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We present a theory for the coagulation reaction A+A→A for particles moving subdiffusively in one
dimension. Our theory is tested against numerical simulations of the concentration of A particles as a function
of time �“anomalous kinetics”� and of the interparticle distribution function as a function of interparticle
distance and time. We find that the theory captures the correct behavior asymptotically and also at early times,
and that it does so whether the particles are nearly diffusive or very subdiffusive. We find that, as in the normal
diffusion problem, an interparticle gap responsible for the anomalous kinetics develops and grows with time.
This corrects an earlier claim to the contrary on our part.
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I. INTRODUCTION

The traditional laws of mass action that describe the time
evolution of the macroscopic global concentrations of reac-
tants and products in chemical reactions assume that the sys-
tem is well stirred and therefore spatially homogeneous.
However, there are many situations when a reactive system
is not well mixed; in that case one must deal with local
concentrations and account for the effects of spatial inhomo-
geneities on local reaction rates. Spatial variations in concen-
trations of reactants lead to changes �often called “anoma-
lies”� in the time dependences of the spatially averaged
macroscopic concentrations. One often encounters this situ-
ation when diffusion is the only mixing mechanism, particu-
larly when diffusion is the rate limiting step for a reaction to
occur. The inefficiency of diffusion as a mixing mechanism
becomes more pronounced with decreasing dimensionality
of the system, and it is therefore commonly accepted that
diffusion-limited reactions in constrained geometries exhibit
kinetic “anomalies” �1�. An exact description of diffusion-
limited reactions in the face of nonuniform spatial distribu-
tions of reactants typically requires an infinite hierarchy of
correlation functions to properly incorporate spatial correla-
tions. In practice, such hierarchies are often truncated at the
first or second level, giving rise to well-known reaction-
diffusion equations whose solutions are sometimes fairly sat-
isfactory �and sometimes not� in capturing the principal de-
viations form the laws of mass action �2,3�.

The judgment as to the success or failure of approximate
reaction-diffusion models has mostly relied on comparisons
with numerical simulations. There has always been a quest
for exact analytic solutions against which approximate
reaction-diffusion theories could be tested, but there have
been very few successes, among them the coagulation reac-
tions A+A→A and A+A�A �3,4�. Exact solutions in these
cases have been possible because, if instead of focusing on
the concentration of reactants, one focuses on the evolution
of empty intervals �coagulation reactions� or on the number
parity �even or odd� of particles in an interval �annihilation
reactions�, one arrives at exactly linear diffusion equations.
These solutions have provided a wealth of information

against which to measure the approximate solutions obtained
from more standard approaches for these particular reactions.
Unfortunately, the interval approaches are not generalizable
to other reactions, not even to seemingly simple reactions
such as the single-species bimolecular annihilation A+A
→0. For this particular reaction exact methods do exist to
calculate the concentration of the reactant as a function of
time �3–5�.

In the past few years there have also been attempts to
understand chemical reactions in low dimensions when the
reactants move subdiffusively. This has been a particularly
interesting subject in view of the many systems, mainly bio-
logical, in which such reactions occur in a complex or con-
strained environment that does not even permit ordinary dif-
fusive motion of chemical species. All the difficulties
encountered in diffusive systems are exacerbated in this case
because motions are even slower, a fact that turns out to have
profound consequences on spatial as well as temporal corre-
lations �6� and to cause much greater difficulties in both nu-
merical simulations and analytic attempts. One approach to
this problem has been to essentially adapt the existing
reaction-diffusion models by modifying the diffusive de-
scription to a subdiffusive one involving fractional diffusion
operators. These descriptions are phenomenological in na-
ture, and much work remains to be done to understand how
one might arrive at a mesoscopic description from micro-
scopic considerations. In particular, there are many questions
about how to describe the reaction terms in subdiffusive sys-
tems, and there is clear evidence that the problem is usually
not even separable into a simple sum of a term describing the
motion of the particles and one describing the reaction.

The subdiffusive coagulation and annihilation problems
seemed to offer a parallel opportunity for exact solution if
one again concentrated on the properties of intervals. We
followed this route in our earlier work �7�, and formulated
what we thought to be exact subdiffusive equations for the
intervals from whose solution one could calculate the par-
ticle concentrations and interparticle separations, as had been
done in the diffusive problem. These solutions led us to the
conclusion that interparticle gaps do not occur in the subdif-
fusive problem, a result that seemed reasonable for particles
that move sufficiently slowly. However, subsequent numeri-
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cal simulations indicated that a gap does develop no matter
how subdiffusive the particles, and this led to a reassessment
of the assumptions of our original theory. In this paper we
present this numerical evidence, a description of the diffi-
culty with the original theory, and a new theory which, albeit
still approximate, seems to capture the correct behavior to a
very high degree of accuracy. Also, we recently developed a
mean field theory for a closely related problem �6� but it is
only valid for dimension three and higher. We concentrate on
the coagulation problem, although a similar approach may be
helpful for the annihilation reaction.

In Sec. II we describe the difficulties with our previous
1D theory �7�. Section III presents our new theory. Section
IV discusses some special interesting issues that arise in this
problem, and in Sec. V we present the numerical evidence to
support our theory. We conclude with a summary in Sec. VI.

II. TRADITIONAL THEORY

The interparticle distribution function method has been
used to great advantage in the case of normal diffusion �see,
e.g., �10��. It focuses on the “empty interval” function E�x , t�,
defined as the probability that an interval of length x is empty
of particles at time t. From E�x , t� one obtains the concentra-
tion of particles,

c�t� = − � �E�x,t�
�x

�
x=0

, �1�

and the interparticle distribution function,

p�x,t� =
1

c�t�
�2E�x,t�

�x2 , �2�

which is the probability density that the first A to be found to
one side of a given A at time t is a distance x away. The
question of interest is how to determine the empty interval
function.

If the particles undergo normal diffusion, the probability
density for finding a particle A at y at time t in the absence of
reactions obeys the diffusion equation

�

�t
P�y,t� = D

�2

�y2 P�y,t� . �3�

In the presence of the coagulation reaction, the empty inter-
val function focuses on the diffusive motion of the particles
at each end of an empty interval and one readily arrives at
the exact equation

�

�t
E�x,t� = 2D

�2

�x2E�x,t� . �4�

The equation is easily understood from the fact that the
empty interval dynamics is the same as that of the individual
particles but with double the diffusion coefficient to reflect
the relative motion of two diffusive particles �8–11�. This
readily tractable equation, together with appropriate bound-
ary conditions, exactly solves the diffusive A+A→A prob-
lem in one dimension.

A standard approach for the description of subdiffusive
processes starts from the continuous time random walk

�CTRW� formalism, in which a walker jumps from one site
on a lattice to another in consecutive steps as time proceeds
�12,13�. Both the jump distances n and times t between
jumps are random variables drawn from a probability distri-
bution function ��n , t�. If the jump distances and jump times
are independent random variables, then this distribution
function is simply a product, ��n , t�=w�n���t�. “Normal”
CTRWs are obtained from distributions w�n� whose first two
moments are finite together with a ��t� that has a finite first
moment. The scaling limit that leads from the random walk
to the diffusion equation is then well known. One way to
obtain a subdiffusive process is for the waiting time distribu-
tion ��t� to be heavy-tailed, i.e., ��t�� t−1−� with 0���1
for long times, so that the mean waiting time between jumps
diverges. In this case a number of scaling approaches can be
found in the literature, with a particularly helpful discussion
in �14�. In the absence of reactions, in the continuum limit
with a particular scaling one arrives at a “fractional diffusion
equation” for the evolution of the probability density P�y , t�
of a subdiffusive particle,

�

�t
P�y,t� = 0Dt

1−�K�

�2

�y2 P�y,t� , �5�

where 0Dt
1−� is the Riemann-Liouville operator,

0Dt
1−�P�y,t� =

1

����
�

�t
�

0

t

d	
P�y,	�

�t − 	�1−� , �6�

and K� is the generalized diffusion coefficient. The mean
square displacement of the A particle for large t that follows
from this evolution equation is

�y2�t�	 �
2K�

��1 + ��
t�, �7�

which reduces to the ordinary diffusion result when �=1
�K1=D�. In our earlier work we argued that the same reason-
ing that led from Eq. �3� to Eq. �4� would also lead from Eq.
�5� to the interval equation

�

�t
E�x,t� = 0Dt

1−�2K�

�2

�x2E�x,t� , �8�

and then calculated the particle concentration and interpar-
ticle distribution function from the solution of this equation
with appropriate boundary conditions.

The difficulty with this reasoning in the case of subdiffu-
sion can be described as follows �15�. We again turn to a
CTRW point of view of the problem. Consider first the dif-
fusion problem, where the continuum limit leads to a diffu-
sion equation. In this limit, in which the mean time between
steps and the step length go to zero in an appropriate way,
one arrives at the diffusion equation. In particular, in the
diffusive problem the steps are sufficiently frequent that one
need not keep track of extremely long sojourns of a particle
at any one site, and what transpired in the past is quickly
forgotten. A similar formulation of the subdiffusive problem
involves waiting time distributions with an infinite mean
time between steps. Even worse, knowing that a particle has
not jumped until time t� after having arrived at its present
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location at time t�� t�, the probability that the next jump
occurs at time t depends on both t− t� and t− t� separately. To
understand the effects of these complications, suppose that
an observer looks at the system at time t and sees an empty
interval of size x at that instant. For normally diffusive par-
ticles, the evolution of the size of this interval does not de-
pend on the time at which the interval was first created.
However, in order to predict the evolution of this gap for
subdiffusive particles the observer must know how long each
of the two particles at the ends of this interval have been at
that location. The evolution now depends on the times t− tl
and t− tr, where tl and tr are the times at which the left and
right particles jumped to the locations seen by the observer at
time t. Moreover, even if the two particles arrived at this
location at the same time, i.e., tl= tr, the shortening and
lengthening of this gap is not correctly described by Eq. �8�,
as we will show in Sec. III �cf. Eqs. �9�–�17��.

III. THEORY REVISITED

To find a more appropriate description for the evolution of
the empty interval, we introduce two hypotheses. As we state
each hypothesis, we provide an argument as to its approxi-
mate nature.

We start by forgetting the reaction for a moment, and
simply consider the motion of �mutually transparent� A par-
ticles on an infinite line. We define P��x , t� as the probability
density for x to be the distance between two subdiffusive
particles at time t with the initial condition P��x ,0�=
�x�,
i.e.,

P��x,t� = �
−�

�

dyP��x − y,t�P��y,t� . �9�

Here P��y , t� is the propagator of the subdiffusion equation,
i.e., the solution of Eq. �5� with the initial condition
P��y ,0�=
�y�. In Fourier space the solution in closed form
is the Mittag-Leffler function,

P̃��q,t� = E��− K�q2t�� . �10�

The Fourier transform of Eq. �9� then tells us that

P̃��q,t� = �P̃��q,t��2 = �E��− K�q2t���2, �11�

and correspondingly,

P��y,t� =
1

2�
�

−�

�

dqe−iqy�E��− K�q2t���2

=
1

�
�

0

�

dq cos�qy��E��− K�q2t���2. �12�

We do not know the evolution equation for P��x , t�, i.e.,
we do not know the operator F� such that F�P��x , t�=0,
except for �=1. In this case the Mittag-Leffler function re-

duces to an exponential, E1�−z�=exp�−z�, so that P̃1�q , t�
=exp�−2K1q2t� and the corresponding function P1�x , t� is the
solution of the diffusion equation �Eq. �3�� but with double
the diffusion coefficient,

�

�t
P1�x,t� = 2D

�2

�x2P1�x,t� , �13�

with D
K1. However, for ��1 the Fourier transform of the
solution of the subdiffusion equation with double the subdif-
fusion coefficient,

�

�t
Q��x,t� = 0Dt

1−�2K�

�2

�x2Q��x,t� , �14�

is the Mittag-Leffler function of twice the argument in Eq.
�10�,

Q̃��q,t� = E��− 2K�q2t�� . �15�

Clearly, except for �=1,

�E��− K�q2t���2 � E��− 2K�q2t�� , �16�

so that P��Q�, and the operator F� is not straightforwardly
obtained from the subdiffusion equation,

F� �
�

�t
− 0Dt

1−�2K�

�2

�x2 . �17�

A. Hypothesis 1

The central hypothesis of our new theory is that the (un-
known) equation that describes the evolution of P��x , t� is
the same as the equation that describes the evolution of the
empty interval function E�x , t�, i.e., that

F�E�x,t� = 0, 0 
 x � � . �18�

This hypothesis is in general an approximation because the
distribution of particles is not expected to be the same in the
presence and absence of the reaction �although in higher di-
mensions it is �6��. While there is no memory of prior reac-
tion events in the diffusive problem, in the subdiffusive case
this memory persists and may lead to a distortion of the
distribution relative to that of the particles when there is no
reaction. We only know how to assess the severity of this
approximation via comparison of results with numerical
simulations �6� �see Sec. V�.

How does this hypothesis help us find the empty interval
distribution when in fact we do not know the operator F�? It
helps us because we know the solution P��x , t�, which is
then the Green’s function or propagator for the empty inter-
val distribution. In other words, while we do not know the
equation of evolution for E�x , t�, we have sufficient informa-
tion to construct the function E�x , t� itself explicitly. The in-
terval function is subject to the additional conditions

E�0,t� = 1,

E��,t� = 0,

E�x,0� = f�x� . �19�

The first boundary condition is the probability that an inter-
val of vanishing width is empty. As in the diffusive problem,
this probability must be unity. The second simply recognizes
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the existence of particles at any finite time t in the infinite
system, and the third is determined by the initial distribution
of empty intervals.

In order to construct the solution E�x , t� from our knowl-
edge of the propagator P��x , t�, we introduce our second
hypothesis.

B. Hypothesis 2

The second hypothesis of our theory is that the operator
F� is linear. We know this operator to be linear when �=1,
but it is most likely an approximation when ��1, although
our lack of information about F� makes it difficult to assess.
While evolution equations describing various quantities in
some other reaction-subdiffusion problems are in fact not
linear, the connection between those systems and the one
considered here is not clear.

In any case, under this hypothesis we can split E�x , t� into
two parts, each of which satisfies conditions whose symme-
try properties allow for the advantageous use of our knowl-
edge of the propagator. In particular, we write

E�x,t� = ET�x,t� + EA�x,t� , �20�

where the individual pieces satisfy the following:

F�ET�x,t� = 0, 0 
 x � � ,

ET�0,t� = 0,

ET��,t� = 0,

ET�x,0� = f�x� �21�

and

F�EA�x,t� = 0, 0 
 x � � ,

EA�0,t� = 1,

EA��,t� = 0,

EA�x,0� = 0. �22�

The superscripts T and A denote “transient” and
“asymptotic,” respectively, for reasons that become evident
below.

C. Asymptotic (long time) results

In general, the solution E�x , t� and its derivative observ-
ables depend on the initial distribution f�x�. However, since
the evolution of the interval function is in some sense nec-
essarily subdiffusionlike, we expect that the given boundary
conditions lead to a decay of ET�x , t�, i.e., ET�x , t�→0 as t
→�, while EA�x , t� cannot decay. Thus at sufficiently long
times the behavior of the interval function will be dominated
by that of EA. One must keep in mind that the decay of ET

may be slow �especially when comparing with numerical
simulations�. In particular, whereas diffusive modes decay
exponentially, subdiffusive modes typically decay only as t−�

for ��1. Nevertheless, this provides a helpful element if
one is interested in the asymptotic behavior because EA�x , t�
does not depend on the initial distribution and can therefore
be pursued once and for all. We therefore focus on it first.

The solution for EA�x , t� can be obtained by the method of
images. For this purpose, we consider the related problem

F�EA�x,t� = 0, − � � x � � ,

EA�− �,t� = 2,

EA��,t� = 0,

EA�x,0� = 2 − 2��x� , �23�

where ��x� is the Heaviside step function. The symmetry of
the problem immediately leads to the conclusion that
EA�0, t�=1. Therefore the solution of this problem for x�0
is just the solution EA�x , t� of Eq. �22�, that is, EA�x , t�
=EA�x , t� for x�0. On the other hand, we can write

EA�x,0� = 2 − 2��x� = 2�
−�

0

dy
�x − y� . �24�

Since we know that the Green’s function of F� is P��x , t�,
and since we assume that F� is linear, the solution of Eq.
�23� is

EA�x,t� = 2�
−�

0

dyP��x − y,t� �25�

or, equivalently,

EA�x,t� = 2�
x

�

dyP��y,t� . �26�

Therefore

EA�x,t� = 2�
x

�

dyP��y,t� for x � 0, �27�

with P��y , t� given in Eq. �12�. It is noteworthy that EA�x , t�
depends on x and t only via the variable

z =
c�

�K�t�
x , �28�

where

c� 

2

�
�

0

�

dy�E��− y2��2. �29�

The changes of variables w
�K�t�q and u
�c� /�K�t��y
immediately lead to

EA�x,t� = E�z� =
2

�c�
�

z

�

du�
0

�

dw cos�wu

c�

�E��− w2��2.

�30�

The particle density as a function of time is obtained from
the interval distribution function via Eq. �1�. The asymptotic
density limt→� c�t� then is
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c�t� = − � �EA�x,t�
�x

�
x=0

= 2P��0,t� =
c�

�K�t�
=

z

x
. �31�

When �=1 this reduces to the familiar result c�t�
= �2�Dt�−1/2.

At these long times, using the asymptotic portion EA�x , t�
of the solution E�x , t� in Eq. �2� we obtain

c�t�p�x,t� =
�2EA�x,t�

�x2 = − 2
�P��x,t�

�x

=
2

�
�

0

�

dqq sin�qx��E��− K�q2t���2

=
2

�K�t��
0

�

dyy sin� yx
�Kt�


��E��− y2��2. �32�

Defining p�z�dz= p�x , t�dx where z is defined as above, we
find that for long times

p�z� =
2

�c�
2�

0

�

dyy sin� zy

c�

�E��− y2��2. �33�

D. Results valid for all times for initial Poisson
distribution

To find the particle density and interparticle distribution
function for all time requires the solution of the system �21�,
which in turn requires specification of an initial distribution.
We choose an initial Poisson distribution for this analysis,

ET�x,0� = f�x� = E�x,0� = e−c0x, �34�

where c0
c�0� is the initial concentration of particles. As
before, we formulate a related problem,

F�ET�x,t� = 0, − � � x � � ,

ET�− �,t� = 0,

ET��,t� = 0,

ET�x,0� = f�x� = � e−c0x, x � 0

− ec0x, x � 0.
� �35�

By symmetry we deduce that ET�0, t�=0, so that the solution
of this problem for x�0 is just the solution ET�x , t� of Eq.
�35�, that is, ET�x , t�=ET�x , t� for x�0. We can write

ET�x,0� = �
−�

�

dyE�y,0�
�x − y� . �36�

Then our knowledge of the Green’s function for F� and our
hypothesis that this operator is linear immediately leads to
the solution

ET�x,t� = �
−�

�

dyE�y,0�P��x − y�

= − �
−�

0

dyec0yP��x − y� + �
0

�

dye−c0yP��x − y�

= ET�x,t� for x � 0. �37�

With a bit of manipulation and explicit insertion of Eq. �12�
we finally obtain for x�0,

ET�x,t� = − 2 sinh�c0x��
x

�

dye−c0yP��y�

+ 2e−c0x�
0

x

dy cosh�c0y�P��y� . �38�

The full interval distribution is then the sum of Eq. �27�
�valid for any initial condition and determinative of the
asymptotic behavior� and Eq. �38� �explicitly calculated here
for a Poisson initial distribution and going to zero asymptoti-
cally�.

As before, the particle density as a function of time is
obtained from the interval distribution function via Eq. �1�.
From Eq. �38� we calculate

− � �ET�x,t�
�x

�
x=0

= − 2P��0,t� + 2c0�
0

�

dye−c0yP��y,t� ,

�39�

from which upon addition of Eqs. �31� and �39� and use of
Eq. �12� it follows that

c�t� = −
2

��K�t��
0

�

dy
1

1 + �y2/c0
2K�t��

�E��− y2��2.

�40�

Note that this result, valid for all times, reduces to Eq. �31�
when t→�. Note also that for �=1 this leads to the simple
expression

c�t� = c0e2c0
2Dt erfc��2c0

2Dt� . �41�

The ratio c�t� /c0 is exactly the same as the result for the A
+A→0 problem �3–5� if we replace c0 in that problem by
2c0. This in turn leads to the well-known result that the con-
centration of reactant in the A+A→0 problem is asymptoti-
cally half of that of the A+A→A problem for the same initial
concentration of reactant.

The interparticle distribution function follows from Eq.
�2�. To add to our previous asymptotic result, we note that

�2ET�x,t�
�x2 = 2

�P�

�x
− 2c0

2 sinh�c0x��
x

�

dye−c0yP��y,t�

+ 2c0
2e−c0x�

0

x

dy cosh�c0y�P��y,t� . �42�

Introducing Eq. �12� into Eq. �42�, one finds, after some
manipulations,
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�2ET�x,t�
�x2 = 2

�P�

�x
+

2

�K�t��
0

� dy

1 + y2/c0
2K�t�

� y sin� xy
�K�t�
�E��− y2��2. �43�

Upon addition of this contribution and the asymptotic one
obtained earlier, we finally have

c�t�p�x,t� =
2

�K�t��
0

� dy

1 + y2/c0
2K�t�

�y sin� xy
�K�t�
�E��− y2��2 �44�

This expression reduces to Eq. �32� when t→�. Only in the
asymptotic limit is it possible to write p�x , t� /c�t� as a func-
tion of the single combined variable z=c�t�x.

IV. CONUNDRUM AND SOME CHOICES

In the next section we compare our theory to numerical
simulation results and, as we shall see, the comparison is on
the whole very successful. And yet we know that the theory
is approximate—indeed, we introduced two hypotheses that
are surely not exact. We note here an additional related co-
nundrum which exhibits itself �albeit only weakly even when
� is small� in the numerical simulations of the A+A→A
reaction �but not in the A+A→0 problem�. In the discrete
version of the problem used for the simulations, a reaction
A+A→A occurs when an A particle steps onto a site already
occupied by another A particle. One then has to decide which
of the two particles is the one that is removed from the sys-
tem, the one that was there �“kill” rule� or the one that just
stepped onto the site �“no-kill” rule�. The choice could vary
with each reaction event. In the diffusive problem ��=1� the
choice does not matter. In a subdiffusive situation, however,
the choice does matter since the properties of the subsequent
random walk of the survivor, including the probability that
the walker continues to remain at that site, depend on its age.
In particular, if the survivor is the one that arrived at the site
first then the probability that it will remain at that site is
greater than if the survivor is the new arrival. The implica-
tion is that the mesoscopic results such as the interparticle
distribution function depend on the microscopic reaction
rule. On the other hand, we will show that the differences in
the observable quantities are small even for � considerably
smaller than 1, but the agreement with simulations is a bit
better using the “kill” rule. This is as expected since this rule
resets, so to speak, the “clock” of the surviving particle fol-
lowing a reaction event and is thus in some sense closer to
the assumptions inherent in Hypothesis 1. In most of our
simulations we use the “kill” rule.

The second choice we must make in our simulations is the
form of the distribution of waiting times between steps. In
most cases we use a Pareto-type waiting time distribution,

�P�t� =
�

t0�1 + t/t0�1+� , �45�

while in some we use a Mittag-Leffler-based distribution,

�ML�t� = −
d

dt
E��− �t/t0��� �46�

�in our simulations we set t0
1�. They can both be used to
describe the asymptotic behavior of subdiffusive random
walkers. While either form is mathematically acceptable,
�ML is preferable at short times specially as �→1 �16�. In
most of our simulations, times are long and � is not close to
unity, so the choice is not a central issue. Nevertheless, we
address this issue here even before presenting our simulation
methodology and results because while both of these waiting
times do lead to a fractional diffusion equation at long times,
the choice of the waiting time distribution determines the
value of the generalized diffusion coefficient K�. For the
Pareto case K�,P=1 /2��1−��, while the Mittag-Leffler form
�in our simulation units� leads to K�,ML=1 /2. In the discus-
sion of our results this is the only difference between theo-
retical results labeled by P and those labeled by ML. The
Pareto generalized diffusion coefficient diverges as �→1.
This behavior is symptomatic of other problems associated
with this waiting time distribution in this limit for the calcu-
lation of quantities that explicitly depend on K�, and is a
strong motivator for the introduction of the Mittag-Leffler
form. We will only use the Pareto distribution in unproblem-
atic regimes of �, where these difficulties are not an issue.

V. NUMERICAL EVIDENCE

In this section we present numerical simulation results to
test the adequacy of our theory. Specifically, we present
simulation results for the particle density and for the inter-
particle distribution function. We begin by briefly describing
our numerical simulation methodology.

We proceed via the following steps in our numerical al-
gorithm. First we generate a 1d lattice. We then generate an
escape time for each particle chosen from the given waiting
time distribution. We choose the particle with the smallest
waiting time. This particle jumps to one of its two nearest
neighbors. If the destination site is empty, we update the
waiting time for the arriving particle. If the destination site is
occupied, the particles coagulate into a single particle. This
is where we have to specify whether the event is of the “kill”
variety or of the “no-kill” variety, as described earlier. Next,
we look again for the particle with the smallest waiting time.
The other particles that have not yet moved simply continue
evolving according to their own internal clocks. The particle
that emerges from the coagulation either starts its waiting
time at the moment of the reaction �“kill”� or continues
evolving according to its prior setting, which is unchanged
by the reaction �“no kill”�. The simulation then continues
until it reaches the time t of interest or the concentration c�t�
of interest. The experiment is then repeated over and over
again for an ensemble of such chains.

As mentioned earlier, there are issues related to the choice
of the waiting time distribution, specifically whether to use
the Pareto form Eq. �45� or the Mittag-Leffler form Eq. �46�
�16,18�. For ��1 they both give the same asymptotic re-
sults. At short times for ��1 and for all times when �=1
the Mittag-Leffler distribution is the appropriate one to use.
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Most of the results presented below are asymptotic and for
��1, and we mostly use the Pareto distribution, having as-
certained to our satisfaction that both lead to the same out-
come. For short-time results we use the Mittag-Leffler distri-
bution. Note that when looking at short-time behavior we
need to specify the initial distribution of particles over the
line. We have consistently chosen a random Poisson initial
distribution.

Results

We will now test our theory against simulation results,
and anticipate that the agreement is gratifyingly good. Figure
1 contains a variety of results for the concentration c�t� of
surviving A particles as a function of time for �=0.5 and an
initial concentration c�0�=1. The initial concentration is suf-
ficiently high for there to be essentially no transient behavior
before the asymptotic power law dependence of c�t� takes
over, as evidenced by the straight lines. First, note the com-
parison between the simulation �sim� results with a Pareto-
like waiting time distribution �squares� and those of a
Mittag-Leffler form �circles�. Both are essentially linear, as
expected. The slopes are the same, but the Pareto results are
a little higher. A best fit leads to cP,sim�0.751t−0.252 and
cM,sim�0.541t−0.250. The open symbols are “kill” simulations
�and the fits just given are for this case�, while the solid
symbols are for “no kill.” The “no-kill” rule leads to consis-
tently higher concentrations. This makes sense since the sur-
vivor at each reaction event is the A that arrived first at the
reaction site, and it remains there longer �due to aging� than
would the other reaction partner. This leads to its longer
survival.

While these results and comparisons are interesting, our
most important task is to compare these results with those of
our theory, which is shown by the upper solid line for the
Pareto case and the lower solid line for the Mittag-Leffler

case. The slopes are in excellent agreement with those of the
simulations. The coefficients fall precisely between the “kill”
and “no-kill” results. Specifically, we find that cP,theory
�0.819t−0.25 and cML,theory �0.615t−0.25. One might be
tempted to conjecture that the theoretical model in some
sense lies between the “kill” and “no-kill” scenarios. For
example, perhaps the model is most germane if “kill” or
“no-kill” is randomly selected according to some appropriate
distribution. For now, this remains a matter of conjecture.

Finally, one additional result is shown in Fig. 1, namely,
the validity of the relation between the concentration of sur-
viving reactant and the distinct number of sites visited by a
random walker, c�t��1 /S�t� �19,20�. The dashed lines show
1 /S�t�, with the upper dashed line corresponding to the
Pareto case, 1 /SP�t��0.853t−0.25, and the lower dashed line
associated with the Mittag-Leffler choice, 1 /SML�t�
�0.641t−0.25.

Figure 2 again shows the concentration of surviving reac-
tant as a function of time for �=0.5 on a lattice of 104 sites,
but now we explore whether our full theory, Eq. �40�, in fact
also captures the transient behavior. We explore this behavior
by starting with a lower initial concentration, c�0�=0.1.
Clearly, the theory again works extremely well for all times.
Here the simulations are carried out in the “kill” scenario
only, and we have presented both the Pareto �squares� and
Mittag-Leffler �circles� results. The solid curves are the the-
oretical results for the Pareto �upper� and Mittag-Leffler
�lower� cases. The dashed lines are the asymptotic results Eq.
�31� for the two cases.

We stress that the asymptotic exponent of time as pre-
dicted by all theories �including our earlier theory that suf-
fers from other difficulties� is correct and agrees with simu-
lation results, which also agree with each other. The different
theories and simulations �Pareto vs Mittag-Leffler, “kill” vs
“no kill,” our earlier theory vs our current theory, distinct
number of sites visited predictions� lead to different �but not
wildly different� prefactors. A more stringent test is provided
by the interparticle distribution function, for which we now
present a series of figures.

FIG. 1. �Color online� Reactant concentration vs time on a lat-
tice of 104 sites with periodic boundary conditions. c�0�=1, �
=0.5. Symbols give results of numerical simulations with kill �open
symbols� and no-kill �black symbols� protocols. Circles: Mittag-
Leffler-based waiting time distribution. Squares: Pareto waiting
time distribution. Solid lines: our theory, Eq. �40�, with Kalpha,P

�upper line� and with K�,ML �lower line�. Broken lines: approxima-
tions c�t��1 /SP�t� �upper� and c�t��1 /SML�t� �lower�. For a defi-
nition of symbols and for quantitative fits to the various lines see
text. In addition, in all the figures of this paper the error bars are
smaller than the symbol sizes.

FIG. 2. �Color online� Reactant concentration vs time on a lat-
tice of 104 sites with periodic boundary conditions. c�0�=0.1, �
=0.5, showing transient behavior. Symbols give results of Numeri-
cal simulations with “kill” protocol for Pareto �squares� and Mittag-
Leffler-based �circles� waiting time distribution. Solid lines: our
theory, Eq. �40�, with K�,P �upper line� and K�,ML �lower line�.
Broken lines: asymptotic approximation for c�t� as given in Eq. �31�
for both cases.
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In the �“normal”� reaction-diffusion problem the interpar-
ticle distribution function develops a growing gap at small
distances. This gap arises as spatially close pairs react and
are not replenished because diffusion is slow in one dimen-
sion. The gap explains the “anomalous” decay law c�t�
� t−1/2, called anomalous because it differs from the law of
mass action behavior c�t�� t−1 predicted for a Poissonian
distribution of well-mixed reactants. Figure 3 shows these
results as obtained from theory and simulations. They agree
extremely well, which is a confirmation that we are in the
asymptotic regime at time t=6000. The exact theoretical ex-
pressions are well known �5,17�,

p�z� =
�

2
ze−�z2/4 �47�

and

E�z� = erfc���z/2� . �48�

This figure serves as a basis of comparison for subsequent
subdiffusive results.

Figure 4 shows the same three panels for the subdiffusive
case �=0.7, but it is necessary to go to longer times, t
=106, to arrive at the asymptotic behavior. The theoretical

curves are obtained from Eqs. �33� and �30� and the simula-
tions are carried out using a Pareto waiting time distribution
with a “kill” rule. The agreement between theory and simu-
lations is still excellent, with very small differences apparent
near the maximum of the interparticle distance distribution.
We have ascertained that we are in the asymptotic regime, so
these differences are an indication of the approximate nature
of the theory rather than of uncertainties preasymptotic tran-
sient effects.

Figure 5 shows the three panels once again, now for the
extremely subdiffusive case �=0.2. The particles spend a
great deal of time simply waiting between jumps, and so it is
necessary to go to much longer times, here t=1019, to reach
asymptotic behavior. The differences between theory and
simulation are still small but certainly more noticeable. It is
of course not clear whether the differences arise from the fact
that the distribution of particles is affected by the reaction, or
from the assumption of linearity of the evolution operator of
the empty interval function, or both. In any case, it does not
seem an exaggeration to assert that the theory is very good. It
is also clear that a gap in the interparticle distance distribu-
tion develops no matter how subdiffusive the system, con-
trary to our earlier thinking �7�.

Two further issues are addressed in the following figures.
In most of our simulation results we have used the “kill” rule

FIG. 3. �Color online� Asymptotic interparticle distribution
function and empty interval function vs the scaled variable z
=c�t�x for the classic reaction-diffusion problem. The simulation
results �symbols� are obtained with an exponential waiting time
distribution on a lattice of 40 000 sites at time t=6000. The solid
curves from the traditional exact theories are given in Eqs. �47� and
�48�. The upper panel shows the interparticle distribution function
and the inset shows it on a logarithmic scale that exhibits the simu-
lation scatter at extremely low densities. The lower panel shows the
empty interval function.

FIG. 4. �Color online� Asymptotic interparticle distribution
function and empty interval function as a function of the scaled
variable z=c�t�x for �=0.7. The simulation results �symbols� are
obtained with a Pareto waiting time distribution and a kill rule on a
lattice of 40 000 sites at time t=106. The solid theoretical curves are
obtained from Eqs. �33� and �30�. The upper panel shows the inter-
particle distribution function and the inset shows it on a logarithmic
scale that exhibits the simulation scatter at extremely low densities.
The lower panel shows the empty interval function.
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whereby the walker that arrives at an already occupied site
eliminates the particle that was there, and we have stated that
agreement with our theory is better with this rule than with
the “no-kill” rule whereby the newcomer is eliminated. Fig-
ure 6 shows three panels where this is illustrated for �=0.2,
0.5, and 0.8 �the rule choice does not matter when �=1�. We
see that as � decreases the differences in the simulation re-
sults for these two cases increase, and that the theory is
closer to the “kill” results. Note that in these figures instead
of a final simulation time we report a final simulation con-
centration to take advantage of the fact that z depends on
time only through the concentration and hence we avoid ad-
ditional uncertainties. These differences point to the approxi-
mation inherent in the hypothesis that the reaction does not
alter the spatial distribution of reactants. It does, although not
by very much, especially if � is not extremely small.

Finally, we briefly examine the approach of the interpar-
ticle distribution to its asymptotic behavior by plotting
p�x , t� /c�t� as a function of xc�t�, the scaling variable. Figure
7 shows the time progression of the distribution for �=0.5
until its arrival at asymptotic behavior in the lower panel. It
is preferable to use the Mittag-Leffler waiting time distribu-
tion for this progression as we have done in these simula-
tions because of its advantages at early times compared to
the Pareto distribution. The figure illustrates that the growth

of the interparticle gap at early times is faster than at later
times when it is determined by the scaling form, but that the
system settles into its asymptotic form rather quickly.

VI. CONCLUSIONS

We have presented a new theory for the coagulation reac-
tion A+A→A on a lattice where the A’s perform a subdiffu-
sive continuous time random walk characterized by the sub-
diffusive exponent �. Our theory relies on the connection
between continuous time random walks and fractional diffu-
sion equations, and is based on two assumptions. The first
hypothesis is that the evolution of the probability density for
an empty interval of length x at time t in the presence of
reactions is the same as the probability density that, in the
absence of reactions, the distance between two subdiffusive
particles that start at the same location at t=0 is x at time t.
The two probability densities are not equal because they
obey different initial and boundary conditions. Only the evo-
lution equations are assumed to be the same. The second
hypothesis is that the �unknown� common equation of evo-
lution for these two probability densities is linear. We have
no analytic way of checking the validity of these assump-
tions, but the results of the theory are extremely close to
those of numerical simulations in all cases tested. Some of
the small differences are more likely ascribed to the second
hypothesis, the assumption of linearity of the evolution op-

FIG. 5. �Color online� Asymptotic interparticle distribution
function and empty interval function as a function of the scaled
variable z=c�t�x for �=0.2. The simulation results �symbols� are
obtained with a Pareto waiting time distribution and a kill rule on a
lattice of 40 000 sites at time t=1019. The solid theoretical curves
are obtained from Eqs. �33� and �30�. The upper panel shows the
interparticle distribution function and the inset shows it on a loga-
rithmic scale that exhibits the simulation scatter at extremely low
densities. The lower panel shows the empty interval function.

FIG. 6. �Color online� Interparticle distribution function p�z�.
Symbols: simulation results with a Pareto waiting time distribution.
Squares �red in color�: “kill” rule. Circles �blue in color�: “no-kill”
rule. Lattice size L=10000, c�0�=1, c�tfinal�=0.0025. Upper
panel: �=0.2. Middle panel: �=0.5. Lower panel: �=0.8. The solid
curves are calculated from Eq. �33�.
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erator, than the first, as explained in the earlier analysis.
We explicitly calculated the global reactant concentrations

as a function of time. This is not a very discriminating mea-
sure of the quality of different theories; all the theories and
implementations tested in this work lead to the same correct
decay exponent of time, c�t�� t−�/2, and only the prefactors
vary, albeit not dramatically. The well-known association of
c�t� with the inverse of the distinct number of sites visited by
a subdiffusive walker also gives the correct exponent and a
prefactor within the range of our theory and simulation re-
sults. We also tested the early time transient behavior of c�t�
predicted by our theory and find that agreement with simu-
lation results is also excellent.

A more stringent test of the theory is the interparticle
distribution function, that is, the more “local” function
p�x , t�. Again, we find our comparisons to show that the

theory captures the simulation results very well, even for
extremely subdiffusive systems. Most of the results that we
present are asymptotic, but we also tested the validity of our
theory in the transient regime, and found again that it works
equally well.

An issue that we discussed at some length concerns a
choice that must be made at the microscopic �continuous
time random walk� level used in the simulations but not at
level of the mesoscopic fractional diffusion equation used in
the theory. The choice concerns the particle that vanishes
when two A particles land at the same location, the one that
was there already or the one that just arrived. The results of
simulations show the differences to be small but discernible
in one dimension, which is evidence of aging �15�; we find
that the agreement with our theory is slightly better with the
first choice and perhaps would be even better with a combi-
nation of choices that allows for both possibilities with some
probability distribution. We also discussed the choice of the
waiting time distribution, an issue that becomes particularly
important at early times and when � approaches unity.

Finally, we point to our work in higher dimensions �6�. In
that work we considered the same reaction as well as the
annihilation reaction but on a lattice with traps of random
depths. The depths of the traps are associated with mean
sojourn times that are finite and distributed according to a
power law. Using a mean field formulation, we approximated
this system by one that has identical fat-tailed waiting time
distributions for each site, and show that in dimension d=3
the mean field model already captures the reaction dynamics
and distribution functions of the original random trap system.
In the mean field model, the “kill” and “no-kill” scenarios
give the same results. A particularly important result in that
work is that the waiting time distribution is unaffected by the
reaction. In our one-dimensional model we start with the
translationally invariant system, but also postulate, and show
to lead to excellent results, an equivalence between evolution
operators in the systems with and without reactions. We also
point to the fact that the distribution develops a growing gap
between particles �7�. The growth of the interparticle gap at
early times is faster than at later times when it is determined
by a scaling form, but in any case there is a gap. This
“anomalous” distribution leads to the “anomalous” decay ki-
netics of the concentration, as in the case of normal diffusion
in one dimension.
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FIG. 7. �Color online� Interparticle distribution function for �
=0.5. Symbols: simulation results with a Mittag-Leffler waiting
time distribution with C�0�=0.1. Upper panel: t=102. Middle panel:
t=105. Lower panel: t=108. The dashed curves are asymptotic, cal-
culated from Eq. �33�. The solid curves are obtained from Eq. �44�.
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