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Contact values of the radial distribution functions of additive hard-sphere
mixtures in d dimensions: A new proposal
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The contact valueg;j(oy;) of the radial distribution functions of a-dimensional mixture of
(additive hard spheres are considered. A “universality” assumption is put forward, according to
which gj;(ai;) =G(7,z;), where G is a common function for all the mixtures of the same
dimensionality, regardless of the number of components the packing fraction of the mixture,
andzij=((Ti0j/0'ij)<0'd_l>/<0'd> is a dimensionless parametés;") being thenth moment of the
diameter distribution. Fod= 3, this universality assumption holds for the contact values of the
Percus—Yevick approximation, the scaled particle theory, and, consequently, thekB@Groindke —
Henderson—Lee—Levesque approximation. Known exact consistency conditions are used to express
G(7,0), G(7,1), andG(#%,2) in terms of the radial distribution at contact of the one-component
system. Two specific proposals consistent with the above-mentioned condaigusdratic form

and a rational forrnare made for the dependence o&(%,z). For one-dimensional systems, the
proposals for the contact values reduce to the exact result. Good agreement between the predictions
of the proposals and available numerical results is foundife?, 3, 4, and 5. ©2002 American
Institute of Physics.[DOI: 10.1063/1.1502247

I. INTRODUCTION has meant that studies for mixtures are much more scarce.

. . . Perhaps the most successful theoretiaahlytica) approach
It is well-known that there exists a close connection be- P i ytica) app

: : to this issue in the case of additive hard-sphere mixtudes
tween the thermodynamic and structural properties of classi- b (

cal fluids. In fact, for pairwise additive intermolecular poten- =3) s the exact solution of the Percus—Yeviék) equa-

tials, all the thermodynamic functions may be expressed irtl!on carried out by Lebowitz in 1964This analytical solu-

terms of the radial distribution functior(sdf). The expres- tion, which among other things yields explicit eXpressions
sions are particularly simple for hard-core fluids, since infor the contact values of the rdf, as well as for the virial and
' the compressibility routes to the EQS, is at the basis of the

that case the internal energy reduces to that of the ideal gas L . .
9y 9 elebrated(and empirically derived Boublk—Mansoori—

and in the pressure equation it is only the contact value _ 23 .
rather than the full rdf which appear explicitly. Therefore,%arnaharr:—Starlmg—LeEIe(l)r(éB?/ICiL) dEOSh’ con_s|dered :o hi
knowledge of the contact values of the rdf in hard-core flu- e a rather accurate_ or hard-sphere m|>.<tures. n s
ids, which we will denote by;;(c;;) (where in generail and paper’ Boublk also introduced an appro>_<|mat|0n for the
j label species and;; is the distance of separation at contactcontact values of the rdn fact an mterpola\_tlon betwee4r’1 the
between the centers of two interacting fluid particles, one ofY results and the ones of the scaled particle théBR"”]

that later was independently proposed by Grundke and

species and the other of specig9, suffices to obtain the 6 deThi e
equation of statdEOS of these systems. In the case of a Hendersonh and Lee and LevesqueThis approximation,

single component hard-core fluid, if the EOS were knownWhich we will refer to as BGHLL, leads precisely to the
then it would be straightforward to infer the contact value of BMCSL EOS when substituted into the statistical mechanical
the radial distribution function. In contrast, if one were givenformula for the pressure equation. Refinements of the
the EOS of a multicomponent hard-core mixture such conBGHLL approximation have recently been proposed by
tact values could not be determined in a unique way. To thi§lenderson and Chah,” Matyushov and Ladanyf and
day, no exact expressions for the contact values of the rdf dgarrio and Soland to cope with some deficiencies of the
for the EOS(except for the case of one-dimensional systemsBMCSL EOS in the so-called colloidal limit of binary hard-
i.e., hard rods are known, although various approximate Sphere mixtures.

theories, empirical efforts, and computer simulations have As far as we are aware, there are no reported approxi-
been carried out in connection with this problem. One-mations forg;;(oj;) with d+3, except that of Jenkins and

component systems are, of course, easier to handle and tH#ancini® in the case of hard-disk mixtures and our dfvn
for d-dimensional mixtures. The latter approximation, how-

ever, was introduced only as a means to derive a proposal for

dE|ectronic mail: andres@unex.es

bEJectronic mail: santos@unex.es the EOS of mixtures. In fact, while this EOS presents an
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d=3181d=42 andd=5 the expressions fog;;(¢;;)  mean spherical approximati®nand in the rational function
are less accurafé® It is the major aim of this paper to approximatiorf? In a different context, they are important as
propose new (improved approximate expressions for well to implement the Enskog kinetic theory both for elastic
gij(oy;), for arbitrary mixtures and arbitrary dimensionality, and inelastic hard spher&s??
that, apart from satisfying known consistency conditions, are  The exact form ofg;;(ci;) as functions of the packing
sufficiently general and flexible to accommodate any giverfraction, the set of diametefsr,}, and the set of mole frac-
EOS for the single fluid. A key aspect of the present ap-ions{x,} is only known in the one-dimensional case, where
proach, also included in our previous wdfkis that we will  one simply hasg;j(ai;) =(1— 7) 1. Consequently, ford
assume from the very beginning a kind of universal behavioe=2 one has to resort to approximate theories or empirical
of the contact values which at least holds also for the soluexpressions. From that point of view, it is useful to make use
tion of the PY equation,for the SPT approximatioh®> and  of exact limit results that can help one in the construction of
for the BGHLL interpolatioA®’ in the case of mixtures of approximate expressions fgg;(o;). Let us consider first
hard spheresd=3). This means that, once the dimension-the limit in which one of the species, sgyis made of point
ality and the packing fraction are fixed, the expression for theparticles that do not occupy volume, i.e;— 0. In that case,
contact valueg;; (oy;) for all pairsij is the same, irrespec- g;i(o;) takes the ideal gas value, except that the available
tive of the composition and the number of components in thezolume fraction is - #:
mixture. This expression must comply with three consistency

" . . . 1
conditions related to the point particle, equal size, and the i, g..(g)= ——. )
colloidal limits, respectively. Two functional form@ qua- o;—0 1-7

dratic one and a rational ohevhich are sufficiently repre- n even simpler situation occurs when all the species have
sentative will be examined. Their merits will be assesse(f‘ P P

from a comparison with available simulation data as well aljhetstame Sizgoy}— o, sto tha;t the_?zste;n becomes equiva-
with respect to the performance of the EOS obtained fro ent to a one-component system. therefore,

them. .In thellatter issue, we W'i|| show that a paradoxical lim g;j(oi))=9(0), 3
result is obtained. What we find is that, contrary to what one  {oy}—o

could possibly expect, better contact vala@esnotnecessar-

gy Teesir']owsorfi ?chratﬁ,iofefg?otza;é?'eﬂ];gﬂfgggt function in the one-component case. Equatié®sand (3)
xp ! 9ij (oi;) y xactly ___represent the simplest and most basic conditionsghéd;)

The paper IS organized as fOHOWS.: In Sec. Il we recallmust satisfy. There are a number of other less trivial consis-
the known consistency conditions and introduce the new pro-

osals for the contact values of the rdf. Section Il deals wit tency conditions.® "> ***Here we consider the condi-
tphe comparison between our contact v;alues and ensuin EO. n stemming from a binary mixture in which one of the
mpari: . 9B ecies, say=1, is much larger than the other one, i.e.,

and simulation results. We close the paper in Sec. IV with

further discussion and some concluding remarks o1/op—ee,  but occupies a negligible volume, e,
9 ' x1(o1/0,)9—0. In that case, a sphere of species 1 is seen as

a wall by particles of species 2, so that?®

_ , o im  [g1x01) =29 1pgaoy)]=1. (4)

Let us consider a mixture of hard spheresdinimen- oplop—
sions with an arbitrary number of components. The hard core  xi(o1/0)%—0
of the interaction between a sphere of spetiasd a sphere
of speciesj is crij=%(ai+crj), where the diameter of a
sphere of speciesis o;j=0;. The number density of the
mixture isp and the mole fraction of speciess x;=p;/p.
From these quantities one can define the packing fracgion
=vgp(c?), wherevy=(7/4)?/T'(1+d/2) is the volume of
a d-dimensional sphere of unit diameter apd")=3; x; 0"
denotes the moments of the diameter distribution.

In a hard-sphere mixture, the knowledge of the contac
valuesgjj(oj;) is important for a number of reasons. For
example and as stated previously, the availabilitgofo;) gij(oi;)=G(7,z)), (5)
is sufficient to get the equation of stateOS of the mixture
via the virial expression

where g(o) is the contact value of the radial distribution

Il. THE PROPOSAL

Also in that limit®2>2In g,,(oy) ~ o4 /o, but we will not
make use of this condition here.

Our purpose now is to propose approximate expressions
for gi;(oy;) of hard-core mixtures with an arbitrary number
of components and arbitrary dimensionatitythat satisfy the
consistency condition&®)—(4). First, we assume that the de-
pendence of;;(oj;) on the parameterso,} and{x,} takes

lace only through the scaled quantitg;j=(ojo;/oj;)
(a9 /{09, More specifically,

where the functiors(7,z) is universalin the sense that it is
a common function for all the pairg, regardless of the

i1 g?j composition and number of components of the mixture. Of
Zo(m)=1+29" 77%: XiX; ngj((ﬂj), (1) course, the functios(7,z) is different for each dimension-
, g .
ality d.
whereZ,=p/pkgT is the compressibility factor of the mix- The ratioé¢=(a%"1)/(o%) can be understood as a “typi-

ture, p being the pressurdg the Boltzmann constant, arid  cal” inverse diameter or curvature of the particles of the
the absolute temperature. The contact valygsr;;) are also  mixture. The parameteg;; 1=(ai_ 1y (rj_l)/2§ represents
needed to generate the entire gif(r) in the generalized then the average curvature, in units &f of a particle of
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species and a particle of specigsAccording to Eq.(5), if
two different pairsij in two different mixtures(with the
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The resulting EOS exhibits an excellent agreement with
simulations in two, three, four, and five dimensions, provided

same packing fractiorhave the same dimensionless averagehat an accuratg(o) is used as inpu~8203%0n the other
curvaturez;; 1 then they have the same contact value of thehand, if one is directly interested in obtaining reliable contact

rdf.
The ansatz(5) includes the one used by #swhere
G(7,z) was approximated by a linear function nfA par-

ticular case of this linear form is the proposal made by Jen-

kins and Mancini for hard-disk mixturés:

9 7
+— z
7 16(1-y)?

(d (6)

G = ! 2
(7,2)=7_ ).
In the three-dimensional case, Ef) is also compatible with
the solution of the PY equatidnthe SPT approximatiof®
and, consequently, the BGHLL propog&l” More specifi-
cally, G(#,z) is a linear function ok in the PY approxima-
tion and a quadratic function in the SPT and BGHLL ap-
proximations:

7

1-n3"

n

z+ 2
(1-7)?

(d=3),
()

where A\py=0, Agpr=2, and Aggy . =3. These three ap-
proximations are consistent with Eq®) and (3), but only
the SPT is also consistent with conditiof). The approxi-
mation referred to as the SPT-virial route by Rosertfeld
adopts also the scaling forni5), namely G(7,z)=(1

— 5) lexg3z7/2(1— 7)], but it does not comply with con-
dition (4).

Once we adopt the ansag), the limits in Eqs.(2)—(4)
provide very useful constraints on tlzedependence of.
First, z;—0 in the limit o;— 0, so that insertion of Eq2)
into Eq. (5) yields

oo b3

1
G(7,0= [ (8)

Next, if all the diameters are equa; — 1, so that Eq/(3)
implies that

G(7.1)=9(0). 9

Finally, in the limit considered in Eq4), we havez,,—1,
z,,— 2. Consequently,

G(7,2=1+29"193G(7,1). (10

Thus Egs.(8)—(10) provide complete information on the
function G at z=0, z=1, andz=2, in terms of the contact
valueg(o) of the one-component rdf.

The proposal made in Ref. 16 consists of assuming a

linear dependence db on z that satisfies the requirements
(8) and(9):

1
1-9

g(o)— z. (12)

1
G(?),Z)IE+

If in the two-dimensional case we take Henderson's Vdlue
g(o)=(1—775/16)/(1— 5)?, Eq. (11) reduces to Jenkins
and Mancini’s approximatioft, Eq. (6). In general, Eq(11)
does not satisfy Eq10). However, the ansatd1) was used
in Ref. 16 only as a means to obtain the EOS from @g.

values gjj(oj;), then Eq.(11) is too crude. The simplest
functional form of G that complies with Eqs(8)—(10) is a
quadratic function otz

G(7,2)=Go(7)+G1(7)z+G(7)2%, (12)
where the coefficients are explicitly given by

Go(m)= iy (133

Gl(m:(z—zd-zn)g(cr)—21__’77/72, (13b)

Galm)= 11__7’,/]2—(1—2“-277)9(0). (139

In the one-dimensional case, Eq43b and (130 lead to
G;=G,=0 and we recover the exact result. For three-
dimensional systems, if the SPT value is used for the one-
component contact valuegsp(o)=(1— 5/2+ 5%/4)/(1
— )%, we reobtain the SPT expressions for the mixture, cf.
Eq. (7). On the other hand, if the much more accurate
Carnahan-Starling (CS expressiongeg(o)=(1— 7/2)/
(1— »)® is used as input, we arrive at the following expres-

1
=1

3 n(1-7/3)

7*(1-7/2) 2
2 (1-9)?

(1-7)?®

G(7,2)

(d=3), (14)

which is different from the BGHLL one and improves the
latter forz>1, as comparison with computer simulations will
show. It should be noted that if one considers a binary mix-
ture in the infinite solute dilution limit, namely;—0, so
thatz,,—2/(1+ 0,/04), Eq. (14) yields the same result for
9101, as the one proposed by Matyushov and Lad&hnyi
for this quantity on the basis of exact geometrical relations.
However, the extension that the same authors propose when
there is a nonvanishing solute concentration, i.e. xict 0
[cf. Eq.(19) in Ref. 13, is different from Eq.(14). We will
come back to this point later when we assess the merits of
both proposals.

Of course, the quadratic forfl2) is not the only choice
compatible with condition$8)—(10). Another simple possi-
bility is to assume a rational function of the form

1A 1]z

G D=5 Bz (19
Imposing Egs(8)—(10), we get
Bo(7)=1-7, (163
~ g(o)n 1-2"H(1-n)g(0)
A(n)=——— (120 Tp)g(o)’ (16b)
12-p—(1-n)(2-2%1
By(n)=— = 7—(1—=n)( 77)9(0)_ (160

2 1-(1-2%"19)g(0)
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FIG. 3. Plot of the contact valug;;(o;;) as a function of the parameter
z;=(0;0;10;;){o?I{a®) for hard spheresd=23) at a packing fractior
=0.6. The open circles are simulation data for three binary mixt(Res. 1:9())31‘:] Th/e Syn;bOISd are (S)Ign;gl,altllonodg(t)i f1°5r thrzeobc;gzryT:Ithgm-

. 1 h with o, /0,=5 andx;=0. . and 0.005. The lines are

h =3 =0.2 . .75. The cl | 207175 1 ' ' ’

3?) Wlt. oylo;=3 and xl. 0 5,. 0.5, and 0.75 . e cosidécwc es are from bottom to top at the right end, E€L1) (), BGHLL (- - ), Eq. (12)
simulation data. for two bllnary mixturedRef. 39 V\{Ith oylo1=7 andxy ( ), SPT(= -- —), and Eq.(15) (--).
=0.483 and witho,/0;=5% and x;=0.219. The lines correspond to Eq.
(12) (dashed ling Eg. (12) (solid line), and Eq.(15) (dotted ling.

FIG. 1. Plot of the contact valug;;(o;) as a function of the parameter
z;=(0i0jl/0;;){o)/{a?) for hard disks §=2) at a packing fractiony

computer simulation data. Figure 1 shogygo;;) as a func-
tion of z;; for d=2 and»=0.6, according to the linear ap-

(10) are possible, but the choicés?) and (15) are suffi- proximation(11), the quadratic approximatiofi2), and the

ciently representative, so we will restrict ourselves to them ir;atmnal approxmanor@l@. In the three cases we hqve used
this paper or g(o) the value obtained from the Lev[] approximant

of Erpenbeck and Lubaif. The only tabulated simulation

data forg;j(oy;) in the case of hard disks that we are aware
of are those of Ref. 33. Hence, we have included in Fig. 1 the
A. Contact values of the radial distribution functions simulation results for the most asymmetric mixtures consid-

. s o
In order to assess the utility of the new proposals for thef"®d in Ref. 33, namely; /o, =3 with x;=0.25, 0.5, and
contact values of the rdf, in Figs. 1-9 we present results foP-75, and also simulation data extracted from Fig. 2 of Ref.

hard-core mixtures ird=2. 3. 4. and 5. and the available 34- We observe that the quadratic and rational approxima-
tions, both consistent with conditiofd0), are hardly distin-
guishable. The three theoretical curves practically coincide in

Other functional forms foG(7,z) complying with Eqs(8)—

IIl. COMPARISON WITH SIMULATION DATA

40 T T

. 0 L L
03 0.4 0.5
FIG. 2. Plot of the contact valug;j(o;;) as a function of the parameter n
z;= (o0 /0i;){?){c® for hard spheresd=3) at a packing fractiom
=0.49. The symbols are simulation data for the single flgidcle)—Ref. FIG. 4. Plot of the contact valugq,(o;) as a function of the packing

18—three binary mixturegsquares—Ref. 35—with o/0;,=0.3 andx, fraction 7 for the three-dimensional binary mixtusg=0.005, o, /o, = &
=0.0625, 0.125, and 0.25, and a ternary mixiiiriangles—Ref. 36—with  (7,.=3.457). The symbols are simulation déRef. 19. The lines are, from

oylo= % 03/01:%andx1:0.1, X,=0.2. The lines are, from bottom to  bottom to top at the right end, Eqll) (---), BGHLL (- - -), Barrio—
top at the right end, Eq11) (---), BGHLL (- - -), Eq.(15) (--*), Eq.(12) Solana—Ref. 14--), Eq. (12) (—), SPT(- -- -), Eq. (15) (-**), and
(—), and SPT(- -- -). Henderson—Chan—Refs. 8—11-).
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3.0} ]
8 I l”l ..
25| ]
g, g S
oF " 20t st ]
15} o1 ]
4t 5
(]
0.35 0.40 0.45 0.50 0.55 10=—2 . - .
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FIG. 5. Plot of the contact valug,,(o4,) as a function of the packing
fraction » for the three-dimensional binary mixtusgq=0.004 15,0, /0,
= % (z1,=1.210). The symbols are simulation déRef. 19. The lines are,
from bottom to top at the right end, E(L1) (---), BGHLL (- - -), Eqg.(12)
(—), Barrio—Solana—Ref. 14 --), Henderson—Chan—Refs. 8—11-),
SPT(- -- —-), and Matyushov—-Ladanyi—Ref. 13--).

FIG. 7. Plot of the contact valug,,(o5) as a function of the packing

fraction » for the four-dimensional binary mixturg,= %, o,/01=0.25
(z1,=0.402). The symbols are simulation dgief. 20. The lines corre-
spond to Eq(11) (dashed ling Eqg. (15 (dotted ling, and Eq.(12) (solid
line).

the range of values of; spanned by the simulations. It d?tion (10), but its performance is not very good because it is
would be interesting to carry out simulations extending to the?inned at a too high value at=1 (one-component case
regionz;;>2 to assess the reliability of Eqel2) and(15). ~ The BGHLL prescription, Eq(7) with A =5, is excellent at

A comparison between theoretical predictions and simuZ=1 (CS value, does a very good job for 0z<1, but
lation values for three-dimensional mixtures is shown inclearly underestimates the simulation data for1, as ex-
Figs. 2—5. To carry out the computations in E¢sL), (12), pected from the fact .that the_ BGHLL_ls inconsistent with Eq.
and(15), we have used the CS contact vatue( o). Figures (10) atz=2. Our recipe(12) is only slightly worse than the
2 and 3 show that the universality assumpti@ is well BGHLL for z<1 but improves it significantly foe>1. Fi-
supported by simulation data. Since the dependence grally, the rational functior(15) is'practically indistinguish-
gij(o;;) onz; is nonlinear(note that the curvature is differ- able from the BGHLL forz<1, is reasonably good for 1
ent from that of the two-dimensional cas€q. (11) only <z<2, and is the best one in the case of the large—large rdf
captures some kind of “average” behavior. Among the thregfor disparate mixtures, as shown by Fig. 3 in the regron
quadratic functions, namely the SPT, the BGHLL, and Eq.“4- Of course, none of these approximations is expected to
(12), the best global agreement is presented by(E?). The be good enough in the limit oéxtremelylarge valugs of,
SPT prescription, Eq7) with A =2, is consistent with con- Where ING~282528 The latter behavior could be incorpo-

22 . . — 4.0 : —
S e 7
20k /’ '.' ] 3.5} ,’f'. T
S . 7
1.8} ] 3.01 i 1
16} ] 2.5} % .
g, ," 8 oy
14} A ] 2.0} K ]
I':". L g
12t e 1 150 :
(]
1.0 : . - 1.0 - -
0.00 0.05 0.10 0.15 0.0 0.1 0.2
n n

FIG. 6. Plot of the contact valug,,(o,) as a function of the packing FIG. 8. Plot of the contact valug,,(o,,) as a function of the packing
fraction % for the four-dimensional binary mixture;=0.5, 02/01:% fraction 7 for the five-dimensional binary mixtumlz%, o5/0,=0.75
(z1,=0.706). The symbols are simulation ddfef. 20. The lines corre-  (z;,=0.912). The symbols are simulation ddRef. 20. The lines corre-
spond to Eq(11) (dashed ling Eq. (15) (dotted ling, and Eq.(12) (solid spond to Eq(11) (dashed ling Eqg. (15 (dotted ling, and Eq.(12) (solid
line). line).
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22 . . — to the approximation proposed in E@.9) of the paper by
S Matyushov and Ladanyf
20t . Of course, the most physically relevant situations corre-
. spond to hard spheresl€3) and, to a lesser extent, disks
1.8l i (d=2). On the other hand, it seems desirable that a proposal
for gjj(oy;) be valid for any dimensionalitg. Moreover, a
161 il number of recent papers deal with systems of hard
& S hypersphere®3"-43 Figures 6-9 showg;,(o;,) versusy
141 ,,,'."'. i for binary mixtures ind=4 andd=5. The contact values of
’_,;.".’ the one-component system that we have used in the compu-
121 SR | tations have been obtained from the EOS derived for these
’ 4 systems by Luban and Micheél$The values of the param-
; . eterz,, are in the range 04z,,<1 for the cases considered

'8_00 0.05 0.10 0.15 in Figs. 6-9. It is observed that in this range the quadratic
. approximation(12) exhibits an excellent agreement with the
simulation data.
FIG. 9. Plot of the contact valug,,(c1,) as a function of the packing

fraction 7 for the five-dimensional binary mixturalzé, o,/0,=0.5 B. Equation of state
(z1,=0.687). The symbols are simulation ddRef. 20. The lines corre- _ )
spond to Eq(11) (dashed ling Eg. (15 (dotted ling, and Eq.(12) (solid Having examined the accuracy of the proposed contact

line). values, we will now consider their performance in terms of
the compressibility factor they lead to. In this regard, Eq.
(12) has the advantage over H45) that, when inserted into
Eqg. (1), one gets a closed expression for the compressibility

rated by choosing an adequate functional form &{»,z)  factor, in terms of the packing fraction and the first few

consistent with condition&)—(10), but this does not seem to moments(¢"), n=<d. This expression is meaningful even
be necessary in the range<@=<4. Since the best global for polydisperse mixtures. The result is

agreement in the rangesz<2 is provided by the polyno-

mial function(12), which has a structure similar to the well- b —1420-2 Y 2(S—2S+S,)+ (S, —
known BGHLL prescription in the case af=3 [cf. Eq. ml 7) 1—77[ (5072511 5+ (517 %,) 7]
(14)], we favor its use, except perhaps for very disparate " _ _g 4od-2(g _
mixtures, where the rational approximatidh5) is prefer- [24) = 111281~ S+ 27 (S = Sy 7l
able. a7

The refinements of the BGHLL expressions recently pro\yhere z(5) =1+ 29 15g(o) is the compressibility factor

posed by Henderson and Cfiaht and by Barrio and of the one-component system and the coefficieBtsare
Solana* are not shown in Figs. 2 and 3 because they do nogjven by

belong to the class of approximations satisfying the univer-

_ d—
sality assumptior(5). In addition, they are restricted to the szz_(d_m)<0d Hm Em d—m (g
case ofbinary mixtures. Both approximations differ in prac- (gBm+1 7= | N :

tice from the BGHLL only ingq4(o1), where species 1 refer (18)
to the big spheresd;> o). Figure 4 showsy,;(o1) VS 7
for the three-dimensional binary mixtusg=0.005, o,/0
=1 (which corresponds ta,;=3.457). The figure confirms 1 (o)?
that the best agreement is obtained with the rational approxi- Zi(m)= E“L @
mation (15). Henderson and Chan’s approximation, which
incorporates the exact asymptotic behavioglffo;)~ o, It is worth noticing that this EOS coincides with the one
gives too high values. Barrio and Solana’s expression imobtained from Eq(11) for d=2. This illustrates the fact that
proves the BGHLL value, but is slightly worse than the qua-two different proposals for the contact valugg(o;) can
dratic approximatior(12). yield the same EOS when inserted into Efj. Let us ana-
Figure 5 presents a plot af;,(o1,) as a function ofy lyze this point with more detail. Subtracting Eq41) and
for the three-dimensional binary mixture characterized by(12), one has
x;=0.004 15 ands,/o;=% (which corresponds to a value 1— /2
of 21,=1.210) as given by different approximations. The ra-  AG(7,2)=| 5= —(1-29"29)g(0)|z(1-2), (20)
tional approximation given by E@15) has not been included K
in Fig. 5 to avoid overcrowding of the curves, but it is prac-where AG(#7,z) denotes the difference between the linear
tically indistinguishable from the BGHLL approximation in and the quadratic approximations. Thus, the compressibility
this case. Clearly the best agreement between theory ardctors obtained from the linear and quadratic forms for
simulation is provided by the approximations of Barrio andG(#»,z) only differ by a term proportional to
Solanat* of Henderson and Chanh,and by our Eq.(12), Ei,jxixjaﬂzij(l—zij). It turns out that this term vanishes in
which are all of comparable accuracy and certainly superiothe two-dimensional case, so the linear and quadratic ap-

In the two-dimensional case, E(L.7) becomes

(d=2). (19

Z(n)— iy
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FIG. 10. Deviation of the compressibility factor from the BMCSL value, as FIG- 11. Plot of the ratid3(#,2)/Gggrui(7,2) as a function of the param-
a function of the packing fractiom for an equimolar three-dimensional ©terz for hard spheresd=3) at a packing fractioy=0.49. The symbols
binary mixture witho,/c,=0.6. The oper(Ref. 9 and closedRef. 45 are simulation data for the s_lngle fluidircle)—Ref. 18—three binary mix-
circles are simulation data. The lines are, from bottom to top at the right encfures (squares—Ref. 35—with o, /0,=0.3 andx, =0.0625, %125' and
the eCS-ll EOS22) (—), the EOS obtained from the rational approxi- 0.25, and a ternary mixtur@riangle3—Ref. 36—witho,/01=3, 03/0;
mation (15) (---), the eCS-1 EOS24) (--), and Barrio and Solana’s EOS =3 andx,=0.1, x,=0.2. The lines correspond to E1) (---), Eq. (12)
(+)—Ref. 14. (—), Eq.(19) (), and SPT(— -- -).

proximations yield the same EQ$9). This fact also shows by Barrio and Solarf4 for the EOS. So once again we find
that a rather crude approximation such as @) may lead  hat petter contact values do not necessarily lead to better

to an extremely good EO@l?'ZO'SO compressibility factors, as already seen in the two-
For three-dimensional mixtures, EQ.7) becomes dimensional case. One plausible explanation for the better

1 (o)(c?) (02)2 performance o .cg, with respect taZ ¢, might reside in'

Z(m)= 1=, e ot the use of the CS EOZ4(7), but we have checked that if

n (o) (o)(a%) the Pade[4,3] of Sanche? or the very accurate EOS of

1 Malijevsky and Veverk& are used instead, the results do not
Z{n)— r} (d=3). (21) change. Thus the source of this effect is a fortunate compen-
K sation of errors in the linear approximati@ti) related to the
In particular, when the CS EOSZ(75)=(1+75+75> factthatthe compressibility factor involves a weighted aver-
—7%)/(1—7)3 is used as input, we get the following ex- age of the individual contact valueg; (a7;) [cf. Eq. (1)].
tended CS EOS: This argument is suggested by the following observation. In
3 2 Fig. 11 we present a plot of the rat®(7,z)/GgguLL(7,2)
7o) (D —(aD?) as a function ofz for »=0.49 with G(7,z) given by Egs.
(1—n)%a®)? ' (11) and(12). For completeness, also the ratios correspond-
(22 ing to the SPT(7) and the rational approximatiofi5) are
where the compressibility factor associated with the BMcsLPlotted. Properly reduced simulation results have also been
EOS?is given in the present notation by mcIu.ded.. From this plot it is fair to conclude that the ap-
proximation given by Eq(12) is globally more accurate than
1 3np(o)a?)  pA(3—q){d?)? those obtained with either E¢L1) or with Gggp (7,2) and
Zgwcsi(7)= 1-7 (1- )2<03> (1- )3<03>2 : that the BGHLL contact values are better than the linear
7 7 23) approximation. However, the quadratic approximatialn
waysunderestimates the simulation resulsd therefore it
is only natural that it will always produce an underestimation
of the compressibility factgr while both the linear approxi-

X

Zecsi( M) =Zgwcs(7) —

Note that Eq.(22) is different from the extended CS EOS
obtained from Eq(11), namely®

7 (0?) mation and the BGHLL approximation overestimate the
Zecsd 1) =ZaucsU (M) + 555 (o) (d®) = (a%)?). simulation results ifz;<1 but underestimate them i;
(1=n)%c%) =1. The net result is thaZecs(7) is in poorer agreement

(24 with the simulation results for the compressibility factor than
Since simulation data indicate that the BMCSL EOSeither Zo.cs.(7) or Zgucsi(7), the extended CS EOS ob-
tends to underestimate the compressibility factor, it is obvitained from Eq.(11) providing the best overall agreement.
ous that the performance &.cg,is, paradoxically, better Nevertheless, an important asset &f-s.;, not shared by
than that ofZ.cs. This is explicitly shown in Fig. 10 either Zcs, Or Zgycsy, IS that it predicts demixing. This
where, for comparison, we have also included the theoreticaksult provides further support to the analysis performed by
results that follow from the recervery accurateproposal Regnaut, Dyan, and Amokrafién which the verification of
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condition (4) is of key importance for the existence of de- and arbitrary dimensionality. Of course the scarcity of simu-

mixing. We will address this issue in more detail elsewherelation results for these systems precludes a more definite
Ford=4 andd=5 (not shown, however, the compress- conclusion. In any case, we hope that the availability of the

ibility factors derived from the linear approximation given new (explicit) expressions for the contact values of the rdf of

by Eq.(11)*® turn out to be slightly less accurate than thosehard-core mixtures in any dimensionality may serve as a fur-

obtained from the use of either Ed.2) or Eq.(15). Thus, for  ther motivation to carry out yet more simulations of these

these high dimensionalities, the expectation that a bettesystems.

overall behavior of the contact values correlates with a better

performance of the associated EOS actually holds true. ACKNOWLEDGMENTS

IV. CONCLUSION The authors are grateful to Alexander Malijevskor

In summary, in this paper we have introduced a univer-prOViding simulations data of ternary hard-sphere mixtures

sality assumption, Ed5), for the contact values of the rdf of prior to publication. A.S. and S.B.Y. acknowledge partial

a hard-sphere mixture with arbitrary number of componentgUpport from the Ministerio de Ciencia y TecnolagSpain

and arbitrary dimensionality. Three known consistency conf”md FEDER through Grant No. BFM2001-0718.

ditions, Egs.(2)—(4), allow us to fix the values of the uni-
versal functionG(»,z) at z=0 [cf. Eq. (8)], z=1 [cf. Eq.
(9)], andz=2 [cf. Eq. (10)], the two latter in terms of the 13, L. Lebowitz, Phys. Rev. A3 895 (1964

.. . . L. witz, Phys. Rev. .
contact value of the one-component rdf. This |mpI|e_s thatoy Boublk, J. Chem. Phys53, 471 (1970).
any reasonable three-parameter fornGgfy,z) as a function  3G. A. Mansoori, N. F. Carnahan, K. E. Starling, and J. T. W. Leland, J.
of z can provide a very good approximate representation of4Chem. Phys54, 1523(1971).
gij(a.ij) regardless of the number of components, provided a J. L. Lebowitz, E. Helfand, and E. Praestgaard, J. Chem. R8/s/74
good EOS for the single fluid system is used. We have illus-sy rosenfeid, 3. chem. Phygo, 4272(1988.
trated this possibility with two specific proposals: a quadratic 6. w. Grundke and D. Henderson, Mol. Ph@d, 269 (1972.
function, Eqg.(12), and a rational function, Eql15). In d ;L- L. Lee and D. Levesque, Mol. Phy86, 1351(1973.
=1, they reduce to the exact result, while fore3 they D. Henderson, A. MalijevskyS. Labk, and K. Y. Chan, Mol. Phys87,

’ ) ’ 273(1996.

represent an improvement over the BGHLL values, as wellsp, e \9au, K.-Y. Chan, and D. Henderson, Mol. Phg8, 1237(1996.
as over those of their refinements, in the quantitative agre€fp. H. L. Yau, K.-Y. Chan, and D. Henderson, Mol. Ph94, 1813(1997).
ment with the simulation results. Far=2, 4, and 5, they ’D- Henderson and K. Y. Chan, J. Chem. Pt}/88 9946(1998.
compare rather well with théfew) available simulation re- O Mgaty“Sho"’ D. Henderson, and K-Y. Chan, Mol. Phgs, 1813
sults. Their potential use in conpectioh with the generqtiqn of3p. v Matyushov and B. M. Ladanyi, J. Chem. Phy€7, 5815(1997).
the entire rdfg;;(r) for three-dimensional mixtures within *“C. Barrio and J. R. Solana, J. Chem. Phi/s3 10180(2000.

the rational function approximation method is currently un-:>J- T- Jenkins and F. Mancini, J. Phys. Ché, 27 (1987).
der investigation 1A, Santos, S. B. Yuste, and M. pez de Haro, Mol. Phy€6, 1 (1999.

. . . . M. Lopez de Haro, S. B. Yuste, and A. Santos, Phys. Refin press.

The relationship between the thermodynamic propertiessa. malijevsky and J. Veverka, Phys. Chem. Chem. PHys4267 (1999.
and the contact values of the rdf in hard-core fluids is in'*D. Cao, K.-Y. Chan, D. Henderson, and W. Wang, Mol. Pt§&. 619
principle so straightforward that the importance of explicitzoﬁo?- der-Melchor. 3. Aleiand 4 M. bez de Haro. J. Ch

. . . n - r, J. nar n . r . m.
and accurate approximations for the latter can be hardly Physili 4205?2008])’ ejandre, a lpez de Haro, €
overemphasized. In one-component hard-core systems it G, Giunta, M. C. Abramo, and C. Caccamo, Mol. PH§8, 319 (1985.
certainly true that a more accurate contact value of the rdfs. B. Yuste, A. Santos, and M. pez de Haro, J. Chem. Phyk08 3683
leads directly to a better EOS. On the other hand, our resultgi/lg(ggr-zb and 3. W, Dufty, Phys. Rev. B0, 5706(1999
in this paper mdmate that, due to the_ ff';\_ct that for MIXIUIeS4E amad, J. Chem. Phys0L 10195(1994).
the EOS(or equivalently the compressibility facjdnvolves  25p. Henderson, D. Boda, K. Y. Chan, and D. T. Wasan, Mol. PRgs131
a summation over species indices in which the different con56(199&
; : C. Vega, J. Chem. Phy408 3074(1998.

tact values are inciuded, On? does ahn‘/aysobtam_ a more 2N. M. Tukur, E. Z. Hamad, and G. A. Mansoori, J. Chem. PHyi€) 3463
accurate EOS from seemingly better approximations to (1999.
gij(oij). In fact, as exemplified in the case of hard-disk mix-2*C. Regnaut, A. Dyan, and S. Amokrane, Mol. Phg8, 2055(2001).
tures @=2), it is possible to obtain exactly the same EQS?D. Henderson, Mol. Phys30, 971 (1975.

. . . . 30 ’
with two different approximations for the contact values of (Az'oggmos* S. B. Yuste, and M. pez de Haro, Mol. Phys99, 1959

t_he rdf. Further,_the poorer agreementZgES_” VV_ith SimUIaT 3IN. F. Carnahan and K. E. Starling, J. Chem. PIfs.635 (1969.

tion data than eitheZ ¢ 0r Zgycs. mentioned in Sec. lllis  *2J. J. Erpenbeck and M. J. Luban, Phys. Re32A2920(1985.

also a reflection of the above-given assertion, the reason res3tq’-C-,Baf(;'0 anC:]J- F:]- Solana, J. Chem. meJhlzg(gpin. It should be

ing on a “fortunate” compensation of errors. In any event, jn Pointed out that the expressions gy(o;;) of hard-disk mixtures intro-
p .. . . . duced in this paper were also independently derived by Jenkins and Man-

some specific applicatior(s.g., the Enskog kinetic theorit cini (Ref. 15.

is only the contact values of the rdf that are required. In thi$*s. Luding and O. StrauB , Branular Gasesedited by T. Bschel and S.

respect, it is fair to conclude that our two new proposals, Luding (Springer, Berlin, 200 pp. 389—-409.

provide in general a reasonably accurate approximation tg/ Malievsky, M. Baroova and W. R. Smith, Mol. Phys1, 65 (1997.

. . . A. Malijevsky (private communication
gij(oij) (as compared to the available simulation ddt# @  37R Sear and B. M. Mulder, Mol. Phy83, 181 (1998.

hard-core mixture with an arbitrary number of components®H. L. Frisch and J. K. Percus, Phys. Rev6& 2942(1999.

Downloaded 06 Sep 2002 to 158.49.27.157. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 117, No. 12, 22 September 2002

39M. Bishop, A. Masters, and J. H. R. Clarke, J. Chem. PH{§, 11449
(1999.

40G, Parisi and F. Slanina, Phys. RevBE 6554 (2000).

413, B. Yuste, A. Santos, and M. pez de Haro, Europhys. Le%2, 158
(2000.

42R. Finken, M. Schmidt, and H. lveen, Phys. Rev. B5, 016108(2002.

Contact values of hard-sphere radial distributions 5793

43E. Enciso, N. G. Aimarza, M. A. Goniez, and F. J. Bermejo, Mol. Phys.
100, 1941(2002.

4M. Luban and J. P. J. Michels, Phys. Rev4A 6796(1990.

4M. BaramvaA. Malijevsky, S. Labk, and W. R. Smith, Mol. Phys87,
423(1996.

46|, C. Sanchez, J. Chem. Phyk01, 7003(1994).

Downloaded 06 Sep 2002 to 158.49.27.157. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



