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An Explicit Difference Method for
Solving Fractional Diffusion and
Diffusion-Wave Equations in the
Caputo Form
An explicit difference method is considered for solving fractional diffusion and fractional
diffusion-wave equations where the time derivative is a fractional derivative in the
Caputo form. For the fractional diffusion equation, the L1 discretization formula of the
fractional derivative is employed, whereas the L2 discretization formula is used for the
fractional diffusion-wave equation. In both equations, the spatial derivative is approxi-
mated by means of the three-point centered formula. The accuracy of the present method
is similar to other well-known explicit difference schemes, but its region of stability is
larger. The stability analysis is carried out by means of a kind of fractional von Neumann
(or Fourier) method. The stability bound so obtained, which is given in terms of the
Riemann zeta function, is checked numerically. �DOI: 10.1115/1.4002687�
Introduction
Fractional calculus is becoming a useful and, in some cases,

ey tool in the analysis of scientific problems in a broad array of
elds such as physics, engineering, biology, and economics. In
articular, fractional partial differential equations have turned out
o be especially relevant. For example, fractional diffusion equa-
ions have been successfully used to describe diffusion processes
here the diffusion is anomalous �1–8�, and fractional diffusion
ave equations have been proposed to deal with viscoelastic
roblems �e.g., in the description of the propagation of stress
aves in viscoelastic solids �9–11�. Many other examples can be

ound in Refs. �8,12–14�.
In order for this fractional formalism to be useful in solving

ractical problems, one should be able to know how to find either
xact or at least approximate solutions of these fractional equa-
ions. Fortunately, there exist many analytical methods that can
rovide such solutions �1,8,14–18�. However, as is also the case
or the normal nonfractional equations, numerical methods are the
ost suitable way, and even the only way, to deal with some kinds

f problems. Therefore, the proposal and study of efficient, accu-
ate, and easy to implement numerical methods is quite important.
lthough in the last few years, many methods for solving frac-

ional partial differential equations have been proposed and ana-
yzed �see Refs. �19–36� and references therein�, there is indeed
till much work remaining to be done.

Difference methods and, in particular, explicit difference meth-
ds, are an important class of numerical methods for solving frac-
ional �and normal� differential equations. The usefulness of the
xplicit methods and the reason why they are widely employed is
ased on their particularly attractive features �34,37�: flexibility,
implicity, scanty computational demand, and the possibility of
asy generalization to spatial dimensions higher than 1. The
ethod discussed in this paper is an explicit finite difference
ethod designed for solving fractional diffusion and fractional

iffusion-wave equations where the fractional derivative is in the
aputo form. As is well known, explicit methods can be unstable

n some circumstances. So, it is crucial to determine under which
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conditions, if any, these methods are stable. This task is carried
out in this paper by means of a von Neumann-type stability analy-
sis.

The equation we will use as a testbed is

��u

�t� = K
�2u

�x2 �1�

where

��

�t� f�t� �
1

��n − ���
0

t

d�
1

�t − ��1+�−n

dnf���
d�n

�2�
n − 1 � � � n �n = integer�

is the fractional derivative in Caputo’s sense �12,14� and K is a
constant �the diffusion constant�. For 0���1, Eq. �1� is the frac-
tional diffusion equation or subdiffusion equation, whereas for 1
���2, the equation is the fractional diffusion-wave equation. In
order to carry out numerical comparisons, we will consider two
problems, both with K=1 and defined in the interval 0�x��: the
fractional diffusion Eq. �1� with boundary conditions u�x=0, t�
=u�x=� , t�=0 and initial condition u�x ,0�= f�x�=sin x and the
diffusion-wave equation with the same boundary condition u�x
=0, t�=u�x=� , t�=0 and initial condition u�x ,0�= f�x�=sin x and
�u�x , t� /�t �t=0=g�x�=0. We chose these two problems because
their exact solution is known �15� and is easy to compute:

u�x,t� = E��− t��sin�x� �3�

where E� is the Mittag–Leffler function �8,12,14,38�.

2 The Finite Difference Schemes
In what follows, we will use the notation xj = j�x, tm=m�t, and

u�xj , tm�=uj
�m��Uj

�m�, where Uj
�m� stands for the numerical esti-

mate of the exact solution u�x , t� for x=xj and t= tm.
In our analysis, we will consider separately the subdiffusion

equation and the diffusion-wave equation. To obtain the finite dif-
ference scheme for solving the subdiffusion equation �0���1�,
we discretize the Caputo derivative by means of the so-called L1

formula �39�
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	 ��f

�t�	
tm

= �t
�f�tm� + O��t� �4�

ith

�t
�f�tm� =

��t�−�

��2 − ��
k=0

m−1

bk
��f�tm−k� − f�tm−1−k�� �5�

nd

bk
� = �k + 1�1−� − k1−� �6�

or the diffusion-wave equation �1���2�, we proceed similarly,
ut here, using the so-called L2 formula �39�

	 ��f

�t�	
tm

= �t
�f�tm� + O��t�2 �7�

ith

�t
�f�tm� =

��t�−�

��3 − ��
k=0

m−1

bk
��f�tm−k� − 2f�tm−1−k� + f�tm−2−k�� �8�

nd

bk
� = �k + 1�2−� − k2−� �9�

sing Eqs. �4� and �5� in Eq. �1�, discretizing the second-order
patial derivative by the usual three-point centered formula

�2

�x2u�xj,tm� = �x
2u�xj,tm� + O��x�2 �10�

ith

�x
2u�xj,tm� =

u�xj+1,tm� − 2u�xj,tm� + u�xj−1,tm�
��x�2 �11�

nd neglecting discretization errors of order O��t�+O��x�2 �see
ec. 4�, one obtains the following finite difference scheme for
olving subdiffusion equations:

Uj
�m+1� = Uj

�m� + S̄�Uj−1
�m� − 2Uj

�m� + Uj+1
�m�� − 


k=1

m

bk
��Uj

�m+1−k� − Uj
�m−k��

�12�

ith S̄=��2−��S and

S = K
��t��

��x�2 �13�

n the same way, using Eqs. �7� and �8� in Eq. �1�, discretizing the
econd-order spatial derivative by the three-point centered for-
ula and neglecting discretization errors of order O��t�
O��x�2, one obtains a finite difference scheme for solving
iffusion-wave equations,

Uj
�m+1� = 2Uj

�m� − Uj
�m−1� + S̄�Uj−1

�m� − 2Uj
�m� + Uj+1

�m�� − 

k=1

m

bk
��Uj

�m+1−k�

− 2Uj
�m−k� + Uj

�m−1−k�� �14�

ith S̄=��3−��S.
In Fig. 1, we compare the analytical solution and the numerical

olution obtained by using the explicit scheme �12� to solve the
ractional subdiffusion problem described at the end of Sec. 1, that
s, the fractional diffusion Eq. �1� with K=1 defined in the interval
�x�� for the initial condition f�x�=sin x, boundary conditions
�0, t�=u�� , t�=0, and several values of �. Figure 2 shows the
olution for the fractional diffusion-wave equation in the interval
�x�� with K=1, f�x�=sin x, g�x�=0, and boundary conditions
�0, t�=u�� , t�=0 for several values of �. We find that the numeri-

al solutions are in excellent agreement with the exact solution in

21014-2 / Vol. 6, APRIL 2011
all cases. The quality of these numerical results is similar to those
found for other explicit difference methods �34,36,40�

3 Stability of the Fractional Difference Schemes
The two explicit difference schemes considered in Sec. 2 are

not always stable. For any �, there are always choices of �x and
�t �or, equivalently, choices of S� for which the numerical
schemes become unstable. In these cases, the numerical solution
eventually becomes useless and even absurd �two examples of this
are shown in Figs. 3 and 5�. Therefore, it is important to determine
the conditions, if any, under which these two explicit methods are
stable. For this purpose, we will use here a kind of fractional von
Neumann stability analysis already employed in Refs. �34–36�.

In order to analyze the stability of the numerical scheme �12�
that solves subdiffusion equations, we start by analyzing the sta-
bility of a generic subdiffusive mode Uj

�m�=�meiqj�x, where q is
any of the real spatial wave-numbers supported by the lattice.
Inserting this expression into Eq. �12�, one gets

�m+1 = �m − 

k=1

m

bk��m+1−k − �m−k� + S̄�eiq�x − 2 + e−iq�x��m+1

�15�
The stability of the mode and, consequently, the stability of the
numerical scheme will be determined by the behavior of �m. If we
write

Fig. 1 Numerical solutions „symbols… and exact solutions
u„� /2 , t…=E�„−t�

… „lines… at the midpoint x=� /2 of the fractional
diffusion problem described in the main text for �=1 „squares…,
�=0.75 „triangles…, and �=0.5 „circles…. We have used �x
=� /20 in all cases and S̄=0.5 for �=1, S̄=0.44 for �=3/4, and
S̄=0.38 for �=1/2.

Fig. 2 Numerical solutions „symbols… and exact solutions
u„� /2 , t…=E�„−t�

… „lines… at the midpoint x=� /2 of the fractional
diffusion problem described in the main text for �=1.25 „tri-
angles…, �=1.5 „circles…, �=1.75 „squares…, and �=2 „stars… with

�t=0.01 and �x=� /20

Transactions of the ASME



a
t
d

I
i
i

i

F

=

w
R

B

t

I
w
t

I
f

F
l
t
v
−
g

J

�m+1 = 	�m �16�

nd assume that 	�	�q� is independent of time, then we obtain
he following expression for the amplification factor 	 of the sub-
iffusive mode:

	 = 1 − 

k=1

m

bk�	1−k − 	−k� + S̄�eiq�x − 2 + e−iq�x�	 �17�

f �	�
1 for some q, the temporal factor of the solution grows to
nfinity according to Eq. �16� and the mode is unstable. Consider-
ng the extreme value 	=−1, we obtain from Eq. �17� the follow-

ng stability bound on S̄:

S̄ sin2�q�x

2
� � S̄�

m �
1

2
+

1

2

k=1

m

�− 1�k��k + 1�1−� − k1−��

�18�

or m to be large enough, we can estimate S̄�
m by S̄�

limx→� S̄�
m and we get

S̄ sin2�q�x

2
� � S̄� �19�

here S̄� can be written as −
k=1
� �−1�kk1−� or, in terms of the

iemann zeta function,

S̄� = �1 − 22−����� − 1� �20�

ecause the sine function is bounded by 1, one finds that, a for-

iori, the algorithm is stable if S̄� S̄�, that is, if

S � S� �
�1 − 22−����� − 1�

��2 − ��
�21�

n the same way, one can find the stability bound for the diffusion-
ave equation �1���2�. Here, the equation for the amplifica-

ion factor is

	 − 2 + 	−1 + 

k=1

m

bk�	1−k − 2	−k + 	−1−k� = S̄�eiq�x − 2 + e−iq�x�

�22�

nserting the extreme value 	=−1 into this equation, we obtain the

ig. 3 Numerical solution „circles… for the subdiffusion prob-
em considered in Fig. 1 „�=0.5, f„x…=sin„x…, and �x=� /20… af-
er 1000 time steps when S= „�t…� / „�x…2=0.44. Note that this
alue of S is larger than the stability bound SÃ= „1−21.5

…�„
0.5… /�„1.5…¶0.429 provided by Eq. „21…. The broken line is to
uide the eye.
ollowing stability bound on S:

ournal of Computational and Nonlinear Dynamics
S̄ sin2�q�x

2
� � S̄x

m = 1 + 

k=1

m

�− 1�k��k + 1�2−� − k2−�� �23�

Proceeding as before for the subdiffusion, we get again Eq. �19�
from this equation but now with

S̄� = 

k=1

�

�− 1�k��k + 1�2−� − k2−�� �24�

or, in terms of the Riemann zeta function,

S̄� = 2�1 − 23−����� − 2� �25�
This means that, a fortiori, the method is stable when

S � S� �
21−��2� − 23���� − 2�

��3 − ��
�26�

Figures 3 and 4 show the numerical solution u�x , t� for the prob-
lem considered in Fig. 1 but for two values of S, respectively,
larger and smaller than the stability bound provided by Eq. �21�.
Figures 5 and 6 show the numerical solution u�x , t� for the prob-
lem considered in Fig. 2 for three values of S: one larger and two
smaller than the stability bound provided by Eq. �26�. One sees
that the value of S is crucial: When this parameter is inside the

Fig. 4 Numerical solution „symbols… for the subdiffusion prob-
lem considered in Fig. 1 „�=0.5, f„x…=sin„x…, and �x=� /20… af-
ter 100 time steps „circles…, 500 time steps „squares…, 2000 time
steps „triangles…, 5000 time steps „stars… when S̄=0.48, that is,
S= „�t…� / „�x…2¶0.36. Note that this value is below the stability
bound SÃ= „1−21.5

…�„−0.5… /�„1.5…¶0.43 provided by Eq. „21… so
we are inside the stability region. The solid lines are the corre-
sponding exact solutions.

Fig. 5 Numerical solution „circles… for the fractional diffusion-
wave equation considered in Fig. 2 „�=1.5, f„x…=sin„x…, g„x…
=0, and �x=� /20… after 1000 time steps when S̄=0.77, that is,
for S= „�t…� / „�x…2¶0.87. Note that this value of S is larger than
the stability bound SÃ=2−0.5

„21.5−23
…�„−0.5… /�„1.5…¶0.86 pro-
vided by Eq. „26…. The broken line is to guide the eye.

APRIL 2011, Vol. 6 / 021014-3
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table region, one gets a sensible numerical solution; otherwise,
ne gets an evidently wrong solution with wild oscillations, which
re the signature of an unstable scheme.

Finally, it should be noted that when one uses either of the two
umerical schemes with a given mesh �x, the corresponding time
tep �t for a given value of S �of course, smaller than S�� cannot
e larger than a quantity of the order ��x�2/�. Therefore, for frac-
ional subdiffusion equations where 0���1, �t could become
xtremely small even for not too small values of �x, especially if
is close to zero. In this case, the number of steps needed to find

he solution for moderate or even small times could become very
arge, making the numerical procedure inefficient. On the other
and, for diffusion-wave equations, because here � is larger than
, one realizes that the explicit numerical scheme could be stable
ven for large values of �t. Note, however, that in this case, the
umerical solution would be inaccurate because, as we will show
n Sec. 4, one expects the numerical error to be of order �t.

Truncation Error
In Sec. 2, we found the present finite difference method essen-

ially by replacing the integro-differential Eq. �1� evaluated at the
oint �xj , tm�,


 ��u

�t� − K
�2u

�x2�
�xj,tm�

= 0 �27�

y the difference equation

�tuj
�m+1� − K�x

2uj
�m� = T�xj,tm� �28�

ote that the temporal derivative and the spatial derivative are
valuated at different times, tm+1 and tm, respectively. Neglecting
he truncation �error� term T�xj , tm�, we got in Sec. 2 the explicit
ifference schemes �12� and �14�. Of course, the smaller the term
�x , t�, the better the approximate solution U obtained from these
umerical schemes. So, it is important to estimate the size of
�x , t�.

ig. 6 Numerical solution „symbols… for the fractional
iffusion-wave equation considered in Fig. 2 „�=1.5, f„x…
sin„x…, g„x…=0, and �x=� /20…. Hollow symbols are numerical
olutions after 10 „circles…, 20 „triangles…, 40 „squares…, and 50
stars… time steps when �t=0.075 so that S= „�t…� / „�x…2¶0.83.
his value of S is smaller than the stability bound SÃ

2−0.5
„21.5−23

…�„−0.5… /�„1.5…¶0.86 given by Eq. „26…. Filled
ymbols are the numerical solution after 100 „circles…, 200 „tri-
ngles…, 400 „squares…, and 500 „stars… time steps when �t
0.0075 so that S= „�t…� / „�x…2¶0.026. Solid lines are the cor-

esponding exact solutions. Numerical solutions obtained for
t=0.0075 are noticeably better than those obtained with �t
0.075 because the „truncation… error is of order �t „see Sec.
….
From Eqs. �1� and �28�, we get

21014-4 / Vol. 6, APRIL 2011

	 ��u

�t� 	
�xj,tm�

− �tuj
�m+1�� − K
	 �2u

�x2	
�xj,tm�

− �x
2uj

�m�� = T�xj,tm�

�29�
But from Eq. �4�, we see that

�tuj
m+1 = 	 ��u

�t� 	
�xj,tm+1�

+ O��t� �30�

But

	 ��u

�t� 	
�xj,tm+1�

= 	 ��u

�t� 	
�xj,tm�

+ 	�t
d

dt

��u

�t� 	
�xj,tm�

+ O��t�2 �31�

so that

�tuj
m+1 = �tuj

m + O��t� �32�
From this result and from taking into account Eq. �10�, we find

T�x,t� = O��t� + O��x�2 �33�
Note that the stability condition �21� imposes that the largest value
of �t that one can choose should be of order ��x�2/�, so that for a
given value of �x, the truncation error is of order ��x�2 for frac-
tional subdiffusion equations, as 2 /�
2 for these equations.

For the diffusion-wave equation �1���2�, we proceed in the
same form. The only difference is that now �see Eq. �7��

�tuj
m+1 = 	 ��u

�t� 	
�xj,tm+1�

+ O��t�2 �34�

But due to Eq. �31�, we find that �tuj
m+1=�tuj

m+O��t�+O��t�2,
so that finally, we obtain Eq. �33� in this case also. Finally, note
that the stability condition �26� imposes that the largest value of
�t that one can choose is of order ��x�2/�, so that for a given
value of �x, the truncation error would be of order ��x�2/� for
fractional diffusion-wave equations, as 2 /��2 for this kind of
equations.

5 Numerical Check of the Stability Analysis
In this section, we check the stability bounds of the explicit

schemes �4� and �5� given by Eqs. �20� and �21�, respectively.

The stability bound �20�, i.e., the largest value of S̄ for which
the numerical method �4� for solving fractional diffusion equa-
tions is stable, is checked in the following way: For a given value

of � chosen from the interval �0,1� and for S̄=0.245�1+��
+0.001n, with n=0,1 ,2 , . . ., we integrate the fractional diffusion
problem described preceding Eq. �3� by means of the numerical
scheme �4� until step M. The simple linear function we have cho-

sen for the initial value of S̄ �the one corresponding to n=0� is
well below the theoretical stability bound predicted by Eq. �20�.
We consider that the numerical algorithm for some given values

of � and S̄ is unstable when the absolute difference between two
values corresponding to two consecutive steps is larger than a
given value 
, that is,

�Uj
m−1 − Uj

m� 
 
 �35�

at any position j within the first M integration steps. Here, we use

=1, but the results do not change substantially for any other

reasonable choice. Let S̄crit be the smallest value of S̄=0.245�1
+��+0.001n that satisfies the criterion �35�. For a lattice with
2N+1 points �including the absorbing boundaries�, the maximum
value of sin�q�x /2� in Eq. �19� occurs for q�x= �2N−1�� / �2N�,
so that the stability criterion �19� becomes S̄crit sin2��2N

−1�� / �4N��� S̄� or, in terms of S, Scrit�S�, where Scrit

= S̄crit sin2��2N−1�� / �4N�� /��2−��. In Fig. 7, we check this sta-

bility bound by comparing Scrit evaluated numerically for M

Transactions of the ASME



=
c
i

o
H

w
+

v
T

S
a
p
p
b
n
t
b
C
p

6

f
t
a
m
t
w
s
t
g
T
t
W
r
b
f
t
m
a
m
t
t

F
i
t
b
s
t
R

J

200 and M =1000 with the theoretically predicted bound S�. The
onvergence of the numerical values toward S� when M increases
s clear.

We proceed in a similar way to check the stability bound �21�
f the algorithm �5� that integrates diffusion-wave equations.
ere, we use the numerical scheme �5� to solve the diffusion-

ave problem described preceding Eq. �3� with S̄=0.49�
0.001n and n=0,1 ,2 , . . . Again, we will denote the smallest

alue of S=0.49�+0.001n that satisfies the criterion �35� by S̄crit.
he result of this analysis in terms of the quantity Scrit defined by

crit= S̄crit sin2��2N−1�� / �4N�� /��3−�� is shown in Fig. 7. We
gain find that the agreement between numerical estimates and the
rediction of the Fourier–von Neumann stability analysis im-
roves when M increases. In this figure, we also show the stability
ound corresponding to two other explicit difference methods,
amely, the method of Yuste and Acedo �34� designed for frac-
ional equations in the Riemann–Liouville form and the method
y Gorenflo et al. �40� designed for fractional equations in the
aputo form. It is remarkable that the stability region for the
resent method is the largest.

Conclusions
An explicit difference method has been considered for solving

ractional diffusion and diffusion-wave equations where the frac-
ional derivative is in the Caputo form. The fractional derivative
ppearing in the fractional diffusion equation is approximated by
eans of the so-called L1 formula, the L2 formula employed for

he fractional derivative that appears in the fractional diffusion-
ave equation, and the spatial Laplacian approximated by the

tandard three-point centered formula for both equations. The
runcation error is of order O��t�+O��x�2, where �t is the inte-
ration time step and �x is the size of the spatial discretization.
he stability of the method was investigated by means of a frac-

ional version of the von Neumann �or Fourier� stability analysis.
e thus determined that the method is stable as long as the pa-

ameter S=K��t�� / ��x�2 is below a given value �the stability
ound� that can be easily expressed in terms of the Riemann zeta
unction �see Eqs. �21� and �26��. This region of stability is larger
han the stability region of two other similar explicit difference

ethods, namely, the methods of Gorenflo et al. �40� and of Yuste
nd Acedo �34�. The predicted stability bound was checked nu-
erically over the whole interval 0���2, that is, for the two

ypes of fractional equations �diffusion and diffusion-wave equa-

ig. 7 Numerical values of Scrit corresponding to the onset of
nstability versus the subdiffusion exponent �. The solid line is
he prediction SÃ of the von Neumann analysis and the sym-
ols denote the numerical results with the criterion in Eq. „35…:
quares for M=200 and circles for M=1000. The broken line is
he stability bound corresponding to the explicit methods of
efs. †34,36,40‡.
ions� considered in this paper.
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