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Approximate bounded solutions of the equation x"+bx'+c~x+cax3=O with b>0,  
cl <> 0 and c3-~ 0 are developed in terms of the Jacobian elliptic functions cn, cd and dn. 
The solutions are found by following the method developed by Christopher in 1973 for 
the case with c~ > 0 and c3 > 0. Formulas for the amplitude decay are given in two different 
approximations. The solutions are compared with Runge-Kutta numerical integration 
results and shown to be accurate for a wide range of b, c~, c3, and initial conditions. 

1. INTRODUCTION 

Damped non-linear oscillators governed by 

x" + bx' + cxx + c3 x3 = 0 (1) 

or, equivalently 

(x')~+ V(x) = ~(t), (2) 

where V(x)= ctx2+ (c3/2)x4, have long been a subject of interest and study (Burton [1] 
has given a survey of these efforts). However, most results have been obtained for cl > 0 
and c3 > 0 (well 1). We have used the approximate Christopher method [2, 3] (similar to 
that of  Krylov and Bogoliubov [4] but using elliptic functions rather than circular functions 
as a basis for the solution) and studied the other oscillators for which 

e l > 0 ,  c3<0 where E(O)<Vmax=-C~/2e3(well2) (3) 

and ct < 0, c3 > 0 (well 3). 
In this paper  our attention is focused on the amplitude decay: A(t). From knowledge 

of A(t)  it is not difficult to evaluate other magnitudes, such as the energy, or x(t),  as 
done in references [1-3]. 

The Christopher method consists of transforming equation (1) to the reduced equation 

and using the transformation 

where 

u" + m2u + m2y( t)u3=O, 

x( t) =x(O) exp ( - k t )u (  t), 

k = b/2, rn 2 = Cl- k 2, m:y(t)  = c3x2(0) exp ( -2kt) .  

(When possible we use the Christopher notat ion in this paper.) 
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Equat ion (2) is also equivalent to 

(u ')2+ Vt(u) = E, ( t ) ,  (7) 

where 

V1( u) = m2u2 + {m:y( t ) /2}u  4. (8) 

The case m 2 > 0 and m2y(t)  > 0 we call oscillator 1; m 2 > 0, m2y(t)  < 0 and E1 (0) < VI (0) = 
- ( c l  - k~)2/2c3x(O) 2, we call oscillator 2; and m: < 0 and m2y(t)  > 0 we call oscillator 3. 

If y ( t )  in equations (4) or (8) were constant and not t ime-dependent as it is, the exact 
solution (generating solution) of  this differential equation (generating equation),  would 
be given in terms o f  Jacobian elliptic functions as 

u( t) = c pq ( t o t -  ~b,/.2), (9) 

where c, ~o, $, and /z are constants and pq is one of the Jacobian elliptic functions 
depending on the sign o f  m 2 and m2y(t)  (see Table 1). The next step is the usual one in 
the Krylov-Bogol iubov method. One assumes that the solution to equation (4), with y ( t )  
t ime-dependent,  has the form of  equation (9) where c, to, tk, tz are not constants, but  
t ime-dependent.  That  is, one supposes the solution to be 

u( t) = c( t) pq (~( t ) , /~2( t ) ) ,  (10) 

where 

�9 ( t ) =  co(t) d t -  ~( t ) .  (11) 

TABLE 1 

Formulas  f o r  the oscillators (x')2+ Ax2  + B x  4 = E;  here ER = E~ Vm where V,,, = A 2 / 4 B  

Differential 
Solution x aJ 2 #2 g.2(Ea) 

equation 

A >  0 A + 2Bc 2 

B > 0  ccn(mt,  Jz z) (A2+4BE) I/2 0</z2< �89 �89 1 1-ER J 
E > 0  ~o2>A 

A > 0 A + Bc 2 Bc2/(A + Bc 2) 
B < 0  ccd(wt, l~ 2) �89  1/2) 2 - E a  2(1-ER) t/2 

0 < E  < V,. A/2<~o2<A 0 < p 2 <  1 Ea Ea 

A < 0  A + 2Bc 2 
Be2/(A+2Bc 2) { (1 - ER)'/2~ 

a > o  ccn(cot, p. 2) (A2+4BE) t/2 �89 1 21 1-1 i--E-RR 'J 
E > 0  to2> A 

A < 0 Bc 2 

B > 0 0 < tz 2 < 1 2Ett -_______2 + cdn(mt, g. 2) �89  2+(A/Bc2)  2(1-ER)t/a 
V,,, < E < 0 A/2  < oJ 2 < - A  ER ER 

E > 0  ta2>-A 1 </~2<2 
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2. CONSTRAINTS 

The functions c(t) (reduced amplitude), ~( t )  (frequency), $( t )  (phase) and /22(t) 
(parameter) can be anything, subject to the following obvious constraint: constraint 1: 
equation (10) must be a solution of equation (4). 

We have found it practical to impose three additional constraints on all three oscillators: 
constraint 2: i f f (c ,  to, ~b,/z) is the time derivative of equation (9) then the time derivative 
of  equation (10) must be 

u'(t) = f{c ( t ) ,  co(t), ~b(t), p.(t)}; (12) 

constraint 3: 

constraint 4: 

to2=g{m2,  m2y(t), c(t)}; (13) 

tz 2 = h{m 2, m2y(t), c(t)}. (14) 

Here g and h are the relations (shown in Table 1) between frequency, parameter, and 
reduced amplitude of  the generating solution with coefficients m 2 and m2y(t) of the 
generating equation. The task of obtaining the solution u(t) is thus transformed into one 
of obtaining the functions c(t),  w(t) ,  4)(t) and ~(t)  that satisfy the four constraints. In 
what follows here the details of this system are given for one oscillator, oscillator 2 (for 
the first one see reference [2], and, for all three, see the Master's Thesis (Licenciatura) 
of one of  the authors (S.B.Y.) [5]). For oscillator 2 the assumed solution is 

u( t) = e( t) cd (~( t ) , /z2( t ) ) ,  (15) 

where ~ ( t )  is given by equation (11). Differentiating equation (15) with respect to t gives 

u'(t) = -coJlz~ sd nd+  c' cd+  c~b'/x t 2 sd nd+  (cltz' sd nd)//z, (16) 

where 

I = n (~ , /~ )  -/Zl2~, /x•= 1- tz  2 , (17) 

and E(~ ,  Iz) is the incomplete elliptic integral of the second kind. From constraint 2, 

u'( t ) = -CtOl.*2t sd nd. (18) 

Then from equation (16) 

c' cd + c4,'#~ sd nd + (c I~ ' sd  nd)//.~ = 0. (19) 

A second differentiation of  equation (18) gives 

u"= -cwlz~ sd n d -  cto'/z~ sd nd -2cwl~d~'l sd nd - { w % l . ~  cd (nd2+ ~2 sd 2) 

- cto/~b'  cd (nd 2 + p )  sd 2) + toc(Ix'/t z) cd nd 2 (/x 2 dn s o -  I)  

+ wclz'/z cd sd 2 (dn s c -  I)}. (20) 

From constraint 3 

and from constraint 4 

w 2 = m2(1 +�89 2) (21) 

~ ~ (-�89 + �89 

Then there follows immediately 

rn2 = (1 +/~2)w 2 , 

(22) 

rn2y = _2w2~2/  c ~. (23a,b) 
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With these relations and with (see reference [6]) 

cd 2 = 1 -/z~ sd 2, /x 2 cd 2 = /z  2 -  p.~ nd 2 (24) 

one obtains 

m2u + m2.yu 3 = to2c/x~ cd (nd: +/x 2 sd2). (25) 

From the constraint 1, and upon using equations (20) and (25), one has 

- c'to/.~ 2 sd nd - c~o'p.~ sd n d -  2cto/x ~/z ~ sd nd+  toqz~b' cd (nd 2 +/z 2 sd 2) 

- toc(iz'/ix ) cd ndE(p. 2 dn s c -  I )  - tocp.'/z (dn s o -  I )  cd sd 2 = 0. (26) 

The system to solve is that of equations (19), (21), (22) and (26). For the other oscillators 
the system has a similar complexity. 

The initial conditions to be satisfied by the solutions of oscillator 2 are 

w = u ( 0 )  = 1 = c ( 0 )  c d  ( - ~ b ( 0 ) , / ~ 2 ( 0 ) ) ,  

w = u '(o)  = [x'(O) + k x ( 0 ) ] / x ( 0 )  

-- -c(0)to(0)/~(0)  sd ( - r  nd ( - r  p.2(0)). (27) 

Then one can deduce that 

c2(0) = -{m2+ (m4+ 2rn27El(O))l/2}/m2"y, (28) 

where 

E~( O) = w + m2w + {mZ T(O)/2}w ~. (29) 

For the other oscillators c2(0) is given by the same expression. 

3. FUNDAMENTAL RELATIONS 

Following Christopher [2], we first derive an equation for each oscillator that we shall 
call the fundamental relationship, and we shall then apply the principle of averaging to 
this. Let us follow the process through for oscillator 2. From equation (19) we have 

c/.*2r '=  -(eI(I.*'/I.~) sd nd+  c' cd)/(sd nd). (30) 

Then constraints 3 and 4 give 

/~/z' = - (1  +/z2)~o'/oJ. (31) 

Using equations (26), (30) and (31), and writing all the Jaeobian elliptic functions in 
terms of sd as in equation (24), one gets the fundamental relationship 

(c ' /c)(1 + 2/z 2 sd 2 - / z  2/z ~ sd 4) + (~o'/~o)(2 sd 2 -/x~ sd 4) = 0. (32) 

For the other oscillators the fundamental relation is obtained in a similar way. So, for 
oscillator 1, one has [2] 

(c ' /c) (1  - 2/z 2 sn 2 + 2 sn 4) + (~o,/eo)(sn 2 _�89 sn 4) = 0 (33) 

and, for oscillator 3 [5], 

( C ' / C ) ( 1  - -2  s n  2 q - / 2  s n  4) + ( t o ' / t o ) ( 2  sn  2 --  2 s n  4) = 0. (34) 

There is however a more elegant way: if we know one of the fundamental relations we 
can obtain the other two using the transformation properties of  the Jacobian elliptic 
functions [6]: transformation of the negative parameter, transformation of the reciprocal 
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parameter (Gauss's transformation) and Jacobi's imaginary transformation. For example, 
one can deduce (32) from equation (33). One knows that the solution to equation (7) for 
m2> 0, m2y( t )<0  and E~(0)< VI,.~(0) has the form of equation (15) with pq----cd. But 
one also knows that (the negative parameter transformation) 

c n ( f f % . - - , u . ~ . ) = c d ( ~ c d ,  2 , #~~ (35) 

where 

2 2 I /2  , 2 "1-1/21/ ,. p.ca =/z~./(1 = +/~c.), ~ a = ( 1  (36,37) + ~z~.) ~e. = (1 -  ~.r ~ . .  

In other words one can take the solution for oscillator 2 to be 

c cn (~:n, -/z2~.), (38) 

where, from equation (11), 

~ , , =  ~oc. d t -  ~b~.(t). (39) 

But cn is the Jacobian elliptic function used for oscillator 1, and in deducing the 
fundamental relation, no use has been made of the values of the argument or parameter. 
Thus equation (33) would also be the fundamental relation for oscillator 2, with a negative 
parameter. One can now check that this is indeed the same as equation (32). Reference 
[6] gives the relation 

sn (q"c., -/Z~n) = (1 - p.~d) 1/2 sd (qtcd, #Z~d). (40) 

From equation (37), 

and therefore 

toc. = (1 2 ,~t/" , (41) -- ].Led / toed 

(aJ'en/aJcn) ---- (aJ~,~/aJ<a) -- (#z~dp,=d/1 --/z2cd). (42) 

Using equation (31) gives 

(o'./~oc. = (21(1 - #~d))~'U ~od. (43) 

Upon substituting this last equation and equation (40) into equation (33), it is easy to 
see that equation (32) follows: q.e.d. 

4. PRACTICAL SOLUTION 

Although the fundamental relations are far simpler than the system they derive from, 
they are still complex enough for their exact resolution to be difficult. However, the 
coefficients of o~'/o~ and c'/c are roughly periodic and one can reduce equations (32)-(34) 
to a simpler form by using the averaging principle method [4]. The solutions of these 
averaged relations are closer to the solutions of the fundamental relations when the 
Jacobian elliptic functions' frequency qt, = ~o - q~' is large and c', ~0',/~' and ~b' are small 
(that is, when the damping is small). In Table 1 one can see that for oscillators 1 and 3 
(with El > 0) the frequency can be very high for very large energy, and then the technique 
will also be valid for large b. But for oscillator 2 the frequency is very small ( ( c ) -k2) /2<  
(o2< c i -  k2), and the technique works well only when b is small. The same is the case 
for the oscillator 3 when El <0. 

Averaging the fundamental relations gives 

( c ' /  c) + R( tz2) ( ,o ' /  to ) = O, (44) 
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where 

for oscillator 1, 

for oscillator 2, and 
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n (I.z") = ( Q, + �89 ( 1 - 21.1."Q, + It 2Q2) (45) 

R(/z 2) = (2Tt - It 2 T2)/(1 + 2/x 2 T, - p.2/~ T2) (46) 

R ( ~  2) = (2Q, -~:Q. , ) / (1  - aQ, + ~Q~)  (47) 

for oscillator 3. In this oscillator, if El > 0, then 1 < / z :  < 2. I f  one wants to use the Jacobian 
elliptic functions with parameters between zero and  one, a reciprocal parameter trans. 
formation can be applied to equation (34) and, after averaging, this gives 

R(/z2) = {2 Q~ (1/It  2 ) - Q.',(1/tz2)}/{it 2 - 2Q1(1/~2) + Q2(1//x2)} (48) 

for oscillator 3 when E1 > 0. Here the notation 

Qi(it 2 ) -- (sn 2) = {1 - [E(it 2)/K(it  2) ]}//z 2, (49) 

Q2(/z ') -= (sn 4) = {2 + It2 _ 2( 1 +/z  2)( E/K)}/(3/z ') ,  (50) 

T~(/z 2) - (sd2} = {(E/K) -/z2}/(/z2it~), (51) 

T~(p. 2) ------ (sd') = {2(2~ 2 - 1)(E/K) + ~ ( 2  - Sit 2)}/(3it 4/do 4), (52) 

where 

2 1 
(Pq ( ' It ))=4K(-it2) J0 Kc~'2) pq (~ '  tz2) age (53) 

f, 

and E---= E(/z 2) and K ~  K(it 2) are the complete elliptic integrals of the second and first 
kind, has been used. We shall show below how to get information from equation (44) 
about the amplitude decay. It should then be possible to evaluate gr( t ) , /~( t ) ,  and to(t), 
and to obtain the solution x(t) .  However, the present paper is restricted to the study of  
the amplitude decay. This study will be carried out in two ways, that we shall call the 
simple and sophisticated modes, respectively. 

As oscillator 3 is not symmetric for El <0,  there are two amplitude decays: the upper  
or A(t)  (corresponding to the maximum elongation) and lower Arow(t) (minimum elonga- 
tion point). But the minimum value of d n ( g  t, Iz 2) is /z~ and so 

Atow( t) = ~,(  t)A( t). (54) 

In evaluating Table 4 (to follow) oscillator 3 (El > 0), we took the solution to be of  type 
cn ( � 8 9  1) (see Table 1): that is, we used the relations of oscillator 1. 

4 . 1 .  S I M P L E  M O D E  R E S U L T S  

The basis of  the simple mode approach is to assume that R(p. 2) ~ R is t ime-independent.  
Integration of equation (44) is then simple: 

c(t)/c(o) = {coCO)/~(t))R. (55) 

Using constraint 3 (see Table 1) one gets 

c ( 0 ) -  +y- '~c2- -~ j  , or A ( t ) = A ( O ) e x p ( - k t ) l + 7 ( 0 ) A 2 ( t ) j  , (56) 
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for oscillator 1 (and for oscillator 3 when El > 0, too), 

c(0) L l ~ J  or A(t) = A(0) exp (-kt) +,v(0)A2(t)j (57) 

for oscillator 2, and 

e ( 0 ) - e x p  ~ k t  , or A(t)=A(O)exp - l ' i - - ~  (58) 

for oscillator 3. We have expressed the relations in terms of 

a ( t )  -- c(t) exp ( - k t )  (59) 

because it is the variable used in the literature. 
From equations (44)-(48) and (49)-(52) and the last column of  Table 1, we have plotted 

Figures 1-3. These figures show R versus the reduced energy ER = E~ V,,, ( V,,, is defined 
as -A2/4B for the oscillator (x ' )2+Ax2+ Bx4= E). One sees that the suitable choice of 
R is dependent  on the initial conditions. Nevertheless for each oscillator, over a wide 
range of  energies, the value of  R is nearly constant. These are, roughly, R = �89 for oscillator 
1 (high energy), R = ~ for oscillator 2 (low energy), and R = 4 when El < 0 and R = Rcn = �89 
when Ea > 0 (Re, is the value of R if one assumes a solution of  type cn with �89 < 1) 
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Figure 1. R vs. E e for oscillator I (solution cn). 
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Figure 2. R vs. E,x for oscillator 2 (solution cd). 
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Figure 3. R vs. E R for oscillator 3 (solution dn). The line labelled Re, has been calculated with the cn solution. 

for  o s c i l l a t o r  3. Tab les  2 -5  show the results  o b t a i n e d  with these values  of  R. However ,  
as n o t e d  a b o v e ,  for  cer ta in  in i t i a l  cond i t i ons  these va lues  are no t  op t imum.  There  is a 
g o o d  e x a m p l e  in t he  s econd  case  o f  Tab le  4 ( E  > 0):  the choice  Re, = �89 is not  good ,  far  
be t t e r  is Re,  = 2. This  c o u l d  be foreseen f rom Figure  3 because  for t ~ 0, El~ ----" 8 a n d  then 

The  r e l a t i o n  (56) wi th  R =�89 is given in re fe rences  [1, 3], in a s l ight ly  different  form. 
The  r e l a t i o n s  (57) a n d  (58) are,  to our  knowledge ,  new in the l i t e ra ture  on the subject .  

Tab les  3 a n d  4 s h o w  the  results  that  one  gets by us ing  the M e n d e l s o n  me thod  [7]. This 
m e t h o d  is n o t  a p p l i c a b l e  to osc i l l a to r  3. It gives a f o r m u l a  for the  a m p l i t u d e  decay  [8] 
that  can  a l so  be de r i ved  f rom equa t ions  (56) and (57). One  can write these  fo rmulas  as 

. f l  + ~ea2(O) l R/2 
a ( t )  = a (0 )  exp  (-kt)~-i ~ ~  ' (60) 

TABLE 2 

Oscillator 1; values of Ix,.~.:(t)l/x(O); "linear" means that the amplitude decay has the 
form of exp  ( - k t ) ;  the non-linearity of each case is given by c3x2(O)/ cl 

Sophisticated Simple 
Case Time Runge-Kutta mode mode R = �89 Mendelson Linear 

2'43 0,90 0.90 0.91 0"93 0'89 
b =0-1 4"97 0,81 0.81 0.82 0.85 0,78 
cl = 1 7'59 0-72 0.72 0-73 0"77 0"69 
c~ = 1 10.30 0"64 0"64 0-65 0"69 0"60 

x(0) = 1 13"10 0.56 0"56 0.58 0-61 0.52 
13"96 0.49 0.49 0.51 0'54 0.45 

b = 0 . 5  
cj -= 1 2.62 0.56 0.57 0.59 0.64 0.54 
c3 = 1 5.63 0.27 0.28 0.29 0.32 0.25 

x(0) -- 1 

0.77 0.88 0'88 0.88 0"85 b = 0 . 5  1.64 0.76 0.76 0-76 Inapplicable, 0.69 
ct = 1 2"65 0,63 0.64 0-64 too 0.53 
c3 = 1 3"85 0"51 0.52 0.53 non-linear 0"40 

x ( 0 )  = 5 5.29 0.39 0.40 0-41 0-28 
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TABLE 3 

Oscillator 2; values o f  Ixm,x( t)l /  x(O); linear means the same as in Table 2; the non-linearity 
o f  each case is given by c3x2(0)/Cl 

Sophisticated Simple 
Case Time Runge-Kut ta  mode mode R = ~ Mendelson Linear 

b = 0.1 5'3 0.70 0,68 0.69 0-72 0"77 
c~ = 1 9.0 0-56 0.55 0-56 0"58 0.64 

c 3 = - 1  12'5 0-46 0.45 0.46 0"48 0.54 
x(0) =0-96 15.9 0"39 0.38 0.38 0"40 0"45 

19'2 0'32 0.32 0.32 0"33 0"38 

b=0 .1  
ct -~ 1 4'1 0.35 0.34 0"35 0"34 0.37 

c 3 = - 1  
x(0) =0.80 7.4 0.15 0"15 0.15 0"15 0.16 

b =0.1 4.3 0.75 0.75 0.76 0.77 0.81 
cl = 1 7"9 0.61 0.61 0.62 0'63 0 '67 

c 3 = - 1  11.4 0.51 0"51 0.51 0.52 0-57 
x(0) = 0"84 14'7 0"43 0.43 0.43 0,44 0"48 

18"0 0"36 0'36 0.36 0.37 0.41 

TABLE 4 

Oscillator 3; E ( 0 ) >  0; values o f  Ixm.x(t)/x(O)l; " l inear" means the same as in Table 2; 

the non-linearity of  each case is given by c3x2(O)/ cl 

Sophisiticated Simple mode 
Case Time Runge-Kut t a  mode R = �89 R = ~ Linear E (t) 

b - -0 .5  0"82 0"88 0.88 0.88 
1"78 0'75 0.75 0'75 

c I = 1 2'93 0.63 0-63 0.62 
ca = 1 4.41 0.50 0-50 0.49 

6"49 0"37 0.37 0'36 
E ( 0 ) > 0  10.83 0"26 0.26 0.22 
x(0) =5 13'02 0.16 0"16 

b = 0" 1 2.47 0.94 0.94 0.93 
c I = -1  5"27 0.87 0.87 0"86 
c 3 = 1 8.51 0.82 0.81 0.78 

E ( 0 ) > 0  12.47 0.75 0.75 0.71 

x(0) = 2 18.06 0.70 0.68 0'62 

0'82 
0'64 
0.48 
0"33 
0.20 
0'07 

E(t)>0 

E(t)>o 

0.94 0.88 
0"88 0.77 
0.82 0.65 E ( t ) > 0  

0.75 0'54 

0.67 0.41 E ( t ) < 0  

w h e r e  

a ( t ) = x ( O ) A ( t ) ,  e = c 3 / ( c l - k 2 ) ,  (61)  

and  whe re /3  = 1 for  o s c i l l a t o r  1 a n d / 3  = ~ for  o sc i l l a to r  2. For  ea 2 smal l  (weak ly  n o n - l i n e a r  

m o t i o n ) ,  one  can  m a k e  the  a p p r o x i m a t i o n  

( 1 + flea2) -n = 1 - R/3ea 2 (62)  

a n d  e q u a t i o n  (60) t h e n  b e c o m e s  

a(t )  = a(O) exp  ( - k t ) { 1  + R/3ea2(O)[exp ( - 2 k t )  - 1]} ~/2. (63)  
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TABLE 5 

Oscillator 3; E ( 0 ) < 0 ;  values of x,,,~(t) and x~w(t); for "linear" the decay is evaluated 
for a simple harmonic well centered at the position of the minimum 

�9 Sophisticated Simple 
Case Time Runge-Kutta mode mode R = 4 Linear 

b = 0.1 2-73 0-39 0.39 0.38 0.43 
5.58 1.32 1.32 1.33 1.30 

c I = - 1  8.01 0.57 0.59 0.58 0.63 
10.53 1.26 1-26 1.26 1.24 

c3 = 1 12.86 0.68 0.69 0.70 0-73 
x(0) = 1.40 15.26 1.21 1.21 1.20 1-19 

17.54 0.76 0.77 0.79 0-80 
E(0) <0  19.87 1.17 1.17 1.15 1.15 

2.24 0.67 0.68 0.68 0.78 b=0 .5  
4.80 1.14 1.18 1.14 1.12 

C 1 ----- --1 6"94 0.91 0.94 1.04 0.99 Ca=l 
9.31 1"05 1-08 0.91 1.04 x(O) -- 1.40 

11.55 0.97 0.98 1.21 1.04 E(o)<o 13"82 1.02 1 "06 0.72 1-01 

With e =c3/cl, and choosing R in such a way that  R[3 =~, one  gets the Mendelson  
formula.  From Figures 1 and 2, our  selection o f  R for  weakly non- l inear  mot ion should  
be Rfl = ~ .  This value is slightly better than Rfl = ]  for oscillator 1, but  it is worse for 
oscillator 2. But in the linear limit and for not  very large damping,  i.e., in the region 
where these formulae work well, the differences are very small. 

4 . 2 .  S O P H I S T I C A T E D  M O D E  R E S U L T S  

For the sophisticated mode  results, we make no assumption about  R(/z 2) and follow 
the procedure  of  Chris topher  [2]. First, we express co'/~o in terms o f / z  and ~ '  as we did 
for oscillator 2, equation (31). For the other  oscillators, equat ion (31) takes the form 

~o'/co = ~ ' / ( ~ -  ~ 2) (64) 

for  oscillator 1, and 

~o'/,o =/~/~'/(2- 2 )  (65) 

for  oscillator 3. 
To express R(/z ~) in series of  powers of  /x 2 one  can use equat ions  (45)-(47) and 

(49)-(51).  The E(/z 2) and K(/z 2) series are given in reference [6]. One finds, after some 
algebra, 

R(/z a) = (5 /16)+(29 /128) /z2+(359 /2048) /z*+(289 /2048) /z6+(15311 /131072) /z  8 (66) 

for  oscillator 1, 

R(/x2)=(5/8)+(ll/64)lz2+(71/lO24)Iz'+(9/256)lz6+(313/16384)lzs (67) 

for oscillator 2, and 

R(/z~-)=(4/tz2)-l+(3/32)/z~-+(3/32)/z'+(349/4096)/z6+(314/4096)/z8 (68) 



for oscillator 3 
integrating gives 

1 - 2/z2(t) l~ 
c ( t ) = c ( o ) { 1 - ~ j  exp{G[tz2(t)]-G[12(O)]} 

with 
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(El <0) .  Substituting equations (64) and (66) into equation (55) and 

(69) 

G(/z 2) = 0.1851/z 2 + 0.719/~ a + 0.03749,6 + 0.0208/~ 8 (70) 

for oscillator 1 (and oscillator 3 with El >0 ,  too), similarly substituting equations (31) 
and (67) gives 

+k~2(t)l 0'2472 

with 

G(/x 2) = 0.0653/z 2 + 0.0103/x 4 + 0.0047/., 6 + 0.0014/.~ s (72) 

for oscillator 2, and substituting equations (65) and (68) gives 

(0) ,[ 2 - /z2( t )  1 1777/1o24 
c(t) = c(o) ~ l~-S_ ~ j exp {G[/z2(t)] - G[/z2(0)]} (73) 

with 

G(/z 2) = (1265/2048)/z2+(1169/8192)/z4+(977/25776)/x6+(314/32768)/z8 (74) 

for oscillator 3 (El < 0). 
With these equations and constraint 4 one can obtain the value of c for each oscillator. 

The results that one gets with this method are very good, as can be seen in Tables 2-5; 
as said before, they are better for large frequencies and small damping. 

5. CONCLUSIONS 

The work presented here is intended to provide approximate solutions for the simplest 
possible non-linear damped oscillators: i.e., solutions of equation (1). The equation of 
motion has to date not been solved exactly in a simple analytical way. We have used a 
method of approximation due to Christopher 12] for the case c~ > 0, c3 > 0 and extended 
it to the cases Cl > 0, c3 < 0 (bounded motion) and cl < 0, c3 > 0. We have found that there 
exist expressions, some quite simple, for the amplitude decay which prove to be accurate 
over a wide range of the parameters of  the problem. 
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