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Abstract

We consider the coagulation dynamics Aþ A ! A and the annihilation dynamics Aþ A ! 0 for particles moving

subdiffusively in one dimension, both on a lattice and in a continuum. The analysis combines the ‘‘anomalous kinetics’’

and ‘‘anomalous diffusion’’ problems, each of which leads to interesting dynamics separately and to even more inter-

esting dynamics in combination. We calculate both short-time and long-time concentrations, and compare and contrast

the continuous and discrete cases. Our analysis is based on the fractional diffusion equation and its discrete analog.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Diffusion-limited reactions in low-dimensional

geometries have been studied intensely because

they exhibit ‘‘anomalous kinetics’’, that is, behav-

ior different from that predicted by the laws of

mass action in well-stirred systems [1]. Among the

simplest and most extensively studied are single
species diffusion-limited coagulation (Aþ A ! A
or Aþ A�A) [2] and annihilation (Aþ A ! 0)

[2,3]. These reactions, which show anomalous be-

havior in one dimension, are of particular theo-

retical interest because they lend themselves to

exact solution in one dimension. Exact one-di-

mensional solutions can be obtained for diffusion

in continuous [2,4–9] as well as in discrete [2,11–

13] systems. A particularly elegant solution of the

coagulation problem is provided by the method of

intervals. This method focuses on the diffusive

evolution of empty intervals, that is, of intervals

that contain no particles [2,6–8,10]. The empty

interval equation turns out to be linear and hence

exactly solvable. Originally developed for contin-
uous systems, the method has been extended to

discrete lattices [11–13]. The method of intervals

cannot be directly adapted to the annihilation re-

action, but a new formalism, the method of odd/

even intervals which keeps track of the parity (even

or odd) of the number of particles in an interval,

has recently been developed [8,9]. Again, the odd/

even interval equation turns out to be linear and
hence exactly solvable.

The anomalies of the Aþ A problem in one di-

mension are typically displayed in two ways: one is

through the time dependence of the reactant
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concentration cðtÞ, which for the Aþ A ! A and

the Aþ A ! 0 reactions in infinite systems decays

asymptotically as t�1=2 instead of the law of mass

action decay t�1; the other is through the interpar-

ticle distribution function pðx; tÞ, which is the

(conditional) probability density for finding the
nearest particle at a distance x on one side of a given

particle. This function scales as x=t1=2, in typical

diffusive fashion. In one dimension a gap develops

around each particle that leads to a more ordered

spatial distribution than the exponential distribu-

tion implicit in well-stirred systems and ‘‘explains’’

the relative slowing down of the reaction.

In a parallel development, the problem of
‘‘anomalous diffusion’’ has also attracted a great

deal of attention [14–16]. The universally accepted

characterization of anomalous (as in ‘‘not ordi-

nary’’) diffusion is through the mean squared dis-

placement of a process xðtÞ for large t,

x2ðtÞ � 2Ka

Cð1þ aÞ t
a: ð1Þ

Ordinary diffusion (a ¼ 1, K1 � D) follows

Gaussian statistics and Fick’s second law for the

probability density for finding the process at x at

time t,

o

ot
P ðx; tÞ ¼ D

o2

ox2
P ðx; tÞ; ð2Þ

leading to linear growth of hx2ðtÞi with time.

Anomalous diffusion is characterized by a non-

linear dependence. If 0 < a < 1 the process is

subdiffusive or dispersive; if a > 1 it is superdiffu-
sive. Anomalous diffusion is associated with many

physical systems and is not due to any single uni-

versal cause, but it is certainly ubiquitous. Nor is

anomalous diffusion modeled in a universal way;

among the more successful approaches to the

subdiffusive problem, which is the case we consider

in this work, have been continuous time random

walks with non-Poissonian waiting time distribu-
tions [14], and fractional dynamics approaches in

which the diffusion equation (2) is replaced by the

generalized diffusion equation [15–21]

o

ot
P ðx; tÞ ¼ Ka 0D1�a

t

o2

ox2
P ðx; tÞ; ð3Þ

where 0D1�a
t is the Riemann–Liouville operator,

0D1�a
t P ðx; tÞ ¼ 1

CðaÞ
o

ot

Z t

0

ds
P ðx; sÞ

ðt � sÞ1�a ; ð4Þ

and Ka is the generalized diffusion coefficient that

appears in Eq. (1). Some limitations of this de-

scription and some connections between the gen-
eralized diffusion equation and continuous

random walk formulations have been discussed

recently [22,23].

In this paper we consider a combination of

these two phenomena, namely, the kinetics of

Aþ A reactions of particles that move subdiffu-

sively in one dimension [24]. Some aspects of this

problem have also been considered using the
waiting time distribution approach [25,26]. Those

solutions require approximations relating the re-

actant concentration to the distinct number of sites

visited by a particle [25], or the waiting time dis-

tributions for single particles to the waiting time

distributions for relative motion [26]. Here we

adapt the fractional dynamics approach to the

problem and take advantage of the fact that the
resulting generalized diffusion equations can be

solved in closed form [24]. We consider both co-

agulation and annihilation reactions.

In Section 2 we develop the fractional diffusion

equations from which one obtains the concentra-

tion of reactant as a function of time. For the

coagulation reaction we generalize the empty in-

terval method [2,6] and, for the annihilation reac-
tion, the odd/even interval method [8,9]. The

solutions are presented in Section 3. Sections 2 and

3 deal with kinetics on continuum one-dimensional

systems; in Section 4 we extend the analysis to

reactions on a lattice. The differences between the

continuum and discrete results are most pro-

nounced at early times (long-time differences are

due to finite size effects that get pushed to longer
times if one deals with larger systems). We con-

clude with a recapitulation in Section 5.

2. Evolution equations for subdiffusive particles

2.1. Empty interval method for coagulation reaction

Consider first the coagulation reaction

Aþ A ! A when the particles move by ordinary
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diffusion. The probability distribution function

for the position x of any one A particle in the

absence of reaction obeys the diffusion equation

(2). The coagulation problem can be formulated

in terms of the probability Eðx; tÞ that an interval

of length x is empty of particles at time t. This
‘‘empty interval’’ function obeys the diffusion

equation [2,6]

o

ot
Eðx; tÞ ¼ 2D

o2

ox2
Eðx; tÞ: ð5Þ

The derivation of this equation is straightforward

and recognizes that an empty interval is shortened

or lengthened by movement of particles in and out

at either end according to the dynamics described

by Eq. (2).

It is instructive to recall this derivation as given

in [6,7]. The reasoning is more transparent if the
diffusion processes that lead to the change

oEðx; tÞ=ot are described on a lattice with lattice

spacing Dx and sites labeled by integers. In this

lattice EnðtÞ gives the probability that sites 1–n, for

example, are empty at time t. Since the event Enþ1

contains the event En, the probability that sites 1–

n are empty but that there is a particle at site nþ 1

is Enþ1 � En. The particles move randomly to the
nearest lattice site with a hopping rate 2D=ðDxÞ2,
the rate D=ðDxÞ2 to the right being equal to the rate

to the left. If the particle at nþ 1 moves to site n in

a short time interval Dt, En will decrease by

½D=ðDxÞ2�ðEn � Enþ1ÞDt. On the other hand, En

may increase by the departure of a particle at site n

to site nþ 1; the associated increase is ½D=ðDxÞ2�
ðEn�1 � EnÞDt. The same entry and exit processes
can take place at the other end of the interval.

Combining these four processes then gives for the

change in En:

DEn

Dt
¼ 2D

ðDxÞ2
ðEnþ1 � 2En þ En�1Þ: ð6Þ

The coagulation reaction fixes the boundary con-

dition. Coagulation involves adjacent occupied

sites and either of the two particles hopping onto

the other, thereby disappearing. Two adjacent
sites can both be occupied, or one can be occupied

and the other empty (probability 2ðE1 � E2Þ be-

cause this can occur in two ways) or both can be

empty (probability E2). Since this covers all pos-

sibilities, the probability that two adjacent sites

are occupied is therefore 1� 2E1 þ E2. The change

in E1 is thus

DE1

Dt
¼ 2D

ðDxÞ2
ð1� 2E1 þ E2Þ; ð7Þ

and for this equation to fit the pattern of Eq. (6) it

is necessary to require the boundary condition

E0 ¼ 0: ð8Þ
Letting x ¼ nDx and both Dx and Dt ! 0 then

leads to the continuous equation (5) with the

boundary condition

Eð0; tÞ ¼ 0: ð9Þ
The other boundary condition requires that the

population of particles be non-vanishing:

Eð1; tÞ ¼ 0: ð10Þ
The empty interval dynamics is thus essentially the

same as that of individual particles in the absence

of reaction, but with different boundary conditions

and a diffusion coefficient 2D that reflects the fact

that the relative motion of two diffusive particles

involves twice the diffusion coefficient of each

particle alone.

The connection between the empty interval
function and the observables of interest is obtained

as follows [6,7]. Back in the discrete formulation,

the probability that a site is occupied (i.e. not

empty) is 1� E1, and the concentration of particles

is therefore

cðtÞ ¼ ð1� E1Þ
Dx

! cðtÞ ¼ � oEðx; tÞ
ox

����
x¼0

; ð11Þ

where we have exhibited the continuum limit. The

interparticle distribution function pnðtÞ is the

probability that the nearest neighbor to one side of

a given particle is n lattice spacings away. This

probability is related to En by

En ¼ cDx
X1
k¼nþ1

X1
m¼k

pm: ð12Þ

The first sum insures that the next neighbor is at
least k sites away and the second that k is at least

nþ 1. The normalization takes into account that

the average distance between the particles is the

reciprocal of the concentration,
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hnDxi ¼
X1
n¼1

npnDx ¼
1

c
: ð13Þ

Eq. (12) can be inverted:

cpn ¼
ðEnþ1 � 2En þ En�1Þ

Dx
!

cðtÞpðx; tÞ ¼ o2Eðx; tÞ
ox2

; ð14Þ

where again we have exhibited the continuum limit.

The construction of the kinetic equation for
Eðx; tÞ for subdiffusive particles proceeds along

arguments analogous to those used in the diffusive

case. Again, one follows the motion of the particles

in and out at the ends of the empty interval ac-

cording to the dynamics (3). However, for particles

that move subdiffusively, the concept of a hopping

rate (steps per unit time) is not defined because the

number of steps performed up to time t by a sub-
diffusive particle goes as ta with a < 1 [23]. There-

fore, the derivation of the empty interval equation

must be adjusted accordingly. Proceeding as above

in the discrete formulation, we see that the proba-

bility that sites 1–n are empty but that there is a

particle at site nþ 1 is still Enþ1 � En. However, the

rate of decrease of En due to a particle that moves

from site nþ 1 to site n is now described by the
generalized diffusion process implicit in Eq. (3),

that is, ½Ka 0D1�a
t =ðDxÞ2�ðEn � Enþ1ÞDt. Collecting

arrival and departure processes at both ends of the

interval then leads to the equation

DEn

Dt
¼ 2Ka 0D1�a

t

ðDxÞ2
ðEnþ1 � 2En þ En�1Þ: ð15Þ

In the continuum limit this then becomes

o

ot
Eðx; tÞ ¼ 2Ka 0D1�a

t

o2

ox2
Eðx; tÞ: ð16Þ

The boundary conditions are exactly as before,

Eqs. (9) and (10), as are the relations (11) and (14)

to the observables.

2.2. Odd/even interval method for annihilation

reaction

The empty interval method cannot be applied

to the annihilation reaction Aþ A ! 0 because

annihilation leads to a discontinuous growth of

empty intervals. However, recently a new method

of odd/even intervals has been introduced that

leads to exact solution in the diffusion-limited case.

It is based on the construction of an equation for

rðx; tÞ, the probability that an arbitrary interval of

length x contains an even number of particles at
time t [8,9]. This probability does not change if two

particles inside the interval react since this process

does not change the even/odd parity of the inter-

val. Because rðx; tÞ changes only by the movement

of particles in or out of the ends of the interval,

arguments similar to those that lead to Eq. (5) lead

to the same equation for rðx; tÞ. This procedure can
again be directly extended to the subdiffusive
problem, and rðx; tÞ satisfies the same fractional

diffusion equation as Eðx; tÞ:
o

ot
rðx; tÞ ¼ 2Ka 0D1�a

t

o2

ox2
rðx; tÞ: ð17Þ

One boundary condition is the same as for Eðx; tÞ
and is obtained via the same arguments used earlier:

rð0; tÞ ¼ 1: ð18Þ
The other boundary condition in general differs

from that of the empty interval method and de-
pends on the initial condition. In particular, it is

determined by the parity of total initial number of

particles. This parity never changes. A random

initial placement leads to an equal probability that

the system forever contain an even or and odd

number of particles, so that

rð1; tÞ ¼ 1

2
: ð19Þ

The concentration of particles is related to rðx; tÞ
precisely as in Eq. (11):

cðtÞ ¼ � orðx; tÞ
ox

����
x¼0

: ð20Þ

3. Solution of the fractional diffusion equations and

subdiffusive reaction kinetics

3.1. Coagulation reaction

The solution of Eq. (5) with boundary condi-

tions (9) and (10) can be written as [18]

172 S.B. Yuste, K. Lindenberg / Chemical Physics 284 (2002) 169–180



Eðx; tÞ ¼
Z 1

0

dy W ðx½ � y; tÞ

� W ð � x� y; tÞ�Eðy; 0Þ

þ
Z tðx=

ffiffiffiffiffiffi
2Ka

p
Þ�2=a

0

xa=2ðgÞdg; ð21Þ

where

W ðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
8Kata

p H 10
11

jxjffiffiffiffiffiffiffiffiffiffiffi
2Kata

p ð1� a
2
; a
2
Þ

ð0; 1Þ

����� �
; ð22Þ

xbðxÞ ¼
1

bx2
H 10

11

1

x
ð�1; 1Þ
ð�1=b; 1=bÞ

����� �
; ð23Þ

and H is the Fox H-function [15,16,18,27]. Taking

into account that in Laplace transform space (in-

dicated by a tilde over the function and the letter u

as variable)

eWW ðx; uÞ ¼ ua=2�1ffiffiffiffiffiffiffiffi
8Ka

p exp
ua=2ffiffiffiffiffiffiffiffi
2Ka

p jxj
� �

ð24Þ

and exxbðuÞ ¼ expð�ubÞ, the solution Eðx; tÞ in La-

place space adopts a much simpler form

eEEðx; uÞ ¼ s
2u

Z 1

0

dyðe�jx�yjs � e�jxþyjsÞEðy; 0Þ

þ 1

u
exp ð � xsÞ; ð25Þ

where

s � ua=2ffiffiffiffiffiffiffiffi
2Ka

p : ð26Þ

From Eqs. (11) and (25) one finds

eccðuÞ ¼ s
u
½1� sbEE s; 0ð Þ�; ð27Þ

where

bEEðv; tÞ ¼ Z 1

0

dxe�vxEðx; tÞ

is the spatial Laplace transform of Eðx; tÞ. Equiv-
alently, from Eq. (14) one obtains

eccðuÞ ¼ k
u
1½ � bpp s; 0ð Þ�; ð28Þ

where k � cð0Þ and bppðu; 0Þ is the spatial Laplace

transform of the initial interparticle distribution

function pðx; 0Þ.

A commonly considered initial interparticle

distribution is the random (Poisson) distribution

of average concentration k, for which Eðx; 0Þ ¼
e�kx and p0ðxÞ ¼ ke�kx. For this initial distribution

either Eq. (27) or Eq. (28) can be used to obtain

eccðuÞ ¼ k

uþ k
ffiffiffiffiffiffiffiffi
2Ka

p
u1�a=2

ð29Þ

and cðtÞ is given in closed form in terms of the

Mittag–Leffler function [16,28] of parameter a=2:

cðtÞ ¼ kEa=2

	
� k

ffiffiffiffiffiffiffiffi
2Ka

p
ta=2

�
: ð30Þ

The Mittag–Leffler function can be calculated by
the series expansion [16,28]

EaðzÞ ¼
X1
k¼0

zk

Cðka þ 1Þ : ð31Þ

When a ¼ 1 one recovers the usual result for dif-

fusion-limited coagulation [4,5] since the Mittag–

Leffler function of parameter 1=2 is E1=2ð�xÞ ¼
expðx2ÞerfcðxÞ.

Another initial particle distribution of interest is

an ordered or periodic arrangement, pðx; 0Þ ¼
dðx� 1=kÞ. In this case Eq. (28) leads to

eccðuÞ ¼ k
u

1

�
� exp

�
� ua=2

k
ffiffiffiffiffiffiffiffi
2Ka

p

�

ð32Þ

and cðtÞ is given in terms of the Fox H-function

H 1;0
1;1 [7,18,27]:

cðtÞ
k

¼ 1� H 10
11

1

k
ffiffiffiffiffiffiffiffiffiffiffi
2Kata

p ð1; a
2
Þ

ð0; 1Þ

����� �
: ð33Þ

For normal (a ¼ 1) diffusive particles one recovers

the usual result for diffusion-limited coagulation

[5] since

H 10
11 z ð1; 1

2
Þ

ð0; 1Þ

����� �
¼ erfc

z
2

	 �
:

It is useful to exhibit explicitly the long-time

and short-time behaviors of the particle concen-

tration. The long-time behavior can be extracted

via Tauberian theorems from the small-u behavior

independent of initial condition and therefore in

particular common to both of the initial condi-

tions considered above,

eccðuÞ � u�a=2�1ffiffiffiffiffiffiffiffi
2Ka

p ; ð34Þ
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from which it follows that

cðtÞ � t�a=2ffiffiffiffiffiffiffiffi
2Ka

p
C 1� a

2

� � : ð35Þ

For diffusive particles (a ¼ 1) one recovers the

well-known result cðtÞ � t�1=2. The short-time be-

havior of the particle concentration is, not sur-

prisingly, markedly different for the two initial

conditions. For the random initial condition an

expansion of Eq. (30) using (31) gives

cðtÞ
k

¼ 1� k
ffiffiffiffiffiffiffiffi
2Ka

p

Cð1þ a
2
Þ t

a=2 þ � � � ð36Þ

Notice that this implies an infinite initial reaction
rate because dcðtÞ=dt ! 1 for t ! 0, a reflection

of the fact that a random distribution of particles

includes a large probability of proximate particles.

On the other hand, using the asymptotic expres-

sion of the Fox H-function H 1;0
1;1 for large argument

[18,27] in the solution for the periodic initial dis-

tribution of particles, Eq. (33), one finds

cðtÞ
k

¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2� aÞ

p a
2

	 �1=ða�2Þ
z1=ða�2Þ

� exp

�
� 2� a

2

a
2

	 �a=ð2�aÞ
z2=ð2�aÞ

�
þ � � � ;

ð37Þ

where z ¼ ½kð2KataÞ1=2��1
. In this case dcðtÞ=dt ! 0

for t ! 0, since initially there are no proximate
particles.

The curves in Fig. 1 shows the time evolution of

the concentration cðtÞ for the coagulation reaction

and the two initial conditions considered here. The

differences at early times are evident, as is the co-

alescence of the curves into a single asymptotic

form at long times.

The time-asymptotic form of the empty inter-
val function can be used to obtain the asymptotic

behavior of the interparticle distribution func-

tion via Eq. (14). From Eq. (25) one deduces

that

o2

ox2
eEEðx; uÞ ¼ s3

2u

Z 1

0

dyðe�jx�yjs � e�jxþyjsÞEðy; 0Þ

þ s2

u
e�xs; ð38Þ

which for u ! 0 reduces to

o2

ox2
eEEðx; uÞ � s2

u
e�xs: ð39Þ

From Eq. (14) and the fact that the inverse

transform of (39) can be expressed in terms of a
Fox H-function, one finds

cðtÞpðx; tÞ � 1

x2
H 10

11

xffiffiffiffiffiffiffiffi
2Ka

p
ta=2

ð1; a
2
Þ

ð2; 1Þ

����� �
; ð40Þ

which in combination with Eq. (35) immediately

leads to

pðx; tÞ �
Cð1� a

2
Þffiffiffiffiffiffiffiffi

2Ka

p
ta=2

H 10
11

xffiffiffiffiffiffiffiffi
2Ka

p
ta=2

ð1� a; a
2
Þ

ð0; 1Þ

����� �
ð41Þ

for t ! 1. This result is independent of the initial

distribution of particles. We can also write this in

the scaled form

paðzÞ � C2 1
	

� a
2

�
H 10

11 C 1
	�

� a
2

�
z 1� a; a

2

� �
ð0; 1Þ

���� �
;

ð42Þ
where z � cðtÞx is the scaled interparticle distance

and paðzÞdz � pðx; tÞdx. This stationary form is

Fig. 1. Logarithm of the survival probability cðtÞ=k for coag-

ulation dynamics of subdiffusive particles with a ¼ 1=2, Ka ¼ 1,

and initial concentration k ¼ 1=20, versus the logarithm of

time. The initial arrangements of the particles are Poissonian

(solid line and circles) and periodic (broken line and squares).

The lines are the continuum solutions given by Eqs. (30) and

(33). The symbols are the on-lattice solutions for a finite lattice

with L ¼ 200 and Dx ¼ 1 with periodic boundary conditions.
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shown in Fig. 2 for several values of the diffusion

exponent a.
The interparticle distribution function conveys

the interesting ‘‘anomalies’’ of the problem most

clearly. For a random distribution of particles on a

line this distribution is exponential. In particular,
the most probable interparticle gaps are the

smallest. For diffusion-limited reactions on a line it

is well known that the scaled distribution deviates

in two ways from the exponential behavior. First,

a gap develops around each particle, and the dis-

tribution vanishes near the origin (see a ¼ 1 curve

in the figure), indicating an ‘‘effective repulsion’’ of

particles. Second, the probability of large gaps
decays much more rapidly than exponentially: the

decay goes as a power of expð�z2=2Þ. In the sub-

diffusive case decreasing a leads to the diminution

of the gap around each particle, that is, to a

weakening of the effective repulsion and to a be-

havior that appears closer to that of a random

distribution in the short-interparticle-distance be-

havior. This is evident in the progression of the
curves with decreasing a shown in the figure.

Furthermore, the probability of large gaps decays

as a power of expð�x2=ð2�aÞÞ, thus neatly interpo-

lating between the purely random exponential de-

cay state as a ! 0 (since then pðx; tÞ ! cðtÞe�cðtÞx)

and the more ordered state corresponding to dif-

fusive particles at a ¼ 1.

3.2. Annihilation reaction

It is straightforward to deduce that the solu-

tion rðx; tÞ of Eq. (17) with initial condition

rðx; 0Þ ¼ 1
2
þ Eðx; 0Þ=2 and boundary conditions

(18) and (19) is simply rðx; tÞ ¼ 1
2
þ Eðx; tÞ=2

where Eðx; tÞ is the solution found in the previ-

ous section. We can therefore here rewrite Eq.

(27) for the Laplace transform of the concen-
tration of particle undergoing the annihilation

reaction as

eccðuÞ ¼ s
u
1½ � sbrr s; 0ð Þ�; ð43Þ

where brrðv; tÞ is the spatial Laplace transform of

rðx; tÞ.
For a random initial distribution of mean con-

centration k the initial distribution is rðx; 0Þ ¼
1
2
þ 1

2
e�2kx (note that this goes to 1/2 as x ! 1 since

there is an equal probability that we start with an

even or odd number of particles, and it goes to 0 as

x ! 1 since zero particles is an even number).

Hence

eccðuÞ ¼ k

uþ 2k
ffiffiffiffiffiffiffiffi
2Ka

p
u1�a=2

; ð44Þ

which can be inverted analytically to yield

cðtÞ ¼ kEa=2

	
� 2k

ffiffiffiffiffiffiffiffi
2Ka

p
ta=2

�
: ð45Þ

Comparing this result with Eq. (30) for the coag-

ulation reaction we see that the rate of change of

the concentration for annihilation is exactly twice
that for coagulation at all times, a result that has

been noted for ordinary diffusion [8,9].

For a periodic initial distribution with separa-

tion 1=k between particles we have

rðx;0Þ¼ 2jþ1�kx; 2j=k6x6ð2jþ1Þ=k;
�2j�1þkx; ð2jþ1Þ=k6x6ð2jþ2Þ=k:

�
ð46Þ

This is a periodic function of period 2=k, so that

[29]

Fig. 2. Long-time scaled interparticle distribution function for

the coagulation reaction for several values of the anomalous

diffusion exponent. Proceeding upward from lowest to highest

curves along the y axis intersection: a ¼ 1; 0:95; 0:8; 0:5; 0:2.

Note that the distribution for a ¼ 0:2 on this scale is nearly

indistinguishable from the completely random distribution

expð�zÞ (dotted curve).
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brrðu; 0Þ ¼ R 2=k
0

dxe�uxrðx; 0Þ
1� e�2u=k

: ð47Þ

Carrying out this integral and substituting into Eq.

(43) immediately leads to

eccðuÞ ¼ k
u
tanh

s
2k

	 �
¼ k

u

1� exp � ua=2

k
ffiffiffiffiffiffi
2Ka

p
	 �

1þ exp � ua=2

k
ffiffiffiffiffiffi
2Ka

p
	 �

24 35; ð48Þ

where we have written the second equality to make

comparison with Eq. (32) more apparent. We have

not been able to invert this expression analytically

to find cðtÞ in closed form.

Fig. 3 shows the temporal evolution of cðtÞ for
the two initial conditions when a ¼ 1=2. The evo-

lution for a periodic initial distribution has been

obtained by numerically inverting Eq. (48).

The long-time behavior is again seen to be in-

dependent of initial condition and can be obtained

directly from Eq. (43). Since brrðs; 0Þ ! ð2sÞ�1
when

s ! 0, it follows that as u ! 0,

eccðuÞ � u�a=2�1

2
ffiffiffiffiffiffiffiffi
2Ka

p ð49Þ

which in turn implies that

cðtÞ � t�a=2

2
ffiffiffiffiffiffiffiffi
2Ka

p
C 1� a

2

� � ; ð50Þ

when t ! 1. Comparison with Eq. (35) shows

that at long times the concentration for the anni-

hilation reaction is exactly half that of the coag-

ulation reaction. This is in agreement with the

general result obtained above comparing the rates
of change of the concentrations. The short-time

behaviors for the two initial conditions are dif-

ferent, as already evident in Fig. 3. For the ran-

dom initial condition an expansion of Eq. (45)

leads to

cðtÞ
k

¼ 1� 2k
ffiffiffiffiffiffiffiffi
2Ka

p

Cð1þ a
2
Þ t

a=2 þ � � � ð51Þ

[compare with Eq. (36)]. For the periodic initial

condition, expansion of the denominator of Eq.

(48) for large u and comparison with Eq. (32) leads

to

cðtÞ
k

¼ 1� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2� aÞ

p a
2

	 �1=ða�2Þ
z1=ða�2Þ

� exp

�
� ð2� aÞ

2

a
2

	 �a=ð2�aÞ
z2=ð2�aÞ

�
þ � � � ;

ð52Þ
where again z ¼ ½kð2KataÞ1=2��1

[compare with Eq.

(37)].

4. Reactions in a lattice

It is sometimes convenient not to carry out the

continuous limit in the formulation of the reaction

kinetics for coagulation or annihilation reactions.

Not only may the actual physical system be dis-

crete, but simulations usually involve discrete lat-

tices, and finite reactant size effects (i.e., small
distance scale effects) are more appropriately dealt

with through discrete formulations [10–13].

Fig. 3. Logarithm of the survival probability cðtÞ=k for anni-

hilation dynamics of subdiffusive particles with a ¼ 1=2, Ka ¼ 1,

and initial concentration k ¼ 1=20, versus the logarithm of

time. The initial arrangements of the particles are Poissonian

(solid line and circles) and periodic (broken line and squares).

The lines are the continuum solutions given by Eq. (45) and by

the numerical inversion of Eq. (48). The symbols are the on-

lattice solutions for a finite lattice with L ¼ 220 (filled symbols)

and L ¼ 200 (open symbols) with periodic boundary conditions

and Dx ¼ 1. Note that with these values of L and k the initial

number of particles and hence the total number of particles is

odd (filled symbols) or even (open symbols) at all times.
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Indeed, a discrete viewpoint was the starting point

of the continuum equations considered in the

previous section. Furthermore, the discrete for-

mulation allows consideration of different reaction

rules such as A;A ! AAA [12].

The hierarchy of differential-difference equa-
tions on a lattice of L sites is

I0ðtÞ ¼ 1;

dIn
dt

¼ a 0D1�a
t Inþ1ðtÞ½ � 2InðtÞ þ In�1ðtÞ�;

16 n6 L� 1; ð53Þ

for n ¼ 1; 2; . . . ; where a � 2Ka=ðDxÞ2, InðtÞ �
Eðxn ¼ nDx; tÞ for the coagulation reaction, and

InðtÞ � rðxn ¼ nDx; tÞ for the annihilation reac-

tion. The other boundary condition, at n ¼ L,
depends on which reaction is under consider-

ation and will be stated below. The discrete form

[6]

cðtÞ ¼ 1� I1ðtÞ
Dx

ð54Þ

was already introduced in Eq. (11). From here on,

we take Dx ¼ 1.

4.1. Coagulation in a segment

The problem of the coagulation dynamics in a

discrete segment has been solved for the normal

diffusive case [10–13]. Here we present the solution

for the coagulation process of subdiffusive parti-

cles on a chain of L sites with periodic boundary

conditions, which is described by the hierarchy

(53) together with the additional boundary con-

dition

ILðtÞ ¼ 0: ð55Þ
We solve this set of equations by means of the

ansatz

InðtÞ ¼
X

x

bnðxÞEað�axtaÞ ð56Þ

which is closely related to the method of separa-

tion of variables for the subdiffusive fractional

differential equation [16,20]. Again, Ea is the Mit-
tag–Leffler function of parameter a. Taking into

account that

d

dt
Eað�btaÞ ¼ �b 0D1�a

t Eað�btaÞ; ð57Þ

the resulting eigenvalue problem can be solved in

the same way as for normal diffusion [11,12].

Notice that EaðxÞ ¼ ex for a ¼ 1 so that the ansatz

(56) takes the well-known form for normal diffu-

sive particles (for which a ¼ 1). The full solution is

InðtÞ ¼ 1
	

� n
L

�
þ
XL�1

m¼0

Am

� sin m
p
L
ðn

	
� LÞ

�
Eað�axmtÞ ð58Þ

with

xm ¼ 2½1� cosðmp=LÞ�: ð59Þ
The coefficients Am are determined from the initial

conditions.
For an initially random distribution of particles

of concentration k we have Inð0Þ ¼ ð1� kÞn for

n ¼ 0; 1; . . . ; L� 1, so that

AmðtÞ ¼ � 2

mp
ð1� kÞLm2p2 þ ð�1ÞmL2½lnð1� kÞ�2

m2p2 þ L2½lnð1� kÞ�2
:

ð60Þ
For an initially periodic distribution of particles

separated by 1=k lattice sites we have Inð0Þ ¼ 1� kn
for kn6 1 and Inð0Þ ¼ 0 for knP 1. In this case

AmðtÞ ¼ ð�1Þmþ1 2kL sin mp=kLð Þ
m2p2

: ð61Þ

Fig. 1 shows the decay of the concentration cðtÞ
given by Eq. (54) with (58) when the initial dis-

tribution of subdiffusive particles on the lattice is

random and when it is periodic. At longer times

both solutions approach those of the continuum

equations and would do so more clearly if we were
to exhibit the solutions to our difference equations

for larger lattices. The marked deviation of the

lattice solution from the continuous asymptotic

t�a=2 decay occurs when the concentration on the

lattice approaches its asymptotic (minimum) value

of one particle on the entire lattice, cðt ! 1Þ ¼
1=L. Using the continuum solution, this can be

estimated to occur at time t� such that cðt�Þ ¼ 1=L.
In the figure this separation of solutions clearly

does occur when c=k ¼ 1=kL ¼ 0:1, i.e., when

log10 ðc=kÞ ¼ �1:0.
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While the long-time behaviors of the discrete

and continuous solutions coincide (independently

of initial condition) until the reactant concentra-

tion is extremely low, the short-time behavior of

the two solutions is expected to differ, especially

when the initial distribution of particles is ran-
dom. The difference has been established for par-

ticles undergoing normal diffusion [13]. To

determine the short-time behavior on the lattice

we assume that the lattice is initially full, so that

Inð0Þ ¼ 0 for nP 1. (The reasoning follows along

the same lines for an arbitrary concentration of

particles, but the equations are more cumber-

some.) Taking the time Laplace transform of
Eq. (53) gives

eIInþ1ðuÞ � 2

�
þ ua

a


eIInðuÞ þ eIIn�1ðuÞ ¼ 0; nP 1:

ð62Þ
This set of difference equations must be solved

with the boundary conditions eII0ðuÞ ¼ 1=u andeIILðuÞ ¼ 0. Since we are interested in the short-time
(large-u) behavior, we can set L ! 1 without ap-

preciably affecting the outcome. With these

boundary conditions we essentially follow the

procedure of [13] to find

eIInðuÞ ¼ 1

2nu
2

"
þ ua

a
� u2a

a2

�
þ 4

ua

a


1=2
#n

: ð63Þ

In particular, eII1ðuÞ ¼ a=u1þa þ � � � for u ! 1, so

that with the help of appropriate Tauberian the-

orems we find that I1ðtÞ ¼ ata=Cð1þ aÞ þ � � � for
t ! 0. Using Eq. (54), we calculate the short-time

behavior of the reactant concentration

cðtÞ
k

¼ 1� 2Kak
2

Cð1þ aÞ t
a þ � � � ð64Þ

Note that with an initially full lattice there is no

distinction between an initially random and ini-

tially periodic distribution of particles. For an

arbitrary random initial concentration one still

finds that cðtÞ=k � 1 � ta. Comparison with Eq.
(36) shows that at short times, as in the case of

normal diffusion [13], the concentration on a

lattice decays more slowly than in the contin-

uum. This is not easily visible on the scale of

Fig. 1.

4.2. Annihilation in a segment

Now consider the annihilation reaction

Aþ A ! 0 and suppose that initially there are N

particles on a segment of length L. The hierarchy
(53) is now augmented with the second boundary

condition

ILðtÞ ¼
1; N ¼ even;
0; N ¼ odd;

�
ð65Þ

where we note that now InðtÞ � rðxn ¼ nDx; tÞ.
This condition is of course a result of the fact

that the reaction does not change the parity of

the number of surviving particles. We proceed as

in the coagulation problem and write the solution

as

InðtÞ ¼ I�n þ
XL�1

m¼0

Am sin m
p
L
ðn

	
� LÞ

�
Eað�axmtÞ;

ð66Þ

where

I�n ¼ Inð1Þ ¼ 1; N ¼ even;
1� n

L ; N ¼ odd;

�
ð67Þ

xm is given in Eq. (59), and the Am are coefficients

determined from the initial conditions.

For a random initial condition of particle con-

centration k we have Inð0Þ ¼ 1
2
þ 1

2
ð1� 2kÞn for

n ¼ 0; 1; . . . ;L� 1, so that

AmðtÞ ¼
1

mp
½ðf � 1ÞN � ð1� 2kÞL�m2p2

þ ½1� ð � 1ÞmþN �L2½lnð1� 2kÞ�2g=
m2p2

�
þ L2½lnð1� 2kÞ�2g: ð68Þ

For a periodic initial distribution with particle

separation 1=k we have

Inð0Þ ¼
2jþ1�kn; 2j=k6n6ð2jþ1Þ=k;
�2j�1þkn; ð2jþ1Þ=k6n6ð2jþ2Þ=k;

�
ð69Þ

which leads to

AmðtÞ ¼ ð�1ÞN 1
�

� ð � 1ÞN ð � 1Þm
�2 kL
m2p2

� tan
mp
2kL

	 �
: ð70Þ
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Fig. 3 shows the evolution of the concentration as

given by Eq. (54) with (66) for a random initial

distribution (circles) and a periodic initial distri-

bution (squares). A number of points are note-

worthy. First, the solution of course decays to a
finite constant (one particle remaining) when there

is initially an odd number of particles in the sys-

tem, and to zero when the initial number of par-

ticles is even. The deviation of the solutions on a

finite segment from those in an infinite continuum

again set in around the time when c ¼ 1=L (strictly

speaking around 2=L for the even case). Note that

in the continuum solution one does not distinguish
between the even and odd particle number cases:

the boundary condition (19) is an average of the

two, and so the continuum curves should be

compared to the average of the discrete ones for

the two boundary conditions.

5. Conclusions

We have considered the coagulation dynamics

Aþ A ! A and the annihilation dynamics

Aþ A ! 0 for particles moving subdiffusively in

one dimension. This scenario combines the

‘‘anomalous kinetics’’ and ‘‘anomalous diffusion’’

problems, each of which leads to interesting dy-

namics separately and to even more interesting
dynamics in combination. The fractional diffusion

equation plays a central role in our analysis and

allows the exact calculation of the density cðtÞ
within this formulation. We have calculated cðtÞ
explicitly for all times for the coagulation reaction

in a one-dimensional continuum for two initial

distributions, a random (Poisson) distribution and

a periodic distribution. This calculation is based
on the empty interval method. Using the odd/even

interval formulation, we have also obtained an

explicit solution for the annihilation reaction with

a random initial distribution. For a periodic initial

distribution we are only able to calculate the La-

place transform of cðtÞ analytically and must per-

form the inversion numerically.

For the coagulation reaction the empty interval
method also leads to an explicit solution for the

interparticle distribution function pðx; tÞ. At long

times we find a universal expression for this dis-

tribution (i.e., one independent of initial distribu-

tion), in terms of a single scaled variable.

Anomalous diffusion is characterized by the ex-

ponent a introduced in Eq. (1), ordinary diffusion

corresponding to a ¼ 1. Deviations from ordinary

diffusion lead to a curious interplay. On the one
hand, with decreasing a (and hence increasingly

subdiffusive motion) the decay of the particle

density towards extinction becomes increasingly

slower and in this sense increasingly different from

law of mass action behavior. On the other hand,

for the coagulation reaction the spatial distribu-

tion of initially randomly distributed reactants

remains more Poissonian for all time as a de-
creases; indeed, as a deviates from unity the rela-

tively empty regions around each particle that are

tantamount to (and indeed explain) anomalous

kinetics in the usual diffusion-limited case become

more populated.

We have also considered the problem of sub-

diffusion-limited reaction on discrete lattices. We

have presented a hierarchy of differential-differ-
ence equations for the empty interval probability

InðtÞ � Eðxn; tÞ and the even/odd interval proba-

bility InðtÞ � rðxn; tÞ, and have expressed the solu-

tions InðtÞ as a superposition of subdiffusive modes

whose decay is governed by the Mittag–Leffler

function in the same way that the exponential

function governs the decay of ordinary diffusive

modes. As in ordinary diffusion [13], the associated
concentrations cðtÞ differ from the continuum so-

lutions at early times. At long times the lattice

solutions deviate from those of the continuum

systems when there is only a small number of

particles (one or two) remaining in the system.
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