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Structure of multi-component hard-sphere mixtures

Santos Bravo Yuste® and Andrés Santos®
Departamento de Bica, Universidad de Extremadura, E-06071 Badajoz, Spain

Mariano Lopez de Haro®
Centro de Investigacioen Energa, Apartado Postal 34, Temixco, Mor. 62580, Mexico

(Received 24 September 1997; accepted 1 December) 1997

A method to obtainapproximatg analytical expressions for the radial distribution functions and
structure factors in a multi-component mixture of additive hard spheres is introduced. In this
method, only contact values of the radial distribution function and the isothermal compressibility are
required and thermodynamic consistency is achieved. The approach is simpler than but yields
equivalent results to the Generalized Mean Spherical Approximation. Calculations are presented for
a binary and a ternary mixture at high density in which the Bdubli
Mansoori-Carnahan-Starling-Leland equation of state is used. The results are compared with the
Percus-Yevick approximation and the most recent simulation datal9@8 American Institute of
Physics[S0021-960808)51209-3

I. INTRODUCTION LebowitZ and the subsequent study of the thermodynamic
properties of a binary mixture by Lebowitz and Rowlinon
Modern liquid state theory relies heavily on the knowl- played a prominent role in promoting the early develop-
edge and understanding of the thermodynamic and structuratents. This exact solution provides explicit expressions for
properties of model systems. Among these, the hard-sphethe Laplace transforms afg;;(r), in terms of the number
system has been studied intensively for two main reasonglensities{p;} and the diameter§o;}. As mentioned above,
On the one hand, the hard-sphere potential accounts rathfom the knowledge ofy;;(r) one can immediately obtain
well for the high density and temperature region of the fluidthe thermodynamic properties. For example, the equation of
phase diagram of real fluids. This is due to the fact that irstate for arN-component hard-sphere mixture is given by

this region the fluid structure is dominated by packing effects ) N N
determined by the short-range repulsive interactions. On the P 3

— =1+ = X0 (o .
other hand, it allows one to deriyeesasonably accurgtana- pkgT 1 3 szl le XiX; i Gij (ij) (.

lytical expressions for the thermodynamic and structural h is th e is the Bolt —
properties which in turn serve as the basis for the applicatiot ertep IS te preisgr B Isth et (t) Izmanr;)cor(ljs an_t, IS
of perturbation theories in which the hard-sphere fluid is the ‘¢ €MPeraturep==2ip; 1 the fotal number density;
reference syster? =pi/p is the molar fraction of species and oj;=3(o;

The statistical mechanical study of hard-sphere quid.jL o;). Another usual route to the thermodynamic properties

mixtures had a prime time in the 60's and early 70°% is through the isothermal susceptibiligy (or, equivalently,

after which it received much less attention for many yearsiN® isothermal compressibilityr=x/pkgT):

Both the thermodynamic and the structural properties are 1 (dp 1 N ap
related to the radial distribution functiogg(r) (wherei and xl=ﬁ((3—> T2 xi(—)
j label the species andis the distanceor, equivalently in B p/+ Keli=1 -
Fourier space, to thestatig structure factors;;(q) (whereq N N

is the wave number Therefore, various theories and com- =1-p> > xiijij(O), (1.2
puter simulations have been devoted to obtain such quanti- =1j=1

tie_s. Most of the studies have cqncentrated on binary ?‘_dditivﬁlhereaj(q) is the Fourier transform of the direct correla-
mlxtu4res, although ternary mixturés and non-addmvg tion function, which is defined by the Ornstein-Zernike equa-
ones” have also been considered recently. Computer SiMUson
lations are harder to perform in mixtures than in pure hard-
sphere fluids so it is no surprise that the available simulation _ - — -
data are rather scarce for mixtures, although the recent re- Nij(@)= Cii(q)+kzl pihik(a) €ij(a), 13
newed interest in these systéma’ promises to reverse the

trend. Undoubtedly, the exact solution of the Percus-Yevickvith

(PY) equation for a multi-component additive mixture by

Ipi

N

'ﬁij(Q)=J dre” "% h;(r), (1.9
3E|ectronic mail: santos@unex.es . .
bEJectronic mail: andres@unex.es where hij(r)Eg”—(r)—l. As in the one-component case, it
®Electronic mail: malopez@servidor.dgsca.unam.mx turns out that in the PY approximation the pressure derived
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from Eq.(1.1) and the isothermal susceptibility derived from PY performance and it is comparable to and, in some cases,
Eq. (1.2 are not thermodynamically consistent. Since botheven better than the generalized Verlet-Weis parameteriza-
routes to the equation of state are in reasonable agreemetiin. On another vein but with the same aim, Bok#ihas

with simulation data, in the same spirit as for the singlevery recently presented simple expressions for the radial dis-
component system, Boukfi and, independently, Mansoori tribution functions for multi-component mixtures, based es-

et al1° proposed an equation of sta®MCSL) that interpo-  sentially on geometrical arguments. However, in contrast
lates between the two PY results, namely with what already occurs with the PY approximation, it
seems that Boulkis expressions are unable to capture the
P T Lb 77_2 3 377 1 richness of the behavior found by Malijevskyall’in com-
keT 1-7 2 (1—n)? 36 2 (1— )% (.5 puter simulations of binary mixtures with disparate diameters
and at low concentrations of the largest component.
where {,=%p;ai and = (7/6) {5 is the volume packing In previous work®?* we developed a rational function
fraction. The isothermal susceptibility that follows from this approximation(RFA) method to find analytical expressions
equation of statéto be used belois for the radial distribution function of a pure hard-sphere
) 71— fluid. The same approach was used in a one-component
Y=p p g Gl 7 9—4nty _ sticky-hard-sphere flufd as well as for the square-well
(1-7)2  (1—-7)3% 3672 (1—p)* fluid.?® It is the major purpose of this paper to carry out an

(1.6 extension of the RFA method to the case of multi-component

Notice that the knowledge of the pressure does not suffice tgard—sphere mixtures. As discussed below, this extension

getg, (o)) from Eq. (1.1) in a unique way. This problem vl%lﬂcp;]r?gsestc;f?(;\r/te equivalent results to the GMSA requiring
was addressed by Grundke and Hendetsamd Lee and '

Levesaue? who prooosed an interoolation between the The organization of the paper is as follows. In Sec. Il we
que; propc polation b ddescribe the RFA method for the pure hard-sphere fluid. This
gij(oy;) of the PY solution and the ones arising in the scale

particle theory’. This GHLL expressiorfalso to be used later does not only make this wprk self-gonta|neq, but also allows
on) is us tq present the_ me_thod in a version that is more amena_ble
for direct generalization. Section Il deals with the generali-
1 1 oo 1A\7? Uiza_z zation of the RFA_apprqach to the case ofl‘am(_)mponent
gij(oij))= 7 A+ 5)\,0_--]+ ITh 2’ , (1.7 hard-sphere additive mixture. Explicit expressions are pro-
ij Tjj vided for the Laplace transforms oj;;(r) and for the struc-
wherex=2/(1— 5) and\'=2¢,/(1— 5)2 An interest- ture factorsS;;(q) in terms of the number densities and the

ing aspect of the GHLL proposal is that, upon substitution Ofdlam_eters of the spheres of each SPecies. Some mathema_ncal
Eq. (1.7) into Eq. (1.1), one gets the BMCSL equation of details are relegated to two appendices. The method requires
sta.te ' B as input the contact valueg;(oy;) and the isothermal sus-

The first authors to publish computer simulation data forCeptlblllty X fo_r Wh'Ch n Sec._ IV we a_dopt the .GHLL _and
BMCSL prescriptions, respectively, to illustrate its use in the

the radial distribution functions of a hard-sphere mixture ) . .
were Lee and Levesqu&Their main concern was the appli- particular cases of a binary and a ternary mixture. The results

cation of perturbation theory in fluid mixtures taking hard of our a_tppr(_)ach are ?"30 compare_d there with those of the PY
spheres as the reference system. For many years these si P roximation and.W|th thosc_a available from compu.ter simu-
lation data served as the most important source for assessi lons. The paper 1S closed in Sec. V with further discussion
the merits of theoretical results obtained from the solution of* d some concluding remarks.

the Ornstein-Zernike equation with different closures or from

other approaches. One of the outcomes of the simulations, THE SINGLE COMPONENT CASE

was to show both the merits and the limitations of the PY _ ) ) i

predictions. This prompted new efforts to improve those pre- N this section we give an outline of the RFA method for
dictions without at the same time increasing excessively th& On€-component hard-sphere fluid, i.e. for the dasel or,
complexity of the theory. Among these efforts, it is worth to &ltérnatively,o;=o. This presentation, which is equivalent
mention the early generalization to the case of mixttirks {0 the one given in Refs. 23 and 24, where all details can be
of the Verlet-Weis parameterizatidh At a more fundamen- fpund, is more swtablt_e than the former'for d|r§ct ggnerallza-
tal level, Blum and Hye'® solved the Generalized Mean tion to the case of mixtures. The starting point will be the
Spherical Approximation(GMSA) for mixtures. This ap- Laplace transform

proximation consists of solving the Ornstein-Zernike equa-

tion, Eq. (1.3, with the Yukawa closure c;(r) G(S):f
=K;je A"~ 7i)[r for r>g;y;. This is a generalization of the Ny _ _
PY closure, to which it reduces K;;=0 and/orz—c. For and the auxiliary functionV (s) defined through

the true Yukawa closure, the paramet&s and z can be s

determined from given values of;(oj;) and x, which de- G(s)= 2—[p+e3"‘1'(s)]*1. (2.2
mands in general heavy algebraic and numerical 1&bor. ™

fact, a simplified version of the GMSA has been recentlySince g(r)=0 for r <o while g(r)=finite for r>o, one
proposed’ The results indicate that the GMSA corrects themust have that lim,..s€*G(s) = finite or, equivalently,

dre 5rg(r) (2.1
0



J. Chem. Phys., Vol. 108, No. 9, 1 March 1998 Yuste, Santos, and Lopez de Haro 3685

lim s~ 2W¥(s) =finite. (2.3 1+27
s L(°>=277(1 2 (2.6
On the other hand, the isothermal compressibility is also fi- 7
nite, so that ling_ o[ G(s) —s ™~ 2]=finite; this in turn implies 141y
2
LY=27¢ . 2.7
Y(s)=—p+ crs—1 o?s?+ 1 cr3+i s® (1-7)?
pPTPISTHP 67 T 2m
Upon substitution of these results into E¢8.2) and (2.5),
(L e os*+ () (2.4 Weget
24P7 T 24 S '
—os (0) (1)
An interesting aspect to be remarked is that the minimal  g(g)= e L™+Ls
input we have just described on the physical requirements 275? 1—p[@x(08) 3L O+ ¢ (0s) L]
related to the structure and thermodynamics of the system is (2.8
enough to determine the small and lagéimits of ¥ (s). h
While infinite choices for¥(s) would comply with such where
limits, a particularly simple form is a rational function. In ()M
particular, the simplest one is @n(x)Ex—mH)( E | _e—X>_ (2.9
-0 M!
S0+ 8Vs+52s?4 533 ;
V(s)= O [(s : (2.5 Notice that Eq.(2.8) coincides with the solution to the PY

closure of the Ornstein-Zernike equation.

where one of the coefficients can be given an arbitrary non-  In the spirit of the RFA, the simplest extension of Eq.
zero value. We choos8®=1. With such a choice and in (2.5) involves two new terms, name&*s* in the numera-
view of Eq. (2.4), one findsS©®=—pL©® sW=— (LM  tor andL®s? in the denominator, both of them necessary in
— L), SP)=p(eL®-152L), and order to satisfy Eq(2.3). Such an addition leads to

g oS LO 4 Mgt (262

G(s)= :
27s? 1+ as—p[@x(08) oL O+ @ (0s)o?L Y + pp(os) oL ?]

(2.10

where we have identifie8“)=qa and now turns out to be the smallest root. It is worthwhile to point out
@ that the structure implied by E¢R.10 coincides in this one-
LO o 1+27y N 127 / T oa L_) (2.1  component case with the solution of the GM3%A.
1-92 1=n\1l-no )

lll. THE MULTI-COMPONENT CASE

LY =270

The method outlined in the previous Section will be now
extended to atl-component mixture. First, we introduce the
(212 Laplace transforms afg;; (r):
Thus far, irrespective of the values of the coefficientd 0
Gij :J

1+37 2 1+2 L
=4 /77 7]&_37]—).
(1-72 1-7\ 1-79 o

and «a, the conditions linp,.se’G(s)=finite and
limg o[ G(s)— s~ ?]=finite are satisfied. Of course, if(?
= a=0, one recovers the PY approximation. More generallyWe note that
we may determine these coefficients by prescribing given

dre”*rg;(r). (3.0
0

values for the contact valug(¢) and the isothermal suscep- gij(r):®(r_U‘i)[gij(‘rii)’Lg{J(U‘i)(r_‘TiJ)Jr'"]’S .
tibility x. This leads to 32
@ where ©(x) is the Heaviside step function angi’j(r)
9(o)= L (2.13 =dg;;(r)/dr. This property imposes a constraint on the
2mac’ large s behavior ofGj;(s), namely
27 \? 1 127 a(l Za) 1279 al® s€7iI%G;(s) = 07 Gij (o)) +[gij (o)) + ;g (i) 1™+
=| — —— {1+ |+ — .
X L© l1-n9o o T g3 +(s7?). (3.3
(2.19

On the other hand, the condition of a finite compressibility

Clearly, upon substitution of Eqé2.11) and(2.13 into Eq.  jmpjies thath;;(0)=finite. As a consequence, for small
(2.14) a quadratic algebraic equation faris obtained. The

physical root is the one that ensures thé/L(?>0 and it $?Gjj(s)=1+H{s?+ H{Ps® 4, (3.4
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with H() H{P=finite and 1
Ll(jl):)\o-lj+E)\,G|U]+()\+)\,a—l)a
Hi(j”)Efo dr(—r)"rh;;(r). (3.5 1 N
— SN0 2 ol (3.14
2 = !

We are now in the position to generalize the approxima-
tion (2.10 to theN-component case. While such a generali-whereX and\’ have been defined below E(..7).
zation may be approached in a variety of ways, we have In parallel with the development of the single component
chosen one in which two motivations are apparent. On théaseL®) and« can be chosen arbitrarily. Again, the choice
one hand, we want to recover the PY redals a particular L{’=a=0 gives the PY solutiof”® Since we want to go
case in much the same fashion as in the one-component syeyond this approximation, we will determine these coeffi-
tem. On the other hand, we want to maintain the developcients by taking prescribed values fgyj(oj;) and x. In

ment as simple as possible. Therefore, we propose particular, according to Eq3.3),
L7
~Oijs g )=
Gy(9)= o (Ls [1+asl-AST Dy, @0 W 2mary (319
T
The condition related tgy is more involved. First, making
wherel is the identity matrix and use of Eq.(3.4), one can geH{" in terms of L) and a.
This is done in Appendix A. Also, it is shown there that Eq.
Lij(s)=L{P+L{Vs+L{Ps?, (3.7 (1.2 may be cast into the form
31 (0 2 (1 N N
Aij(9)=pilea( 09 ofL{Y + @1(08) of LY 1= Vxix[1+h(0) 5%, (3.1
ERE
+go(ais)oiLiP]. (3.9

whereh;;(0)=—4mpip;H{.

We note that, by construction, E¢3.6) complies with the Equations(3.15 and (3.1 are the multi-component
requirement Iir@axse“iJSGij(s)=finite. Further, in view of analogs of Eqs(2.13 and (2.14), respectively. In fact, by
Eq. (3.4), the coefficients o&° ands in the power series settingo;=o, all the results of Sec. Il are recovered. The
expansion ostGij(s) must be 1 and 0, respectively. This final step is achieved after eIiminatirlde) in favor of « in
yields 2N? conditions that allow us to expres$” andL®)  Eg.(3.15 and substituting into Eq3.16). This produces an
in terms ofL® anda. To do so, it is convenient to expand algebraic equation of degreeN?*® whose physical root is
A(s) in powers ofs: determined by the requirement tt@y; (s) is positive definite
for positive reals. It turns out that the physical solution
corresponds to the smallest real root. Oncis known, upon

o0

A(S)=HZO AMs", (3.9  substitution into Eqs(3.6), (3.13, (3.14), and (3.15, the
scheme is complete. Explicit knowledge &fj(s) allows us
where to determine immediately the Fourier transforﬁ,-(q)
through the relation
O__n+3 O_in+2

A= (— 1) L0 LY = S%Gij(s)~1

=D (n+3)r " (n+2)1 Y hij(a)=—4mos ReLg) . (3.17
0_‘n-¢—1 S s=iq
I
T nrD)] Li(jZ)} (310  The structure factoS;(q) may be expressed in terms of

hij(q) as
Substitution of Eq.(3.9) into Eq. (3.6) leads, after simple —
algebra, to Sij(a)=xX;6j;+ pxixjhi;(q). (3.18

In the particular case of a binary mixture, rather than the

N
iL-(-O):l— S A (3.11) individua_l structure fact_or§” , it_is some combingtion of
27 Y e them which may be easily associated with fluctuations of the
thermodynamic variablés® Specifically, we introduce for
1 N N later use the quantitiés
—LWP=a+o;— > AY- WAL 3.1
bl et ou= 2 A 2wl 312 Sun(@) =S11(0) + S ) + 2S1(q), (3.19
Equations(3.11) and (3.12 constitute alinear set of 2N? Sne(@) =X2511(A) = X1 S, 9) + (X = X1)S1Aq),  (3.20
equations whose solution is readily obtained. The result is gng
. N , Soe(@) =X5S11(Q) + XiSpA(Q) — 2x1xeSp().  (3.21)
LIO=XN+Ngj+2\ a—) 2, peorl (3.13 , , _
k=1 Also, using Eq.(3.3), one can easily derive the result
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1 1
_+_
o O-ij

1 2
Li(j )_Li(j )

gij(oij)= 2rao, , (3.22
which may have some use in connection with perturbation

theory? Finally, inverse Laplace transformation G (s)

yields g;;(r).*

Up to here, the presentation is rather general. In the next 911
section we will apply the method to binary and ternary mix-
tures. To that end, we will choosg;(oj;) given by the
GHLL prescription, Eq(1.7), and, in order to have thermo-
dynamic consistencyy will be the one obtained from the
BMCSL equation of state, cf. Eq1.6). The expressions for
Sun(0), Sye(0) andS..(0) that follow from the same equa-
tion of state in the case of a binary mixture and which will
serve to test the thermodynamic consistency of the present
approach are derived in Appendix B.

2SO = N W R OO0 N O ©

.00 105 110 1156 1.20 1.25

IV. RESULTS

A convenient way of characterizing aN-component
hard-sphere mixture is to take the species with the largest
diameter as species 1 and to specify the total packing fraction
7, the N—1 independent molar fractions,,Xs, ... Xy,
and theN—1 diameter ratios,/o1,03/0¢, ..., on/01. In
addition, we will takeo; =1, which fixes the unit of length.
This leads to a (R—1)-dimensional parameter space,
whose exhaustive exploration is not feasible, even in the bi-
nary case. Therefore, for the sake of illustration, we have
chosen one representative exampleNet 2 and another one
for N=3, both with»=0.49. The reason for this value gf  FIG. 1. Comparison of theoretical and simulated values of the radial distri-
is two-fold. On the one hand, it corresponds to a rather largéution functiong,;(r) of the largest spheres as a function of the interparticle
density®! so that it provides a stringent test of the theory. Ondistance(in units of o) for the binary mixturez=0.49, x,= 1t and
the other hand, for binary mixtures it has been widely anagZ/U1:0.3. Points are the_simulation values from Ref. 17, the full line
lvzed both throuah computer simulatid®&®1”and approxi- represents the RFA resu.ltsnt.h a:0.018$6)_, and the_ Qashed line corre-

Yy 9 p pp sponds to the PY approximatiota) Behavior in the vicinity of the contact
mate theorieg!20-22:32 point. (b) Detailed features of the first few oscillations.

We begin with the binary mixture. In this case, we take
0,/0,=0.3 andx,=1, so that#;=0.35 and#,=0.14,
where ;= (7/6) p;a? is the partial volume fraction of spe- tion theory(MHNC). The latter theory nevertheless appears
ciesi. This choice is motivated by the recent and very accuto account better for the value at the minimum than the RFA
rate simulation results by Malijevskst al,>” in which they  in this instance.
find an unusual behavior pattern of the distribution functions  As another illustration of the capabilities of our formu-
at low concentrations of the larger spheres. In Figs. 1-3 wéation, in Figs. 4—6 we show the results 8f.(0), Syn(0)
present the radial distribution functiorgg;(r) as given by and Sy.(0) as functions of the diameter ratio foy=0.49
the PY theory, our method, and the simulation results fromand four different molar fractionsxg=1%, 3, 3, andd). These
Ref. 17. The picture that emerges is the following. Both PYresults have been derived using two routes. On the one hand,
and RFA are able to capture the peculiar features observetie structural route, through Eq8.17—(3.21); on the other,
through the simulations with the latter one exhibiting athe thermodynamic routécf. Appendix B. The agreement
slightly overall better performance, especially fpy;. The  between both routes is practically perfect in the three cases,
agreement between RFA and simulation is particularly goodhus indicating the thermodynamic consistency of our
between contact and the first minimum. Since in this regiorapproach?® It should be noted that the problem of thermo-
all the integral equation theories tested in Ref. 17 give poodynamic consistency has been examined by Gientd?°in
results (the Martynov-Sarkisot? theory being the excep- the context of the GMSA theory. Surprisingly, the three
tion), such an agreement must be regarded as yet anotheurves displayed in our Fig. 4 corresponding to the cases
advantage of the RFA approach, apart from its much simpleanalyzed in Ref. 2Qcf. their Fig. § not only do not show the
implementation. This is further confirmed by testing our re-behavior found there but in fact are totally different. More-
sults against recent comparisth® of the simulation data over, since the individual structure factd@s computed with
for this binary mixture with the generalized Verlet-Weis the RFA are practically indistinguishable from the ones ob-
parameterizatiort'#3?and with an improved integral equa- tained with the GMSA and shown in Figs. 7 and 8 of Ref.

r
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4.0
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030 035 040 045 050 0.55

115 T T T T T

FIG. 2. The same as for Fig. 1 but fgg,. FIG. 3. The same as for Fig. 1 but fgs,.

20, Wef ar:e led to copclude that the results quor:ed ;n l:'gﬁRef. 20. Concerning the influence of the third component, it
4-6 of the same reference are not correct. Therefore thg . o1y noticeable quantitatively, but it also affects the

conclugo;ws drawn from SUCZ resultsharg h'_ghb]f qhueSt'onadpleaualitative features of the radial distribution functions. As
In particular, it seems to us that on the basis of the precedin xpectedg; (o), 1,j=1,2, is in the temary case larger than

arguments, the GMSA can indeed be regarded as being th%’ the binary case, due to osmotic depletion efféttdow-
modynamically self-consistent to a large extent.

We now turn to ternary mixtures for which, unfortu-
nately, no simulation results for the radial distribution func-

tions are to our knowledge availabieHere, we have again 025

taken »=0.49 ando,/o;=0.3 while NnOWX; =X,= 155, X3

=1%ando3/o,=0.1. It turns out then that the partial molar 0.20

fractions aren;=0.435, ,=0.012 andzn3;=0.043, so that . o
although the particles of species 3 are much smaller than the S 015k, 085" 7 o
other particles, they occupy a larger volume than species 2. ~

This case allows us to examine the influence of a third )

(smal) component on the structural properties of the mixture 0.10

in a situation related to a well studi€d®!binary mixture o

case in whichyp=0.49, o,/0,=0.3 andx,;=x,= 3. Figures 0.05F

7—9 showgq4(r), g1o(r), andg,,(r) obtained from the PY I

theory and our method. For comparison, we have also in- 0.00

cluded the simulation dathas well as our results for the 0.0

binary mixture mentioned above. Note the excellent agree-
ment between simulation and our approximation also in this
binary case; we have observed that this agreement extends _ . . .
y ’ . . 9 . I'IF()B 4. S..(0) as a function ofr, / o, for binary mixtures withy=0.49 and

the other two cases considered in Ref. 12. It is also wortp ! . 1. i _3 _ 15

L . o . or four different molar fractionsx,= 7, X,=73, X,=17, andx,= 75 Open
pointing out tha_t our n.umerlcal values are 'nd|_5tmgU|Shab|ecircles have been obtained with the RFA structural route, while the continu-
from those obtained with the GMSA and given in Table | of ous line has been derived from the thermodynamic route.

(52/01
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20} .
x,=15/16
15} .
S 10l x=34 |
s
=z
@ X,=1/2
05 .
X =1/4
0.0 21 . . 1 .
00 02 04 06 08 1.0
/o,

FIG. 5. The same as Fig. 4 but f&(0).

ever, the ternary;;(r) fall off very rapidly, so that they
become smaller than their binary counterparts at distances
r=oj+ 305. In addition, the ternarg;;(r) exhibit a some-
what peculiar behavior at=o;;+ 03, i.e. the distance at
which particles of species 3 fit in between particles of species
i andj. It is clear that the PY theory captures this peculiar-
ity, although the effect is much less dramatic than in the
RFA case. Once again, the most important numerical differ-
ences between both approaches show up in the vicinity of the o
contact pqints. In F'ig. 1F) we s.hog/lg(r)'as an example of 10 12 14 16 18 20 22
the behavior of radial distribution functions involving com-
ponent 3. In this cas¢as well as in those 0§,4(r) and r
gs3(r), not shown herethe differences between PY and gig. 7. comparison of theoretical and simulated values of the radial distri-
RFA are less apparent. bution functiongy(r) of the largest spheres as a function of the interparticle
Now we consider the structure factors of the same terdistance(in units of o;) for the ternary mixturey=0.49, X, =X, = 153, X
nary mixture. Due to the high disparity of diameters and= fo9 02/0,=0.3, andos/o,=0.1 and the binary mixturey=0.49, x;
concentrations, the scales of the different functi®gq)  =x.= 7 ando,/o;=03. Points are the simulation values for the binary
change very much from one pair to another, cf. E18. mixture from Ref. 12, the dotted line represents the binary RFA regwitis

. . . «=0.02784), the full line represents the ternary RFA res@igh «
For the sake of compactness and without loss of informatio +0.01837), and the dashed line corresponds to the ternary PY approxima-

we therefore displaﬁij(q)/a-f’j in Figs. 11 and 12. The ef- tion. (a) Behavior in the vicinity of the contact poin) Detailed features of
fect of the third component is to lower the amplitude of thethe first few oscillations.

extrema as compared to that of the binary counterpart, as

well as a slight shift of their position. The results of the PY

approximation differ from those of the RFA method particu-

larly nearq=0 and near the first maximum or minimum. In

T — T general, Figs. 7—12 confirm the different qualitiesgqf(r)
S andS;;(q) in showing up the structural features of liquids.

0.3

V. DISCUSSION

0.2¢" In this paper we have presented a simple extension of the
PY approximation for aitN-component additive hard-sphere
mixture. This extension provides analytical expressions for
the radial distribution functiong;;(r) (in Laplace spageand
the structure factor§;;(q) in terms of the number densities
{p;} and the diameterss;}. As input, we require the knowl-
edge of the contact valueg;(o;;) and the isothermal sus-
0.0 . N’ ceptibility y. Clearly, a natural choice is to impose thermo-
00 02 04 06 08 10 dynamic consistency, so thgtreadily follows onceg;; (oy;)
(52/()-1 have been specified. The formulation involves a single pa-
rametera which obeys an algebraic equation of degréé 2
FIG. 6. The same as Fig. 4 but &(0). In the one-component case, id=1 or o;=0¢, our ap-

S

~
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&)
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FIG. 8. The same as for cagle) of Fig. 7 but forg,,. FIG. 10. Detailed features of the first few oscillations of the radial distribu-

tion functiong,5(r), as a function of the interparticle distan@a units of
o) for the ternary mixturen=0.49, X, =X,= 1%.2, X3= %, 0,101=0.3,
and o3/0,=0.1. The full line represents the RFA resultaith «

roach r he reformul f th MSA
proach reduces to the reformu afdrof the GMSA as a =0.01837) and the dashed line corresponds to the PY approximation.

rational function approximation(RFA). In the multi-
component case, however, our scheme, while providing

practically identical results, is algebraically much less in-

volved than the GMSA. The latter requitésis to deal first The results for the particular binary and ternary mixtures
with a set of N? nonlinear equations for giverK;; andz that we chose to illustrate our method were derived by taking
and then with another set gN(N+1)+1 nonlinearequa-  Gij(ojj) with the GHLL (Refs. 11,12 prescription. This in
tions to obtairk;; andz from the knowledge of;;(oy;) and turn implies that the corresponding equation of state is the
x. Already in the binary mixture this yields 12 nonlinear BMCSL>* We found a fairly good agreement with the
coupled equatioﬁg and the complexity increases enor- simulation values, particularly in the vicinity of the contact
mously as the number of components grows. In fact, such points, where the PY theory as well as other theories are
complexity has motivated the adoption of simplifying known'’ to have the worst performance. While a good value
assumptior’s within the GMSA to produce simple expres- at contact is of course ascribable to the equation of state, the
sions of the Laplace transforn@;(s). Notwithstanding the better slope at contact and the improvements in the region
merits of this simplification of the GMSA, it is not clear to us between contact and the first minimum is certainly an asset
whether the removal of one of these assumptitefs Eq.  Of our formulation. The point to be remarked here is that any
(53) in the first paper of Ref. 21related to the sizes of the

spheres and which clearly does not hold for very disparate

diameters, would imply the loss of the simplicity. In addi- : — r r
tion, we note that the simplified version does not reduce to i
the full GMSA in the case of a one-component fluid.

20

1.8

1.6

1.4}

922

12}

1.0 - - —~
FIG. 11. Fourier transformb4(q), h15(q), andh,5(q) as functions of the

wave numbexq (in units of 01’1) for the ternary mixturep=0.49, X;=X,

=1%2, Xg= %, o,10,=0.3, ando3/0,=0.1 and the binary mixturey

=0.49,x,=X,=1/2, ando, /0,=0.3. The dotted line represents the binary
r RFA results(with «=0.02784), the full line represents the ternary RFA
results(with «=0.01837), and the dashed line corresponds to the ternary
FIG. 9. The same as for cadle) of Fig. 7 but forg,,. PY approximation.
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g;i(r) despite the fact that the symmetry requirement was
not imposed from the beginning. Of course one can always

0.1 have strict symmetry by redefinirg; — 3(g;; +9;;), but this
0.0 did not prove to be necessary.
Finally, the cases we considered indicate that the differ-

-0.1 ences between the PY theory and the present approach could
g be more noticeable for ternary mixtures than for binary ones.
~. -0.2 It is our expectation that this can serve as a motivation for
o 0.3 performing more simulations or numerical solutions of inte-

gral equations in the case of ternary mixtures.
-0.4
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accurate equation of state could be equally used instead éPPENDIX A: DERIVATION OF H ¢

the BMCSL. Performing a power series expansion@f(s), as given

It is well known that the PY approximation leads to the X i
absence of phase separation into two fluid phases in additivtt)ey Eq. (3.9, and comparing with E¢(3.4), one gets

binary hard-sphere mixturésThis was thought to be a genu- HO=BO.(1-A0)"1 (A1)
ine feature of the system and not a consequence of the ap- ), (01 -1
proximation. In fact, the complete miscibility of additive bi- HZ=B"-(1-A") "%, (A2)
nary mixtures remained unchallenged until quite recentlywhere

when Biben and Hans&hsolved the Ornstein-Zernike equa- 1 N N

tion with the Rogers-Young closufeand found that binary BO— ~ | @D, A _ e A
mixtures seem to become unstable for sufficiently disparate " 27 " kzl ki kgl i@~ Ag)

sizes and at high enough densities. This result has been de- N

rived also from a self-consistent density functional thébry - Ea_z (Sei—AL) (A3)
and supported by experiments on asymmetric colloidal &y 2 KTk Tk

suspension® Unfortunately, computer simulation is diffi-

N N N
cult at high densities for mixtures of spheres whose diam- 1
g ’ B =3, AR+ 3, - 3, | 5o HiP (i

eters are very differerff so this route seems far away at ] 2

present. Thus, our scheme, not being an integral equation N

approach, renders itself as another alternative to tackle this Ay } 3 (0) A0
problem. In fact, since we are not forced to consider a par- i k; 6 7ik T oikHi (g =Axp)- (A4)

ticular equation of state, it would be interesting to incorpo- ) ) (1) - @) )

rate one that predicts the phase separation of asymmetricduation(A2) givesH" in terms ofL™* anda. By mak|(rl)g

binary mixtures®:39:41.44 4 property absent in the BMCSL US€ of Eq.(3.1?, one can recoghize the structl_JHa,_j

equation. A possible candidate might be the equation of statg Pij(@)/[Q(a)]%, whereP;;(«) denotes a polynomial ir

that arises in the work by Lekkerkerker and Stroob4hts. Of degree N andQ(«) denotes a polynomial of degrée

Nevertheless, such an equation implies the unpleasant fea- N ordeg to express the isothermal compressibility in

ture that, contrary to the experimental evideftehe stable terms of H®, it is convenient to introduce the matrices

region in the 7;-7, plane enlarges as the asymmetry in-Nij(a) = Vpip;h;;(9) and c¢;;(q)=pip;cij(d). Then the

creases. Ornstein-Zernike equation, E@L.3), may be rewritten a$
One aspect that we have also paid attention to is that of c(q)=[1+h(q)]~*. Therefore, Eq(1.2) becomes

the internal consistencies of our approximation. In fact, we N N

have already pointed out the high degree of consistency be- -1_ oS,

tween the two ways to gebyn(0), Syc(0), andS..(0) in X ;1 121 VX[ -€y(0)]

the binary mixture, namely the thermodynamic rofaie Ap-

pendix B and the structural rout&ef. Sec. Ill). Besides, we

have checked thag;;(r) is almost indistinguishable from

Il
Vi
M =z

Il
s
Il

Vxixi[1+h(0)]7Y; . (A5)

j=1
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Finally, h;;(0)= —4mp;p;H{".. It turns out then that, seen P
as a function ofa, y is the ratio of two polynomials of

( azf;) PG (aplixy),
p

2 2|~ “oxq.ap (dpla
degree M. o3 ax3 19p (9pldp)x,
In the binary case, it is straightforward to check that Eq. P 2
(A5) is equivalent to "7 | (9ploxy),
) ) ap? | | (apldp)y,
Sne(0) S12(0)S;5(0) — Si(0) Xq
X=Su(0) =~ 55~ s ©®o o300 ( [ 2 ,
cc cc (@21op)y [ [oPp)  _ #p (aploxy),
whereSyy, Sye, andS.. are given by Eqs(3.19—(3.21). (ap/&p)x1 axf IX1dp (c?p/&p)xl
p
7 aplaxy),)?
N _r2> (9p/9X1), B9)
ap (dpldp)x,
APPENDIX B: THERMODYNAMIC DERIVATION OF 1
Se(0), Spe(0), AND Syn(0) IN A BINARY
HARD-SPHERE MIXTURE
. to find
The quantitiesS;¢(0), Syc(0), and Syn(0) measure
concentration-concentration,  density-concentration, and
density-density fluctuations, respectively, in a binary mix-
i i i i i iti aZ
ture. Their relationships with thermodynamic quantitie€ are 5= _X(W) , (B10)
s (0)_ ./]/kBT (Bl) ! p
¢ ((9255)/07X%) p. AT '
Sne(0) == 85:¢(0), (B2) 1 &25¢> 1 ( az)2+ 1 (R
= X\ oy 1T T )
SNN(O):X+ 528(;0(0), (BB) A kBT\ &Xi o X1X2 0Xq o J kBT 5)(% )

. . . . B11
where./"is the total number of particles; is the Gibbs free (BLY
energy, and

_1fv (84) where we have taken into account the thermoynamic rela-
TV ax, o T tions (o"p/&p)xl=kBT/)(, (c?f'//'h?p),(l:./f/kBT/p)(.

In the particular case of a hard-sphere system described

is a dilatation factory being the \_lolume- by the BMCSL equation of staté, is given by Eq.(1.5), so
For a general mixture, the Gibbs free energy can be obg, Eq.(B7) yields

tained from the knowledge of a given equation of state, i.e.
p/pksT=Z(p,{Xi},T), as

2 ,,//id + . 2 2ex 2 3
AT Lt = (BS) O S T _
N kgT AN kgT TKeT | 36 5y 1|In(1—7)
where. 79 and. 7%* are the ideal and excess contributions to 5
the Helmholtz free energy, respectively. Their expressions LT 18781 (1=m)+ 7l (812
arb2
are 36 pn(1-7)?
A N
m:_l‘f‘z Xiln(pXiCi), (BG)
e =t Furthermore, taking derivatives with respectxp in Egs.
e , 1 (1.5 and(B12) in the binary case, one gets
mzfodp ;[Z(P )—1], (B7)
where in Eq(B6) c;=h3/(27m;kgT)*? h being the Planck 97 - -
constant anan; being the mass of a particle of species (&—) =—2(0'1—0'2)+ —Z(a"{—og) {4
In Egs.(B1) and(B4) p rather tharp plays the role of a X1/, 2(1-m) 2(1=7)
state variable, in contrast to what happens in the equation of 23— )
state. To remedy this problem, consider the mathematical Te2 7 7 (3—ad)|p
identities 6(1—7) 6(1—17)*
1/ oV 1 (9plax 2r3(4—
v(x) - G (®8) LThl TR ) B13
1 p (IPldp)y, 1-7  181-5)?
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1 92 7% TP wp? w2ply
= (01— 0) (02— 02)+ ————— (03— 022+ ——— (02— D) (o3~ &)
V7 kBT ﬁxi 1_7] 1 2 1 2 36(1_7])2 1 2 6(1_7])2 1 2 1 2
2 3 2
™ pé’Z 3 3 ™ pé,ng 3 3\2 w p£2 2 212
— (01— 0y)(0]—05)+ —————(o;—05)°+ (07— 0%)
6(1— 7)? 17 0)lo1 707 361 7)° 1702 67 1~ 02
In(1-» 1 mps3
+ i 5 (2= od) (03— o))
Y (1-7) 187
In(1— 2_5p+2| wpl In(1— 57°—267°+217— 6
(=7 »"—5% 2 (o3 g2 (1—») S57°—26y 477 (B14)
n 2(1—-9)% | 2167 n 6(1—7)

Substitution of Eqs(1.6), (B13), and(B14) into Egs.(B10) and(B11) allows one to obtairs,.(0), Sy.(0), andSyn(0) from

Egs.(B1)—(B3), according to the BMCSL equation of state.
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