t/T ]√
2πe−λt/T

. (26)

We see that the distinct number of sites visited by our CTRWer
with an exponential stepping time distribution and exponential
evanescence, with evanescence occurring only at the same time
as a jump and not while the walker is waiting, is finite, and that
the approach to the asymptotic result is faster than exponential.
When λ → 0 the above result simplifies to

S∗(t) ∼
√

2

λ
− 1

λ

√
2

πωt
e−λωt , t → ∞. (27)

Equation (11) with S∗
∞ given explicitly in the small λ limit is

in turn given by

S∗
n ∼

√
2

λ
− 1

λ

√
2

πn
e−λn, n → ∞. (28)

The two results thus coincide if one sets n = t/T = ωt .
Finally, since the results are handy, we quickly compare the

CTRW and the Markovian random walk models when there is
no evanescence (and the results given in the introduction hold).
The distinct number of sites visited as n → ∞ or as t → ∞
of course diverge. Using Eq. (7) in Eq. (4) and implementing
the exponential waiting time distribution, we have

S̃(u) = 1

u

√
u + 2ω

u
, (29)

whose inverse Laplace transform is known exactly [28,
p. 210, formula 34]:

S(t) = e−ω t [(1 + 2ωt) I0(ωt) + 2ωt I1(ωt)]. (30)

It is not difficult to show that this result coincides with Eq. (21)
when the limit λ → 0 is taken in the latter. Asymptotically we
find

S(t) ∼
√

8ω t

π
, t → ∞, (31)

which is the classic result for a random walk in one dimension
if again we set ωt = t/T = n. Note that the limit λ → 0 of
Eq. (27) does not give Eq. (31), i.e., the case λ = 0 is singular.

2. Long-tailed waiting time distribution

Next, while still considering exponential evanescence and
evanescence events that only occur concurrently with a
jump, we turn to CTRWs with a long-tailed waiting time

distribution. Specifically, at long times we consider a waiting
time distribution that decays as a power law [27],

ψ(t) ∼ γ τγ t−1−γ


(1 − γ )
, t → ∞, (32)

where 0 < γ < 1 and τ > 0. The Laplace transform of ψ(t)
for small u is

ψ̃(u) ∼ 1 − τ γ uγ , u → 0. (33)

Using this expression in Eq. (18) in turn gives

S̃∗(u) ∼ 1

u

[1 + e−λ − e−λτ γ uγ ]1/2

[1 − e−λ + e−λτ γ uγ ]1/2
, u → 0. (34)

Taking into account that

(α − z)1/2

(β + z)1/2
∼

(
α

β

)1/2

− α + β

2(αβ3)1/2
z, z → 0, (35)

Eq. (34) yields

S̃∗(u) ∼
(

1 + e−λ

1 − e−λ

)1/2

u−1 − e−λτ γ

(1 + e−λ)1/2(1 − e−λ)3/2
uγ−1

(36)

as u → 0. Laplace inverting each term finally gives us the
result,

S∗(t) ∼
(

1 + e−λ

1 − e−λ

)1/2

− e−λτ γ

(1 + e−λ)1/2(1 − e−λ)3/2

t−γ


(1 − γ )
(37)

for t → ∞. For a slow reaction (λ → 0) this reduces to

S∗(t) ∼
√

2

λ
− 1

(2λ3)1/2
(1 − γ )

(
τ

t

)γ

, t → ∞. (38)

By comparing Eqs. (27) and (38) we conclude the intuitively
obvious result that the decay to the asymptotic value is
slower here than in the case of an exponential stepping time
distribution since at a given time fewer steps have been
taken in the former than in the latter. However, at infinite
time the number of steps S(∞) taken is the same as in the
previous case and independent of the details of the waiting time
distribution.

3. Ultraslow waiting time distribution

Finally, we continue to consider reaction events that can
only occur concurrently with a jump, but now with an ultraslow
waiting time distribution of the form studied in [27]:

ψ(t) ∼ β A

t lnβ+1 (t/τ )
, t → ∞. (39)

Here β and A are positive. In the absence of the evanescence
process, the type of decay given by Eq. (39) leads to a long-time
growth of the mean square displacement of a collection of
particles proportional to (ln t)β [27]. This class of processes is,
for instance, characteristic of diffusion in a random force field
(Sinai disorder) [30]. Several other examples from polymer
physics, random walks in random media, and nonlinear
dynamics can be found in Refs. [31–34].
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The long-time behavior described by Eq. (39) translates to
the following small u behavior for the Laplace transform of
this waiting time distribution,

ψ̃(u) ∼ 1 − A

lnβ(1/τu)
, u → 0. (40)

Substituting this form into Eq. (18) we obtain

S̃∗(u) ∼ 1

u

[1 + e−λ − e−λA ln−β(1/τu)]1/2

[1 − e−λ + e−λA ln−β(1/τu)]1/2
(41)

for u → 0.
We again implement the power series expansion (35). This

yields the first two terms in the series for S̃∗(u),

S̃∗(u) ∼
(

1 + e−λ

1 − e−λ

)1/2

u−1 − e−λA ln−β(1/τu)

(1 + e−λ)1/2(1 − e−λ)3/2
u−1,

(42)

as u → 0. The usual Tauberian theorem then leads to the
temporal behavior at long times,

S∗(t) ∼
(

1 + e−λ

1 − e−λ

)1/2

− e−λA ln−β(t/τ )

(1 + e−λ)1/2(1 − e−λ)3/2
, (43)

as t → ∞. For a slow reaction this leads to the asymptotic
result,

S∗(t) ∼
√

2

λ
− A√

2λ3
ln−β(t/τ ). (44)

Comparing this result with Eq. (38) shows that the asymptotic
behavior here is approached even more slowly than there.
Thus the approach to the finite value S∗(∞) is fastest for an
exponential waiting time distribution, slower for a long-tailed
waiting time distribution, and slowest for an ultraslow waiting
time distribution.

B. Evanescence independent of steps

In this section we deal with the same three waiting time
distributions together with an exponential evanescence for the
walkers, but now we consider the case where stepping and
evanescence are disconnected, that is, evanescence is now
a process independent of the transport of the walkers. In
this case the probability ρ(t) that a walker survives up to
time t is straightforwardly given by ρ(t) = e−λt . It should
be kept in mind that although we use the same symbol
λ here and in Eq. (1), it represents related but different
quantities; furthermore, here λ has units of (time)−1 whereas
it is nondimensional in Eq. (1).

The mean number of sites visited up to time t is now given
by

S∗(t) =
∞∑

n=0

Snχ
∗
n (t), (45)

where Sn is the average number of sites visited by a walker
given that the walker has survived up to the nth step, and χ∗

n (t)
is the probability that the evanescent walker has taken exactly
n steps up to time t . This expression should be compared with
Eq. (16). Note that here the evanescence is taken into account
in the probability that the walker has taken n steps up to time
t , whereas in the case of evanescence coupled to steps the

evanescence is taken into account in the distinct number of
sites visited.

In the current situation the distribution of waiting times
must take into account the evanescence of the walkers.
Explicitly, the probability per unit time that an evanescent
walker jumps between t and t + dt , ψ∗(t), is just the waiting
time distribution for nonevanescent walkers ψ(t) diminished
by a factor e−λt , that is, ψ∗(t) = e−λtψ(t). In place of Eq. (12)
we must now use

ψ∗
n+1(t) =

∫ t

0
ψ∗

n (t ′) ψ∗(t − t ′) dt ′. (46)

Correspondingly, Eq. (15) must now be replaced by

χ∗
n (t) =

∫ t

0
ψ∗

n (t ′) �∗(t − t ′) dt ′, (47)

where �∗(t − t ′) = 1 − ∫ t−t ′

0 ψ∗(t ′′) dt ′′ is the probability that
the walker has not moved in the time interval t − t ′ since
the nth stepping time t ′, taking into account that the walker
might have been evanesced during this time interval. Laplace
transforming this equation gives

χ̃∗
n (u) = ψ̃∗

n (u) �∗(u) = ψ̃∗
n (u)

1 − ψ̃∗(u)

u

= [ψ̃∗(u)]n
1 − ψ̃∗(u)

u
= [ψ̃(u + λ)]n

1 − ψ̃(u + λ)

u
.

(48)

Using this in the Laplace transform of Eq. (45) then yields

S̃∗(u) = 1 − ψ̃(u + λ)

u

∞∑
n=0

[ψ̃(u + λ)]n Sn

= 1 − ψ̃(u + λ)

u
Ŝ(ψ̃(u + λ)), (49)

where Ŝ(·) is the generating function for the mean number of
distinct sites visited by a nonevanescent walker, as given in the
first part of Eq. (3).

In one dimension we substitute Eq. (7) into Eq. (4) and this
into Eq. (49) to arrive at

S̃∗(u) = 1

u

(
1 + ψ̃(u + λ)

1 − ψ̃(u + λ)

)1/2

. (50)

Note that, because limλ→0 S̃∗(u) = S̃(u) and S∗(0) =
S(0) = 1, Eq. (50) implies uS̃∗(u) − S∗(0) = (u + λ)S̃(u +
λ) − S(0), or stated differently, we see that dS∗/dt =
exp(−λt)dS/dt .

Let us now define the auxiliary function,

F̃ (u) = uS̃(u) =
(

1 + ψ̃(u)

1 − ψ̃(u)

)1/2

. (51)

Then S∗(t) = ∫ t

0 dt ′ exp(−λt ′)F (t ′) or, equivalently,

S∗(t) = F̃ (λ) −
∫ ∞

t

dt ′ exp(−λt ′)F (t ′), (52)

so that

S∗(∞) = F̃ (λ) = λS̃(λ). (53)
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We now proceed to implement our three different waiting
time distributions and compare the results obtained here with
those obtained for walkers that can only evanesce when they
jump.

1. Exponential waiting time distribution

We again start with the exponential waiting time distribu-
tion (19), which immediately gives

ψ∗(t) = ωe−(ω+λ)t , (54)

when the evanescence process is taken into account. The
effective mean waiting time between steps is now ω/(ω + λ)2,
shortened relative to the mean waiting time T = 1/ω for
nonevanescent walkers. In other words, the mean number of
steps per unit time is now increased, indicating that those
walkers that wait longer to jump are removed with higher
probability. The Laplace transform of ψ(t) is ψ̃(u) = ω/(ω +
u), so that F̃ (u) = [(2ω + u)/u]1/2, and from Eq. (53) one
finds

S∗(∞) =
(

2ω + λ

λ

)1/2

, (55)

to be compared with Eq. (22). Note that the asymptotic value
of the distinct number of sites visited there is independent of
the stepping rate ω, whereas here that is not the case. Here
there is a competition between the rate of the reaction and the
jump frequency. It is in fact difficult to meaningfully compare
the two results because the dependencies on the parameters
are so different.

The approach to the asymptotic result can be calculated
by means of Eq. (52) by approximating F (t) by its
long-time behavior. Because F̃ (u) ∼ (2ω/u)1/2 for u → 0,
one finds F (t) ∼ √

2ω/πt for long times, and Eq. (52) implies

S∗(t) ∼ S∗(∞) −
√

2ω

λ
erfc(

√−λ t), t → ∞. (56)

As in Sec. III A, here again the approach to the asymptotic
result is faster than exponential. In the slow reaction limit
(small λ, but still with λt large) the asymptotic result reduces to

S∗(t) ∼
√

2ω

λ
− 1

λ

√
2ω

πt
e−λ t , t → ∞, (57)

which is equal to Eq. (27) when here one replaces λ by λω.

2. Long-tailed waiting time distribution

We again consider a waiting time distribution which at long
times behaves as given in Eq. (32), with Laplace transform for
small u as in Eq. (33). The final value of S∗(t) is then

S∗(∞) = λS̃(λ) =
(

1 + ψ̃(λ)

1 − ψ̃(λ)

)1/2

. (58)

While it is possible to calculate the result for arbitrary λ,
not much is learned from it, so we only exhibit the asymptotic
result for a slow reaction. In this limit we can use the expression
for the Laplace transform of the waiting time distribution given

in Eq. (33) to calculate ψ̃(λ) ∼ 1 − τ γ λγ . Then

S∗(∞) ∼
√

2

(τλ)γ
for λτ → 0. (59)

This behavior is entirely different from that of the correspond-
ing result for walks in which evanescence and jumping are
tightly coupled. The latter asymptotic result is the first term
on the right-hand side of Eq. (38). There the asymptotic value
depends only on λ, the rate of evanescence. Here the result also
depends on the parameter γ of the waiting time distribution.
The approach to this asymptotic value for slow evanescence
can be found as in Sec. III B1: F̃ (u) ∼ 2/τγ uγ for u → 0,
from which it follows that F (t) ∼ 2t−1+γ /τ γ 
(γ ) for large t .
From Eq. (52) one then gets

S∗(t) ∼
√

2

(τλ)γ
−

(
2

τ γ

)1/2 1


(γ /2)λ

e−λt

t1−(γ /2)
(60)

for long times when λ → 0 (but still λt → ∞).
It is somewhat difficult to compare this result with that

of Eq. (38). The inverse power of time in the subdominant
term goes as t−γ in the coupled case and as t1−(γ /2) in the
decoupled case. Which exponent contributes to a more rapid
decay depends on the value of γ , specifically whether it is
smaller or larger than 2/3. However, at very long times the
exponential term in Eq. (60) is dominant so that eventually
near asymptotia the approach is more rapid when evanescence
and stepping are decoupled than when they are coupled.

In the absence of evanescence, it has long been known [24]
that the distinct number of sites visited by an ensemble of
walkers (called traps in this context) is related to the survival
probability QT (t) of an immobile target located at a given site
of an infinite lattice and surrounded by a random distribution
of traps of density c0 (=fraction of lattice sites occupied
by traps): QT (t) = exp{−c0[S(t) − 1]}. This relation is also
valid for evanescent traps, Q∗

T (t) = exp{−c0[S∗(t) − 1]} [18].
This result can also be translated to the continuum limit. The
long-time asymptotic behavior of Q∗

T (t) on a one-dimensional
lattice for (sub)diffusive traps, which can be modeled as
CTRWers with a long-tailed waiting time distribution, was
also studied in [35] by means of a different approach in
which fractional calculus was employed. The results reported
in that work [cf. Eq. (19)] fully agree with those obtained
here and can also be generalized to higher dimensions [19] via
reaction-subdiffusion equations [4,14,36–38].

3. Ultraslow waiting time distribution

We complete our panorama by considering the ultraslow
waiting time distribution whose long-time behavior is given in
Eq. (39). Again, for small λ it is appropriate to use the small-u
form of its Laplace transform as given in Eq. (40), to obtain

S∗(∞) ∼ [2A−1 lnβ (1/τλ)]1/2, (61)

for λτ → 0. It is again difficult to directly compare this
result, valid when the evanescence and jump processes are
concurrent, with the first term on the right of Eq. (44), because
the parameter dependencies are so different.

The approach to the asymptotic limit is again obtained using
the same methodology as before, and we find that for small λ
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as t → ∞
S∗(t) ∼ [2A−1 lnβ (1/τλ)]1/2

−β(2A)−1/2 lnβ/2−1(t/τ )

λt
e−λt . (62)

Again, for the comparison of the approach to asymptotic
behavior here and in the case of coupled evanescence and
jump events, cf. Eq. (44), the remarks following Eq. (60) hold
here as well, with the remarks about γ there translated to the
parameter β here.

IV. SUMMARY AND CONCLUSIONS

Using a CTRW approach we have calculated the asymptotic
behavior of the distinct number of sites visited by exponentially
evanescing walkers. We considered two situations, namely one
where the evanescence and stepping processes are coupled so
that the former does not occur when a walker stands still and
waits, but only when it takes a step, and another where these
two processes are decoupled. In the coupled case the density
of walkers decreases as ρ(n) ∝ exp(−λn) and we have to be
appropriately careful when converting this to a decay in time.
How the density decays with time depends on the waiting time
distribution of the walkers. In the decoupled case the density
of walkers decreases as ρ(t) ∝ exp(−λt). We have presented
results for the case of a slow evanescence process, λ → 0,
because we are mainly interested in the diffusion limit, that is,
in the limit where many steps are taken before the walkers
on average evanesce (in most cases the discussion makes
little sense if the walkers on average evanesce early in the
walk).

We next collect our formulas so that they can be assessed
when all seen together. We collect the results according to the
waiting time distribution. In all cases we present the number
of distinct sites visited as a function of time at long times
(and for weak evanescence rate λ), that is, the asymptotic
results and the approach to the asymptotes. We are of course
appropriately cautious in our conversion from step number
to time. The first result in each case is that obtained when
evanescence and stepping are tightly coupled, the second when
they occur independently, and we specifically recall that λ does
not represent the same quantity in both cases. We also note one
additional point before presenting this summary: When there
is no evanescence, it is clear that walkers continue to visit
new sites without end, so that the distinct number of sites
visited as a function of time diverges as t → ∞ [27]. How
exactly it diverges depends on the waiting time distribution.
In particular, for an exponential waiting time distribution
ψ(t) = ωe−ωt we recover the classic one-dimensional random
walk result S(t) ∼ √

8ωt/π . When there is evanescence, the
distinct number of sites visited approaches a finite limit in all
cases.

(1) Exponential waiting time distribution,

ψ(t) = ωe−ωt .

(a) Tightly coupled,

S∗(t) ∼
√

2

λ
− 1

λ

√
2

πωt
e−λωt .

(b) Uncoupled,

S∗(t) ∼
√

2ω

λ
− 1

λ

√
2ω

πt
e−λt .

(2) Long-tailed waiting time distribution,

ψ(t) ∼ γ τγ t−1−γ


(1 − γ )
.

(a) Tightly coupled,

S∗(t) ∼
√

2

λ
− 1

(2λ3)1/2
(1 − γ )

(
τ

t

)γ

.

(b) Uncoupled,

S∗(t) ∼
√

2

(τλ)γ
−

(
2

τ γ

)1/2 1


(γ /2)λ

e−λt

t1−(γ /2)
.

(3) Ultraslow waiting time distribution,

ψ(t) ∼ βA

t[ln (t/τ )]β+1
.

(a) Tightly coupled,

S∗(t) ∼
√

2

λ
− 1√

2λ3
A [ln (t/τ )]−β.

(b) Uncoupled,

S∗(t) = (2A−1 lnβ (1/τλ))1/2

− (2A)−1/2β
lnβ/2−1(t/τ )

λt
e−λt .

We point to a result that is intuitively obvious: The
asymptotic result S∗(∞) when the steps and evanescence are
tightly coupled is the same regardless of the waiting time
distribution. This is not the case when they are uncoupled. The
approach to the asymptotic result is different for all cases.

As we pointed out at the end of Sec. III B2, the distinct
number of sites visited by an ensemble of walkers (called traps
in this context) is related to the survival probability Q∗

T (t) of
an immobile target located at a given site of an infinite lattice
surrounded by a random distribution of (evanescent) traps of
(initial) density c0 by the equation Q∗

T (t) = exp{−c0[S∗(t) −
1]}. Thus, the results obtained in this paper for S∗(t) are quite
different from the case where the traps are nonevanescent [39];
in view of the above, they may provide a good benchmark for
dealing with a variety of non-Markovian generalizations of
target and trapping problems [40–46] where death processes
are at play.

We also mention an additional interesting connection. It
is well known that so-called anomalous diffusion (which
here corresponds to a walk with a nonexponential waiting
time distribution in our “uncoupled” model) may provide an
explanation for the observed stretched exponential relaxation
(or Kohlrausch-Williams-Watts relaxation) in the so-called
defect diffusion model [47–49]. We argued [17] that the
stretched exponential behavior could also occur with ordinary
diffusion (which here corresponds to a random walk with an
exponential waiting time distribution in our “coupled” model)
if the walkers in the model could evanesce. We commented
there, and we have confirmed here, that the combination
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of anomalous diffusion and evanescence is also a possibil-
ity, one that provides a broad array of possible relaxation
behaviors.

Routes of future work might include a detailed analysis
of the stretched exponential problem, and the extension of
our results to higher dimensions, and to different forms of
evanescence for both the coupled and uncoupled cases. The
full characterization of the exploration properties of one or
various evanescent CTRWers via other quantities beyond
the mean number of distinct sites visited is also a matter of

current interest and should be tractable within our generating
function approach.
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