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Structure of multi-component hard-sphere mixtures
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A method to obtain~approximate! analytical expressions for the radial distribution functions and
structure factors in a multi-component mixture of additive hard spheres is introduced. In this
method, only contact values of the radial distribution function and the isothermal compressibility are
required and thermodynamic consistency is achieved. The approach is simpler than but yields
equivalent results to the Generalized Mean Spherical Approximation. Calculations are presented for
a binary and a ternary mixture at high density in which the Boublı´k-
Mansoori-Carnahan-Starling-Leland equation of state is used. The results are compared with the
Percus-Yevick approximation and the most recent simulation data. ©1998 American Institute of
Physics.@S0021-9606~98!51209-3#
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I. INTRODUCTION

Modern liquid state theory relies heavily on the know
edge and understanding of the thermodynamic and struc
properties of model systems. Among these, the hard-sp
system has been studied intensively for two main reas
On the one hand, the hard-sphere potential accounts ra
well for the high density and temperature region of the flu
phase diagram of real fluids. This is due to the fact tha
this region the fluid structure is dominated by packing effe
determined by the short-range repulsive interactions. On
other hand, it allows one to derive~reasonably accurate! ana-
lytical expressions for the thermodynamic and structu
properties which in turn serve as the basis for the applica
of perturbation theories in which the hard-sphere fluid is
reference system.1,2

The statistical mechanical study of hard-sphere fl
mixtures had a prime time in the 60’s and early 70’s,3–12

after which it received much less attention for many yea
Both the thermodynamic and the structural properties
related to the radial distribution functionsgi j (r ) ~wherei and
j label the species andr is the distance! or, equivalently in
Fourier space, to the~static! structure factorsSi j (q) ~whereq
is the wave number!. Therefore, various theories and com
puter simulations have been devoted to obtain such qua
ties. Most of the studies have concentrated on binary add
mixtures, although ternary mixtures13 and non-additive
ones14 have also been considered recently. Computer si
lations are harder to perform in mixtures than in pure ha
sphere fluids so it is no surprise that the available simula
data are rather scarce for mixtures, although the recen
newed interest in these systems15–17 promises to reverse th
trend. Undoubtedly, the exact solution of the Percus-Yev
~PY! equation for a multi-component additive mixture b
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Lebowitz3 and the subsequent study of the thermodynam
properties of a binary mixture by Lebowitz and Rowlinso4

played a prominent role in promoting the early develo
ments. This exact solution provides explicit expressions
the Laplace transforms ofrgi j (r ), in terms of the number
densities$r i% and the diameters$s i%. As mentioned above
from the knowledge ofgi j (r ) one can immediately obtain
the thermodynamic properties. For example, the equatio
state for anN-component hard-sphere mixture is given by

p

rkBT
511

2

3
pr(

i 51

N

(
j 51

N

xixjs i j
3 gi j ~s i j !, ~1.1!

wherep is the pressure,kB is the Boltzmann constant,T is
the temperature,r5( ir i is the total number density,xi

5r i /r is the molar fraction of speciesi , and s i j [
1
2(s i

1s j ). Another usual route to the thermodynamic propert
is through the isothermal susceptibilityx ~or, equivalently,
the isothermal compressibilitykT5x/rkBT):

x215
1

kBT S ]p

]r D
T

5
1

kBT(
i 51

N

xi S ]p

]r i
D

T

512r(
i 51

N

(
j 51

N

xixj c̃ i j ~0!, ~1.2!

where c̃ i j (q) is the Fourier transform of the direct correla
tion function, which is defined by the Ornstein-Zernike equ
tion

h̃ i j ~q!5 c̃ i j ~q!1 (
k51

N

rkh̃ ik~q! c̃ k j~q!, ~1.3!

with

h̃ i j ~q!5E dre2 iq•rhi j ~r !, ~1.4!

wherehi j (r )[gi j (r )21. As in the one-component case,
turns out that in the PY approximation the pressure deri
3 © 1998 American Institute of Physics
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from Eq.~1.1! and the isothermal susceptibility derived fro
Eq. ~1.2! are not thermodynamically consistent. Since bo
routes to the equation of state are in reasonable agree
with simulation data, in the same spirit as for the sing
component system, Boublı´k9 and, independently, Mansoo
et al.10 proposed an equation of state~BMCSL! that interpo-
lates between the two PY results, namely

p

kBT
5

r

12h
1

p

2

z1z2

~12h!2
1

p2

36
z2

3 32h

~12h!3
, ~1.5!

wherezn[( ir is i
n and h5 (p/6) z3 is the volume packing

fraction. The isothermal susceptibility that follows from th
equation of state~to be used below! is

x5rF r

~12h!2
1p

z1z2

~12h!3
1

p2

36
z2

3 924h1h2

~12h!4 G21

.

~1.6!

Notice that the knowledge of the pressure does not suffic
get gi j (s i j ) from Eq. ~1.1! in a unique way. This problem
was addressed by Grundke and Henderson11 and Lee and
Levesque,12 who proposed an interpolation between t
gi j (s i j ) of the PY solution and the ones arising in the sca
particle theory.5 This GHLL expression~also to be used late
on! is

gi j ~s i j !5
1

2pS l1
1

2
l8

s is j

s i j
1

1

18

l82

l

s i
2s j

2

s i j
2 D , ~1.7!

wherel[2p/(12h) andl8[p2z2 /(12h)2. An interest-
ing aspect of the GHLL proposal is that, upon substitution
Eq. ~1.7! into Eq. ~1.1!, one gets the BMCSL equation o
state.

The first authors to publish computer simulation data
the radial distribution functions of a hard-sphere mixtu
were Lee and Levesque.12 Their main concern was the appl
cation of perturbation theory in fluid mixtures taking ha
spheres as the reference system. For many years these
lation data served as the most important source for asses
the merits of theoretical results obtained from the solution
the Ornstein-Zernike equation with different closures or fro
other approaches. One of the outcomes of the simulat
was to show both the merits and the limitations of the
predictions. This prompted new efforts to improve those p
dictions without at the same time increasing excessively
complexity of the theory. Among these efforts, it is worth
mention the early generalization to the case of mixtures11,12

of the Verlet-Weis parameterization.18 At a more fundamen-
tal level, Blum and Ho”ye19 solved the Generalized Mea
Spherical Approximation~GMSA! for mixtures. This ap-
proximation consists of solving the Ornstein-Zernike eq
tion, Eq. ~1.3!, with the Yukawa closure ci j (r )
5Ki j e

2z(r 2s i j )/r for r .s i j . This is a generalization of the
PY closure, to which it reduces ifKi j 50 and/orz→`. For
the true Yukawa closure, the parametersKi j and z can be
determined from given values ofgi j (s i j ) andx, which de-
mands in general heavy algebraic and numerical labor.20 In
fact, a simplified version of the GMSA has been recen
proposed.21 The results indicate that the GMSA corrects t
h
ent
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PY performance and it is comparable to and, in some ca
even better than the generalized Verlet-Weis parameter
tion. On another vein but with the same aim, Boublı´k22 has
very recently presented simple expressions for the radial
tribution functions for multi-component mixtures, based e
sentially on geometrical arguments. However, in contr
with what already occurs with the PY approximation,
seems that Boublı´k’s expressions are unable to capture t
richness of the behavior found by Malijevsky´ et al.17 in com-
puter simulations of binary mixtures with disparate diamet
and at low concentrations of the largest component.

In previous work23,24 we developed a rational functio
approximation~RFA! method to find analytical expression
for the radial distribution function of a pure hard-sphe
fluid. The same approach was used in a one-compon
sticky-hard-sphere fluid25 as well as for the square-we
fluid.26 It is the major purpose of this paper to carry out
extension of the RFA method to the case of multi-compon
hard-sphere mixtures. As discussed below, this exten
will prove to give equivalent results to the GMSA requirin
much less effort.

The organization of the paper is as follows. In Sec. II w
describe the RFA method for the pure hard-sphere fluid. T
does not only make this work self-contained, but also allo
us to present the method in a version that is more amen
for direct generalization. Section III deals with the genera
zation of the RFA approach to the case of anN-component
hard-sphere additive mixture. Explicit expressions are p
vided for the Laplace transforms ofrgi j (r ) and for the struc-
ture factorsSi j (q) in terms of the number densities and th
diameters of the spheres of each species. Some mathem
details are relegated to two appendices. The method requ
as input the contact valuesgi j (s i j ) and the isothermal sus
ceptibility x, for which in Sec. IV we adopt the GHLL and
BMCSL prescriptions, respectively, to illustrate its use in t
particular cases of a binary and a ternary mixture. The res
of our approach are also compared there with those of the
approximation and with those available from computer sim
lations. The paper is closed in Sec. V with further discuss
and some concluding remarks.

II. THE SINGLE COMPONENT CASE

In this section we give an outline of the RFA method f
a one-component hard-sphere fluid, i.e. for the caseN51 or,
alternatively,s i5s. This presentation, which is equivalen
to the one given in Refs. 23 and 24, where all details can
found, is more suitable than the former for direct generali
tion to the case of mixtures. The starting point will be t
Laplace transform

G~s!5E
0

`

dre2srrg~r ! ~2.1!

and the auxiliary functionC(s) defined through

G~s!5
s

2p
@r1essC~s!#21. ~2.2!

Since g(r )50 for r ,s while g(r )5finite for r .s, one
must have that lims→`sessG(s)5finite or, equivalently,
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lim
s→`

s22C~s!5finite. ~2.3!

On the other hand, the isothermal compressibility is also
nite, so that lims→0@G(s)2s22#5finite; this in turn implies

C~s!52r1rss2
1

2
rs2s21S 1

6
rs31

1

2p D s3

2S 1

24
rs31

1

2p Dss41O ~s5!. ~2.4!

An interesting aspect to be remarked is that the minim
input we have just described on the physical requireme
related to the structure and thermodynamics of the syste
enough to determine the small and larges limits of C(s).
While infinite choices forC(s) would comply with such
limits, a particularly simple form is a rational function. I
particular, the simplest one is

C~s!5
S~0!1S~1!s1S~2!s21S~3!s3

L ~0!1L ~1!s
, ~2.5!

where one of the coefficients can be given an arbitrary n
zero value. We chooseS(3)51. With such a choice and in
view of Eq. ~2.4!, one findsS(0)52rL (0), S(1)52r(L (1)

2sL (0)), S(2)5r(sL (1)2 1
2s

2L (0)), and
lly
ve
-

-

l
ts
is

n-

L ~0!52p
112h

~12h!2
, ~2.6!

L ~1!52ps
11 1

2h

~12h!2
. ~2.7!

Upon substitution of these results into Eqs.~2.2! and ~2.5!,
we get

G~s!5
e2ss

2ps2

L ~0!1L ~1!s

12r@w2~ss!s3L ~0!1w1~ss!s2L ~1!#
,

~2.8!

where

wn~x![x2~n11!S (
m50

n
~2x!m

m!
2e2xD . ~2.9!

Notice that Eq.~2.8! coincides with the solution to the PY
closure of the Ornstein-Zernike equation.2

In the spirit of the RFA, the simplest extension of E
~2.5! involves two new terms, namelyS(4)s4 in the numera-
tor andL (2)s2 in the denominator, both of them necessary
order to satisfy Eq.~2.3!. Such an addition leads to
G~s!5
e2ss

2ps2

L ~0!1L ~1!s1L ~2!s2

11as2r@w2~ss!s3L ~0!1w1~ss!s2L ~1!1w0~ss!sL ~2!#
, ~2.10!
ut

w
e

e

ity
where we have identifiedS(4)[a and now

L ~0!52p
112h

~12h!2
1

12h

12hS p

12h

a

s
2

L ~2!

s2 D , ~2.11!

L ~1!52ps
11 1

2h

~12h!2
1

2

12hS p
112h

12h
a23h

L ~2!

s D .

~2.12!

Thus far, irrespective of the values of the coefficientsL (2)

and a, the conditions lims→`sessG(s)5finite and
lims→0@G(s)2s22#5finite are satisfied. Of course, ifL (2)

5a50, one recovers the PY approximation. More genera
we may determine these coefficients by prescribing gi
values for the contact valueg(s) and the isothermal suscep
tibility x. This leads to

g~s!5
L ~2!

2pas
, ~2.13!

x5S 2p

L ~0!D 2F12
12h

12h

a

sS 112
a

s D1
12h

p

aL ~2!

s3 G .

~2.14!

Clearly, upon substitution of Eqs.~2.11! and ~2.13! into Eq.
~2.14! a quadratic algebraic equation fora is obtained. The
physical root is the one that ensures thatL (0)/L (2).0 and it
,
n

turns out to be the smallest root. It is worthwhile to point o
that the structure implied by Eq.~2.10! coincides in this one-
component case with the solution of the GMSA.27

III. THE MULTI-COMPONENT CASE

The method outlined in the previous Section will be no
extended to anN-component mixture. First, we introduce th
Laplace transforms ofrgi j (r ):

Gi j 5E
0

`

dre2srrgi j ~r !. ~3.1!

We note that

gi j ~r !5Q~r 2s i j !@gi j ~s i j !1gi j8 ~s i j !~r 2s i j !1¯#,
~3.2!

where Q(x) is the Heaviside step function andgi j8 (r )
[dgi j (r )/dr. This property imposes a constraint on th
larges behavior ofGi j (s), namely

ses i j sGi j ~s!5s i j gi j ~s i j !1@gi j ~s i j !1s i j gi j8 ~s i j !#s
21

1O ~s22!. ~3.3!

On the other hand, the condition of a finite compressibil
implies thath̃ i j (0)5finite. As a consequence, for smalls,

s2Gi j ~s!511Hi j
~0!s21Hi j

~1!s31¯ , ~3.4!
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with Hi j
(0) ,Hi j

(1)5finite and

Hi j
~n![E

0

`

dr~2r !nrhi j ~r !. ~3.5!

We are now in the position to generalize the approxim
tion ~2.10! to theN-component case. While such a genera
zation may be approached in a variety of ways, we h
chosen one in which two motivations are apparent. On
one hand, we want to recover the PY result3 as a particular
case in much the same fashion as in the one-component
tem. On the other hand, we want to maintain the devel
ment as simple as possible. Therefore, we propose

Gi j ~s!5
e2s i j s

2ps2
~L~s!•@~11as!12A~s!#21! i j , ~3.6!

where1 is the identity matrix and

Li j ~s!5Li j
~0!1Li j

~1!s1Li j
~2!s2, ~3.7!

Ai j ~s!5r i@w2~s is!s i
3Li j

~0!1w1~s is!s i
2Li j

~1!

1w0~s is!s iL i j
~2!#. ~3.8!

We note that, by construction, Eq.~3.6! complies with the
requirement lims→`ses i j sGi j (s)5finite. Further, in view of
Eq. ~3.4!, the coefficients ofs0 and s in the power series
expansion ofs2Gi j (s) must be 1 and 0, respectively. Th
yields 2N2 conditions that allow us to expressL(0) andL(1)

in terms ofL(2) anda. To do so, it is convenient to expan
A(s) in powers ofs:

A~s!5 (
n50

`

A~n!sn, ~3.9!

where

Ai j
~n!5~21!nr iF s i

n13

~n13!!
Li j

~0!2
s i

n12

~n12!!
Li j

~1!

1
s i

n11

~n11!!
Li j

~2!G . ~3.10!

Substitution of Eq.~3.9! into Eq. ~3.6! leads, after simple
algebra, to

1

2p
Li j

~0!512 (
k51

N

Ak j
~0! , ~3.11!

1

2p
Li j

~1!5a1s i j 2 (
k51

N

Ak j
~1!2 (

k51

N

s ikAk j
~0! . ~3.12!

Equations~3.11! and ~3.12! constitute alinear set of 2N2

equations whose solution is readily obtained. The result

Li j
~0!5l1l8s j12l8a2l(

k51

N

rkskLk j
~2! , ~3.13!
-
-
e
e

ys-
-

Li j
~1!5ls i j 1

1

2
l8s is j1~l1l8s i !a

2
1

2
ls i (

k51

N

rkskLk j
~2! , ~3.14!

wherel andl8 have been defined below Eq.~1.7!.
In parallel with the development of the single compone

case,L(2) anda can be chosen arbitrarily. Again, the choic
Li j

(2)5a50 gives the PY solution.3,28 Since we want to go
beyond this approximation, we will determine these coe
cients by taking prescribed values forgi j (s i j ) and x. In
particular, according to Eq.~3.3!,

gi j ~s i j !5
Li j

~2!

2pas i j
. ~3.15!

The condition related tox is more involved. First, making
use of Eq.~3.4!, one can getHi j

(1) in terms ofL(2) and a.
This is done in Appendix A. Also, it is shown there that E
~1.2! may be cast into the form

x215(
i 51

N

(
j 51

N

Axixj@11ĥ~0!# i j
21, ~3.16!

whereĥi j (0)524pAr ir jHi j
(1) .

Equations ~3.15! and ~3.16! are the multi-componen
analogs of Eqs.~2.13! and ~2.14!, respectively. In fact, by
settings i5s, all the results of Sec. II are recovered. Th
final step is achieved after eliminatingLi j

(2) in favor of a in
Eq. ~3.15! and substituting into Eq.~3.16!. This produces an
algebraic equation of degree 2N,29 whose physical root is
determined by the requirement thatGi j (s) is positive definite
for positive reals. It turns out that the physical solutio
corresponds to the smallest real root. Oncea is known, upon
substitution into Eqs.~3.6!, ~3.13!, ~3.14!, and ~3.15!, the
scheme is complete. Explicit knowledge ofGi j (s) allows us
to determine immediately the Fourier transformh̃ i j (q)
through the relation

h̃ i j ~q!524ps i j
3 Re

s2Gi j ~s!21

s3 U
s5 iq

. ~3.17!

The structure factorSi j (q) may be expressed in terms o
h̃ i j (q) as2

Si j ~q!5xid i j 1rxixj h̃ i j ~q!. ~3.18!

In the particular case of a binary mixture, rather than
individual structure factorsSi j , it is some combination of
them which may be easily associated with fluctuations of
thermodynamic variables.6,8 Specifically, we introduce for
later use the quantities2

SNN~q!5S11~q!1S22~q!12S12~q!, ~3.19!

SNc~q!5x2S11~q!2x1S22~q!1~x22x1!S12~q!, ~3.20!

and

Scc~q!5x2
2S11~q!1x1

2S22~q!22x1x2S12~q!. ~3.21!

Also, using Eq.~3.3!, one can easily derive the result
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gi j8 ~s i j !5
1

2pas i j
FLi j

~1!2Li j
~2!S 1

a
1

1

s i j
D G , ~3.22!

which may have some use in connection with perturbat
theory.12 Finally, inverse Laplace transformation ofGi j (s)
yields gi j (r ).30

Up to here, the presentation is rather general. In the n
section we will apply the method to binary and ternary m
tures. To that end, we will choosegi j (s i j ) given by the
GHLL prescription, Eq.~1.7!, and, in order to have thermo
dynamic consistency,x will be the one obtained from the
BMCSL equation of state, cf. Eq.~1.6!. The expressions fo
SNN(0), SNc(0) andScc(0) that follow from the same equa
tion of state in the case of a binary mixture and which w
serve to test the thermodynamic consistency of the pre
approach are derived in Appendix B.

IV. RESULTS

A convenient way of characterizing anN-component
hard-sphere mixture is to take the species with the larg
diameter as species 1 and to specify the total packing frac
h, the N21 independent molar fractionsx2 ,x3 , . . . ,xN ,
and theN21 diameter ratioss2 /s1 ,s3 /s1 , . . . ,sN /s1 . In
addition, we will takes151, which fixes the unit of length
This leads to a (2N21)-dimensional parameter spac
whose exhaustive exploration is not feasible, even in the
nary case. Therefore, for the sake of illustration, we ha
chosen one representative example forN52 and another one
for N53, both withh50.49. The reason for this value ofh
is two-fold. On the one hand, it corresponds to a rather la
density,31 so that it provides a stringent test of the theory. O
the other hand, for binary mixtures it has been widely a
lyzed both through computer simulations12,15,17and approxi-
mate theories.17,20–22,32

We begin with the binary mixture. In this case, we ta
s2 /s150.3 and x25 15

16, so that h1.0.35 andh2.0.14,
whereh i[ (p/6) r is i

3 is the partial volume fraction of spe
cies i . This choice is motivated by the recent and very ac
rate simulation results by Malijevsky´ et al.,17 in which they
find an unusual behavior pattern of the distribution functio
at low concentrations of the larger spheres. In Figs. 1–3
present the radial distribution functionsgi j (r ) as given by
the PY theory, our method, and the simulation results fr
Ref. 17. The picture that emerges is the following. Both P
and RFA are able to capture the peculiar features obse
through the simulations with the latter one exhibiting
slightly overall better performance, especially forg11. The
agreement between RFA and simulation is particularly go
between contact and the first minimum. Since in this reg
all the integral equation theories tested in Ref. 17 give p
results ~the Martynov-Sarkisov33 theory being the excep
tion!, such an agreement must be regarded as yet ano
advantage of the RFA approach, apart from its much sim
implementation. This is further confirmed by testing our
sults against recent comparisons34,35 of the simulation data
for this binary mixture with the generalized Verlet-We
parameterization11,12,32and with an improved integral equa
n

xt
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e

-

-

s
e

ed

d
n
r
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-

tion theory~MHNC!. The latter theory nevertheless appea
to account better for the value at the minimum than the R
in this instance.

As another illustration of the capabilities of our formu
lation, in Figs. 4–6 we show the results ofScc(0), SNN(0)
and SNc(0) as functions of the diameter ratio forh50.49
and four different molar fractions (x25 1

4,
1
2,

3
4, and 15

16!. These
results have been derived using two routes. On the one h
the structural route, through Eqs.~3.17!–~3.21!; on the other,
the thermodynamic route~cf. Appendix B!. The agreement
between both routes is practically perfect in the three ca
thus indicating the thermodynamic consistency of o
approach.36 It should be noted that the problem of therm
dynamic consistency has been examined by Giuntaet al.20 in
the context of the GMSA theory. Surprisingly, the thr
curves displayed in our Fig. 4 corresponding to the ca
analyzed in Ref. 20~cf. their Fig. 6! not only do not show the
behavior found there but in fact are totally different. Mor
over, since the individual structure factorsSi j computed with
the RFA are practically indistinguishable from the ones o
tained with the GMSA and shown in Figs. 7 and 8 of R

FIG. 1. Comparison of theoretical and simulated values of the radial di
bution functiong11(r ) of the largest spheres as a function of the interparti

distance~in units of s1) for the binary mixtureh50.49, x25
15
16, and

s2 /s150.3. Points are the simulation values from Ref. 17, the full li
represents the RFA results~with a50.01886), and the dashed line corre
sponds to the PY approximation.~a! Behavior in the vicinity of the contact
point. ~b! Detailed features of the first few oscillations.
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20, we are led to conclude that the results quoted in F
4–6 of the same reference are not correct. Therefore
conclusions drawn from such results are highly questiona
In particular, it seems to us that on the basis of the preced
arguments, the GMSA can indeed be regarded as being
modynamically self-consistent to a large extent.

We now turn to ternary mixtures for which, unfortu
nately, no simulation results for the radial distribution fun
tions are to our knowledge available.37 Here, we have again
takenh50.49 ands2 /s150.3 while nowx15x25 1

102, x3

5 100
102 ands3 /s150.1. It turns out then that the partial mola

fractions areh1.0.435, h2.0.012 andh3.0.043, so that
although the particles of species 3 are much smaller than
other particles, they occupy a larger volume than specie
This case allows us to examine the influence of a th
~small! component on the structural properties of the mixtu
in a situation related to a well studied12,20,21binary mixture
case in whichh50.49, s2 /s150.3 andx15x25 1

2. Figures
7–9 showg11(r ), g12(r ), andg22(r ) obtained from the PY
theory and our method. For comparison, we have also
cluded the simulation data12 as well as our results for th
binary mixture mentioned above. Note the excellent agr
ment between simulation and our approximation also in
binary case; we have observed that this agreement exten
the other two cases considered in Ref. 12. It is also wo
pointing out that our numerical values are indistinguisha
from those obtained with the GMSA and given in Table I

FIG. 2. The same as for Fig. 1 but forg12 .
s.
he
e.
g

er-

-

he
2.
d
e
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e-
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to
h
e

Ref. 20. Concerning the influence of the third component
is not only noticeable quantitatively, but it also affects t
qualitative features of the radial distribution functions. A
expected,gi j (s i j ), i , j 51,2, is in the ternary case larger tha
in the binary case, due to osmotic depletion effects.38 How-

FIG. 3. The same as for Fig. 1 but forg22 .

FIG. 4. Scc(0) as a function ofs2 /s1 for binary mixtures withh50.49 and

for four different molar fractions:x25
1
4, x25

1
2, x25

3
4, andx25

15
16. Open

circles have been obtained with the RFA structural route, while the cont
ous line has been derived from the thermodynamic route.
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ever, the ternarygi j (r ) fall off very rapidly, so that they
become smaller than their binary counterparts at distan
r *s i j 1

1
2s3 . In addition, the ternarygi j (r ) exhibit a some-

what peculiar behavior atr .s i j 1s3 , i.e. the distance a
which particles of species 3 fit in between particles of spec
i and j . It is clear that the PY theory captures this peculi
ity, although the effect is much less dramatic than in
RFA case. Once again, the most important numerical dif
ences between both approaches show up in the vicinity of
contact points. In Fig. 10 we showg13(r ) as an example o
the behavior of radial distribution functions involving com
ponent 3. In this case~as well as in those ofg23(r ) and
g33(r ), not shown here! the differences between PY an
RFA are less apparent.

Now we consider the structure factors of the same
nary mixture. Due to the high disparity of diameters a
concentrations, the scales of the different functionsSi j (q)
change very much from one pair to another, cf. Eq.~3.18!.
For the sake of compactness and without loss of informat
we therefore displayh̃ i j (q)/s i j

3 in Figs. 11 and 12. The ef
fect of the third component is to lower the amplitude of t
extrema as compared to that of the binary counterpart
well as a slight shift of their position. The results of the P

FIG. 5. The same as Fig. 4 but forSNN(0).

FIG. 6. The same as Fig. 4 but forSNc(0).
es

s
-
e
r-
e

r-

n,

as

approximation differ from those of the RFA method partic
larly nearq50 and near the first maximum or minimum. I
general, Figs. 7–12 confirm the different qualities ofgi j (r )
andSi j (q) in showing up the structural features of liquids

V. DISCUSSION

In this paper we have presented a simple extension of
PY approximation for anN-component additive hard-spher
mixture. This extension provides analytical expressions
the radial distribution functionsgi j (r ) ~in Laplace space! and
the structure factorsSi j (q) in terms of the number densitie
$r i% and the diameters$s i%. As input, we require the knowl-
edge of the contact valuesgi j (s i j ) and the isothermal sus
ceptibility x. Clearly, a natural choice is to impose therm
dynamic consistency, so thatx readily follows oncegi j (s i j )
have been specified. The formulation involves a single
rametera which obeys an algebraic equation of degree 2N.
In the one-component case, i.e.N51 or s i5s, our ap-

FIG. 7. Comparison of theoretical and simulated values of the radial di
bution functiong11(r ) of the largest spheres as a function of the interparti

distance~in units of s1) for the ternary mixtureh50.49, x15x25
1

102, x3

5
100
102, s2 /s150.3, ands3 /s150.1 and the binary mixtureh50.49, x1

5x25
1
2, ands2 /s150.3. Points are the simulation values for the bina

mixture from Ref. 12, the dotted line represents the binary RFA results~with
a50.02784), the full line represents the ternary RFA results~with a
50.01837), and the dashed line corresponds to the ternary PY approx
tion. ~a! Behavior in the vicinity of the contact point.~b! Detailed features of
the first few oscillations.
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proach reduces to the reformulation23 of the GMSA as a
rational function approximation~RFA!. In the multi-
component case, however, our scheme, while provid
practically identical results, is algebraically much less
volved than the GMSA. The latter requires19 us to deal first
with a set of 2N2 nonlinear equations for givenKi j and z
and then with another set of1

2N(N11)11 nonlinearequa-
tions to obtainKi j andz from the knowledge ofgi j (s i j ) and
x. Already in the binary mixture this yields 12 nonline
coupled equations20 and the complexity increases eno
mously as the number of components grows. In fact, suc
complexity has motivated the adoption of simplifyin
assumptions21 within the GMSA to produce simple expres
sions of the Laplace transformsGi j (s). Notwithstanding the
merits of this simplification of the GMSA, it is not clear to u
whether the removal of one of these assumptions~cf. Eq.
~53! in the first paper of Ref. 21!, related to the sizes of th
spheres and which clearly does not hold for very dispa
diameters, would imply the loss of the simplicity. In add
tion, we note that the simplified version does not reduce
the full GMSA in the case of a one-component fluid.

FIG. 8. The same as for case~b! of Fig. 7 but forg12 .

FIG. 9. The same as for case~b! of Fig. 7 but forg22 .
g
-

a

te

o

The results for the particular binary and ternary mixtur
that we chose to illustrate our method were derived by tak
gi j (s i j ) with the GHLL ~Refs. 11,12! prescription. This in
turn implies that the corresponding equation of state is
BMCSL.9,10 We found a fairly good agreement with th
simulation values, particularly in the vicinity of the conta
points, where the PY theory as well as other theories
known17 to have the worst performance. While a good val
at contact is of course ascribable to the equation of state
better slope at contact and the improvements in the reg
between contact and the first minimum is certainly an as
of our formulation. The point to be remarked here is that a

FIG. 10. Detailed features of the first few oscillations of the radial distrib
tion functiong13(r ), as a function of the interparticle distance~in units of

s1) for the ternary mixtureh50.49, x15x25
1

102, x35
100
102, s2 /s150.3,

and s3 /s150.1. The full line represents the RFA results~with a
50.01837) and the dashed line corresponds to the PY approximation.

FIG. 11. Fourier transformsh̃11(q), h̃12(q), and h̃22(q) as functions of the
wave numberq ~in units of s1

21) for the ternary mixtureh50.49, x15x2

5
1

102, x35
100
102, s2 /s150.3, ands3 /s150.1 and the binary mixtureh

50.49,x15x251/2, ands2 /s150.3. The dotted line represents the bina
RFA results~with a50.02784), the full line represents the ternary RF
results~with a50.01837), and the dashed line corresponds to the tern
PY approximation.
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accurate equation of state could be equally used instea
the BMCSL.

It is well known that the PY approximation leads to th
absence of phase separation into two fluid phases in add
binary hard-sphere mixtures.4 This was thought to be a genu
ine feature of the system and not a consequence of the
proximation. In fact, the complete miscibility of additive b
nary mixtures remained unchallenged until quite recen
when Biben and Hansen39 solved the Ornstein-Zernike equa
tion with the Rogers-Young closure40 and found that binary
mixtures seem to become unstable for sufficiently dispa
sizes and at high enough densities. This result has been
rived also from a self-consistent density functional theor41

and supported by experiments on asymmetric colloi
suspensions.42 Unfortunately, computer simulation is diffi
cult at high densities for mixtures of spheres whose dia
eters are very different,43 so this route seems far away
present. Thus, our scheme, not being an integral equa
approach, renders itself as another alternative to tackle
problem. In fact, since we are not forced to consider a p
ticular equation of state, it would be interesting to incorp
rate one that predicts the phase separation of asymm
binary mixtures,38,39,41,44a property absent in the BMCS
equation. A possible candidate might be the equation of s
that arises in the work by Lekkerkerker and Stroobant44

Nevertheless, such an equation implies the unpleasant
ture that, contrary to the experimental evidence,41 the stable
region in theh1-h2 plane enlarges as the asymmetry
creases.

One aspect that we have also paid attention to is tha
the internal consistencies of our approximation. In fact,
have already pointed out the high degree of consistency
tween the two ways to getSNN(0), SNc(0), andScc(0) in
the binary mixture, namely the thermodynamic route~cf. Ap-
pendix B! and the structural route~cf. Sec. III!. Besides, we
have checked thatgi j (r ) is almost indistinguishable from

FIG. 12. Fourier transformsh̃13(q), h̃23(q), and h̃33(q) as functions of the
wave numberq ~in units of s1

21) for the ternary mixtureh50.49, x15x2

5
1

102, x35
100
102, s2 /s150.3, ands3 /s150.1. The full line represents the

RFA results~with a50.01837) and the dashed line corresponds to the
approximation.
of
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gji (r ) despite the fact that the symmetry requirement w
not imposed from the beginning. Of course one can alw
have strict symmetry by redefininggi j→ 1

2(gi j 1gji ), but this
did not prove to be necessary.

Finally, the cases we considered indicate that the diff
ences between the PY theory and the present approach c
be more noticeable for ternary mixtures than for binary on
It is our expectation that this can serve as a motivation
performing more simulations or numerical solutions of in
gral equations in the case of ternary mixtures.
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APPENDIX A: DERIVATION OF H „1…

Performing a power series expansion ofGi j (s), as given
by Eq. ~3.6!, and comparing with Eq.~3.4!, one gets

H~0!5B~0!
•~12A~0!!21, ~A1!

H~1!5B~1!
•~12A~0!!21, ~A2!

where

Bi j
~0!5

1

2p
Li j

~2!1 (
k51

N

Ak j
~2!2 (

k51

N

s ik~adk j2Ak j
~1!!

2 (
k51

N
1

2
s ik

2 ~dk j2Ak j
~0!!, ~A3!

Bi j
~1!5 (

k51

N

Ak j
~3!1 (

k51

N

s ikAk j
~2!2 (

k51

N S 1

2
s ik

2 1Hik
~0!D ~adk j

2Ak j
~1!!2 (

k51

N S 1

6
s ik

3 1s ikHik
~0!D ~dk j2Ak j

~0!!. ~A4!

Equation~A2! givesH(1) in terms ofL(2) anda. By making
use of Eq. ~3.15!, one can recognize the structureHi j

(1)

5Pi j (a)/@Q(a)#2, wherePi j (a) denotes a polynomial ina
of degree 2N andQ(a) denotes a polynomial of degreeN.

In order to express the isothermal compressibility
terms of H(1), it is convenient to introduce the matrice
ĥi j (q)5Ar ir j h̃ i j (q) and ĉi j (q)5Ar ir j c̃ i j (q). Then the
Ornstein-Zernike equation, Eq.~1.3!, may be rewritten as1
2 ĉ(q)5@11ĥ(q)#21. Therefore, Eq.~1.2! becomes

x215(
i 51

N

(
j 51

N

Axixj@d i j 2 ĉi j ~0!#

5(
i 51

N

(
j 51

N

Axixj@11ĥ~0!#21
i j . ~A5!
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Finally, ĥi j (0)524pAr ir jHi j
(1) . It turns out then that, see

as a function ofa, x is the ratio of two polynomials of
degree 2N.

In the binary case, it is straightforward to check that E
~A5! is equivalent to

x5SNN~0!2
SNc~0!2

Scc~0!
5

S11~0!S22~0!2S12
2 ~0!

Scc~0!
, ~A6!

whereSNN , SNc , andScc are given by Eqs.~3.19!–~3.21!.

APPENDIX B: THERMODYNAMIC DERIVATION OF
Scc „0…, SNc„0…, AND SNN„0… IN A BINARY
HARD-SPHERE MIXTURE

The quantitiesScc(0), SNc(0), and SNN(0) measure
concentration-concentration, density-concentration,
density-density fluctuations, respectively, in a binary m
ture. Their relationships with thermodynamic quantities a8

Scc~0!5
N kBT

~]2G /]x1
2!p,N ,T

, ~B1!

SNc~0!52dScc~0!, ~B2!

SNN~0!5x1d2Scc~0!, ~B3!

whereN is the total number of particles,G is the Gibbs free
energy, and

d[
1

VS ]V

]x1
D

p,N ,T

~B4!

is a dilatation factor,V being the volume.
For a general mixture, the Gibbs free energy can be

tained from the knowledge of a given equation of state,
p/rkBT5Z(r,$xi%,T), as

G

N kBT
5Z1

Aid1Aex

N kBT
, ~B5!

whereAid andAex are the ideal and excess contributions
the Helmholtz free energy, respectively. Their expressi
are

Aid

N kBT
5211(

i 51

N

xi ln~rxici !, ~B6!

Aex

N kBT
5E

0

r

dr8
1

r8
@Z~r8!21#, ~B7!

where in Eq.~B6! ci[h3/(2pmikBT)3/2, h being the Planck
constant andmi being the mass of a particle of speciesi .

In Eqs.~B1! and~B4! p rather thanr plays the role of a
state variable, in contrast to what happens in the equatio
state. To remedy this problem, consider the mathema
identities

1

VS ]V

]x1
D

p

52
1

r

~]p/]x1!r

~]p/]r!x1

, ~B8!
.

d
-

b-
.

s

of
al

S ]2G

]x1
2 D

p

5S ]2G

]x1
2 D

r

22
]2G

]x1]r

~]p/]x1!r

~]p/]r!x1

1S ]2G

]r2 D
x1

F ~]p/]x1!r

~]p/]r!x1
G2

2
~]G /]r!x1

~]p/]r!x1
H S ]2p

]x1
2D

r

22
]2p

]x1]r

~]p/]x1!r

~]p/]r!x1

1S ]2p

]r2D
x1

F ~]p/]x1!r

~]p/]r!x1
G2J ~B9!

to find

d52xS ]Z

]x1
D

r

, ~B10!

1

N kBTS ]2G

]x1
2 D

p

5
1

x1x2
2xS ]Z

]x1
D

r

2

1
1

N kBTS ]2Aex

]x1
2 D

r

,

~B11!

where we have taken into account the thermoynamic r
tions (]p/]r)x1

5kBT/x, (]G /]r)x1
5N kBT/rx.

In the particular case of a hard-sphere system descr
by the BMCSL equation of state,Z is given by Eq.~1.5!, so
that Eq.~B7! yields

Aex

N kBT
5S p2

36

z2
3

rh2
21D ln~12h!

1
p

36
z2

18hz1~12h!1pz2
2

rh~12h!2
. ~B12!

Furthermore, taking derivatives with respect tox1 in Eqs.
~1.5! and ~B12! in the binary case, one gets

S ]Z

]x1
D

r

5
pz2

2~12h!2
~s12s2!1

p

2~12h!2
~s1

22s2
2!F z1

1
pz2

2~32h!

6~12h! G1
p

6~12h!2
~s1

32s2
3!F r

1
pz1z2

12h
1

p2z2
3~42h!

18~12h!2 G , ~B13!
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1

N kBT S ]2Aex

]x1
2 D

r

5
pr

12h
~s12s2!~s1

22s2
2!1

p2r2

36~12h!2
~s1

32s2
3!21

p2rz1

6~12h!2
~s1

22s2
2!~s1

32s2
3!

1
p2rz2

6~12h!2
~s12s2!~s1

32s2
3!1

p3rz1z2

36~12h!3
~s1

32s2
3!21

p2rz2

6h
~s1

22s2
2!2

3F ln~12h!

h
1

1

~12h!2G2
p3rz2

2

18h2
~s1

22s2
2!~s1

32s2
3!

3F ln~12h!

h
1

h225h12

2~12h!3 G1
p4rz2

3

216h3
~s1

32s2
3!2F ln~12h!

h
2

5h3226h2121h26

6~12h!4 G . ~B14!

Substitution of Eqs.~1.6!, ~B13!, and~B14! into Eqs.~B10! and~B11! allows one to obtainScc(0), SNc(0), andSNN(0) from
Eqs.~B1!–~B3!, according to the BMCSL equation of state.
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