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Exploration and trapping properties of random walkers that may evanesce at any time as they walk have

seen very little treatment in the literature, and yet a finite lifetime is a frequent occurrence, and its effects

on a number of random walk properties may be profound. For instance, whereas the average number of

distinct sites visited by an immortal walker grows with time without bound, that of a mortal walker may,

depending on dimensionality and rate of evanescence, remain finite or keep growing with the passage of

time. This number can in turn be used to calculate other classic quantities such as the survival probability

of a target surrounded by diffusing traps. If the traps are immortal, the survival probability will vanish

with increasing time. However, if the traps are evanescent, the target may be spared a certain death. We

analytically calculate a number of basic and broadly used quantities for evanescent random walkers.

DOI: 10.1103/PhysRevLett.110.220603 PACS numbers: 05.40.Fb, 02.50.�r, 46.65.+g

Random walk models provide a quintessential approach
to transport and related processes in condensed media and
have been studied for more than a century—indeed, as an
antecedent, there is reference to probability and statistical
inference in biblical texts [1]. It is therefore surprising to
find important problems in this arena that have not yet been
explored, especially ones that are broadly applicable and
that can be dealt with analytically. This Letter deals with
one class of such problems associated with the territory
explored by mortal or evanescent random walkers. Mortal
walkers or mortal diffusing particles may disappear in the
course of their motion. This disappearance may, for
instance, be the result of a finite walker lifetime such as
in a unimolecular reaction or a natural decay process.
Other examples of disappearance events may arise from
an encounter of a walker with another walker leading to the
annihilation of one or both, as may occur in radical recom-
bination, in exciton trapping in photosynthesis, or in growth
by aggregation. Many references to such phenomena can
be found in [2–4], and most recently in [5]. On occasion,
but only rarely, one can find models in the literature where
evanescence is incorporated in an explicit way. One inter-
esting instance involves molecular motors that may detach
irreversibly from the transport track [6]. The underlying
random walk model has been generalized in [7,8].

The statistical properties of the territory explored by
immortal random walkers as a function of time have
been studied in a variety of contexts [9–13], and so have
related quantities such as the probability of return to a given
location. In turn, there are further connections between
these and reaction kinetic quantities such as the survival
probability of a target particle surrounded by diffusing
traps (‘‘target problem’’) [14–17]. Early last century these
problems experienced a surge in the literature with the

pioneering work of Smoluchowski on diffusion-limited
chemical kinetics. More recently, a resurgence of interest
started with the classic works of Scher et al. on stochastic
transport in amorphous condensed media [18,19]. Traps
or defects in these media are slowed down by the disord-
ered environment and consequently experience so-called
anomalous diffusion. This slowing down, when incorpo-
rated in the ‘‘defect diffusion model,’’ leads to stretched
exponential relaxation, which turns out to be widely ubiq-
uitous in nature [5,20,21]. The periodic surge of interest
has again been proved by the plethora of recent books and
chapters on anomalous diffusion models as a descriptive
tool of crowded disordered condensed systems [22,23].
Statement of the problem.—We consider a symmetric

nearest-neighbor random walk on a d-dimensional lattice,
that is, a Pólya walk. The walker steps at discrete times tn,
where n is the number of steps. We will also consider the
continuous version, a diffusive process in a continuous
medium taking place in continuous time. Our first goal is
to calculate a quantity which can then be used to calculate
many others: the average number S�n of distinct sites visited
by an evanescent walker up to time tn. The corresponding
continuum quantity is the average volume v�

t of the Wiener
sausage generated by mortal particles up to time t.
The asterisks denote evanescent particles (the correspond-
ing quantities for immortal walkers are indicated without
an asterisk). In turn, these results can be used to address
other classic problems, now for mortal walkers. Perhaps
one of the most interesting arises from the well-known
connection between the survival probability up to a given
step number or time of a target particle surrounded by a
concentration of diffusive evanescent traps. For immortal
walkers, in the discrete problem this survival probability
is �n ¼ exp½��ðSn � 1Þ�, and in the continuous case it is
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�ðtÞ ¼ expð�cRdvtÞ, where � and c denote the density of
walkers in appropriate units and R is the radius of the target
(assuming point traps; otherwise R is the sum of the radii
of the target and a trap). These relations persist for mortal
walkers.

To arrive at the number of distinct sites visited by
an evanescent walker, we introduce the probability
P�
m;n�mðsjs0Þ of finding an evanescent walker at site s after

n�m steps if the walk started at s0 at step m. The proba-
bility P�

0;nðsjs0Þ is the outcome of carrying out the experi-

ment repeatedly, starting the walker at site s0 and counting
the fraction of realizations that arrive at site s at step n.
Alternately and equivalently, if a number of noninteracting
walkers all start at step 0 at site s0, this is the fraction that
arrive at site s after n steps. The probability P�

m;nðsjs0Þ is
related to the corresponding well-studied probability
Pm;nðsjs0Þ for immortal walkers as P�

m;nðsjs0Þ ¼
½�ðnÞ=�ðmÞ�Pm;nðsjs0Þ, where �ðnÞ is the fraction of real-

izations for which the walker has not evanesced up to step
n or, alternately, the concentration of walkers that have not
evanesced up to that step [with �ð0Þ ¼ 1]. We also intro-
duce F�

nðsjs0Þ, the probability that the evanescent walker
arrives at site s for the first time at step n if the walker
started at site s0 at step n ¼ 0. The probabilities P�

m;n and

F�
n are related in the same way as for immortal walkers:

P�
0;nðsjs0Þ ¼ �ss0�n0 þ

Xn
j¼1

F�
j ðsjs0ÞP�

j;n�jðsjsÞ; n � 0:

(1)

Let��
n denote the average number of new sites visited by

the nth step of an evanescent walk, with ��
0 ¼ 1. Then

S�n ¼ Xn
j¼0

��
j ¼

Xn
j¼0

�ðjÞ�j: (2)

We define the generating function of any n-dependent
quantity Anð�Þ by Að�;�Þ � P1

n¼0 Anð�Þ�n. The generating

functions of S�n and ��
n are related by

S�ð�Þ ¼ ��ð�Þ
1� �

: (3)

On the other hand, ��
n ¼

P
s�s0

F�
nðsjs0Þ, n � 0.

Multiplying by �n, summing over n, and reversing the
order of summation yields

��ð�Þ ¼ 1þ X
s�s0

F�ðsjs0;�Þ: (4)

In order to go further we need to specify particular forms
of evanescence. We consider exponential and power-law
decay of the concentration of walkers. The former is the
typical unimolecular decay that describes spontaneous
death, the latter is associated with more complex chemical
reactions [4,24].

Exponential evanescence.—With exponential evanes-
cence, �ðnÞ¼ expð��nÞ. For immortal walkers on a regular
lattice, the walk is time invariant, Pj;nðsjs0Þ¼Pn�jðsjs0Þ.
Exponential evanescence is the only form that preserves this
property for P�. It then follows from Eq. (1) that

F�ðsjs0;�Þ ¼
P�ðsjs0;�Þ � �ss0

P�ð0;�Þ ; (5)

where translational invariance implies that P�ðsjs;�Þ ¼
P�ðs0js0;�Þ � P�ð0;�Þ. Then, from Eq. (5) with Eqs. (3)
and (4) one finds

S�ð�Þ ¼ 1

1� �

X
s

P�ðsjs0;�Þ
P�ð0;�Þ ; (6)

and, using the abbreviated notation �̂ ¼ e���,

ð1��ÞS�ð�Þ¼½ð1��̂ÞPð0;�̂Þ��1. Here we have used the

relations
P

sP
�ðsjs0;�Þ¼�ð�Þ¼1=ð1��̂Þ and P�ð0;�Þ ¼

Pð0; �̂Þ. Lattice Green functions Pð0;�Þ are well known
for the most relevant d-dimensional lattices [14,25], which
then allows us to find a number of results for the evanescent
walk. The expansion of S�ð�Þ in a power series yields the
average number of sites visited up to time tn by a mortal
Pólya walker with exponential evanescence. For immortal
walkers Sn ! 1 as n ! 1. For mortal walkers in the case
of exponential evanescence it is finite, and is given by

S�1 ¼ 1

1� e��

1

Pð0; e��Þ : (7)

Specific values of S�1 depend on dimension and type of

lattice. For d ¼ 1, Pð0;�Þ ¼ ð1� �2Þ�1=2, so that S�1 ¼
½ð1þ e��Þ=ð1� e��Þ�1=2. For a two-dimensional square
lattice Pð0;�Þ ¼ 2Kð�Þ=�, where Kð�Þ is the elliptic inte-
gral of the first kind.
From the known asymptotic behaviors of Pð0;�Þ as

� ! 1� and the fact that �̂ ¼ e���, one can arrive at the
large-n behavior of S�n for slow evanescence (� ! 0).
Focusing on the leading asymptotic contribution, we note
that for d ¼ 2, Pð0;� ! 1�Þ � A=� ln½B=ð1� �Þ�, where
the constants A and B depend on the type of lattice [14].
This behavior in Eq. (7) yields S�1 � �=½�A logðB=�Þ� as
� ! 0. In dimension d � 3, the probability that a walker
returns to the origin is R ¼ 1� 1=Pð0; 1Þ. Hence, S�1 �
ð1�RÞ��1 as � ! 0.
The approach of S�n to S�1 for large n follows from the

subdominant behavior of Pð0;�Þ as � ! 1�. For three-

dimensional lattices, Pð0;�Þ¼P1
m¼0ð�1Þmumð1��Þm=2¼

½P1
m¼0vmð1��Þm=2��1, where the um and vm are known

for a number of lattices [14,26]. Using the second expres-
sion in the result following Eq. (6), expanding in powers of
�, and retaining only the first two terms leads to

S�n � S�1 � 1

u0

e��ðnþ1Þ

1� e��
� u1

u20

Ie��ðnþ 1; 1=2Þ
ð1� e��Þ1=2 (8)
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for n ! 1, where Ixða; bÞ is the regularized beta function.
This asymptotic expression turns out to be surprisingly
accurate even for relatively small n and for �’s that need
not be extremely small (Fig. 1). In fact, the results for �
close to zero are so good that one can find the large-n
asymptotic expression for Sn by taking the limit � ! 0 of
Eq. (8). Expanding this result in powers of n yields a series

whose first three terms (proportional to n, n1=2, and n0) are
identical to those obtained by expanding the exact result
for Sn [26]. Differences appear only in the fourth term,

proportional to n�1=2.

A quantity related to S�n is S�ðrÞn , the average number of
sites revisited at least r times by an evanescent walker in an
n-step walk. Following the procedure in [26], one finds that
the generating function for this number for exponentially
evanescent mortal walkers is given by

S�ðrÞð�Þ ¼
�
1� 1

Pð0; �̂Þ
�
r�1

S�ð�Þ: (9)

From here one finds S�ðrÞn in terms of S�n [26]. For instance,
in dimension d ¼ 1, S�ð2Þn ¼ S�n � 1� e��, S�ð3Þn ¼ 2S�n �
e�2�S�n � 2� 2e��, etc. The average number of sites vis-
ited r times before the walker dies is in any dimension

given by S�ðrÞ1 ¼ ½ð1� e��Þ��1�r�1ðS�1Þr, and is shown as
a faction of r and of � in Fig. 2 and compared extremely
favorably with simulation results. For the average number
of revisits to the origin after n steps ��

n, one finds the

generating function ð1� �Þ��ð�Þ ¼ Pð0; �̂Þ � 1. (We
follow the convention of not counting the initial occupancy
of the origin as the first revisitation [14].) We find that in

any dimension ��1 ¼ ½ð1� e��ÞS�1��1 � 1, and the aver-
age number of visits to a site s other than the origin is
��1ðsjs0Þ ¼ Pðsjs0; e��Þ, one of the few previously known
results for exponentially evanescent walkers (see Sec. 3.2.4
of Ref. [14]).
Power-law evanescence.—Power-law evanescence is

given by �ðnÞ ¼ ð1þ �nÞ��, with � > 0 and �> 0.
Here it is convenient to directly use the relation (2) and
rely on the knowledge of �n for large and small n

for the most common lattices [14,26]. For example, �n�
ð1�RÞ���n��ð1þCn�1=2þ���Þ for three-dimensional
lattices and large n. Because �ðnÞ � ð�nÞ�� for large n,
one sees immediately that S�1 is finite for �> 1. For slow
evanescence (� ! 0), we find

S�1 � 1�R
ð�� 1Þ� ; � > 1: (10)

For �< 1, the result for slow evanescence is quite differ-
ent. For large n, we find

S�n � 1�R
1� �

���n1��; 0<�< 1: (11)

For the marginal case � ¼ 1, S�n � ð1�RÞ��1 logn. For
� ¼ 0 (no evanescence), one recovers the classical result
whereby Sn is proportional to n [14]. The average number
of distinct sites visited by a mortal walker before it dies is
thus finite for � � 1, whereas it is infinite for �< 1. This
is true for d-dimensional lattices with d � 2. However, for
the one-dimensional lattice the critical value is � ¼ 1=2.
Mortal Brownian particles in continuous space,

stretched exponential relaxation.—It is well known that
Sn for immortal walkers can be used to calculate the

FIG. 1. S�n versus n for the simple cubic lattice and, from top to
bottom, � ¼ 0, 0.01, 0.02, 0.05, 0.1, 0.2. Solid lines, Eq. (8);
broken lines, S�1 given by Eq. (7); squares, exact values obtained
by identifying the 100 first coefficients in the �-power expansion
of S�ð�Þ; circles, simulation values for 105 runs. The excellent
performance of the asymptotic expression (8) even for small n is
shown in the inset. For the simple cubic lattice, u0¼1=ð1�RÞ’
1:51639 and u1 ¼ 33=2=ð� ffiffiffi

2
p Þ.

FIG. 2. S�ðrÞ1 versus S�1 and � for several values of r and � and
three different lattices. Symbols: numerical simulations for
d ¼ 1 (triangles), d ¼ 2 (square lattice, circles), and d ¼ 3

(cubic lattice, squares) for 105 runs. The values of S�ðrÞ1 from

the simulation of S�ðrÞn with n sufficiently large to observe no
change in at least three significant figures. From left to right
� ¼ 0:1, 0.05, 0.03, 0.01, 0.05, 0.001, with from top to bottom
r ¼ 2, 3, 4, 5. The straight lines of slope (r� 1) through the
origin are the theoretical predictions.

PRL 110, 220603 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
31 MAY 2013

220603-3



average volume vt of the Wiener sausage generated up to
time t by an immortal Brownian particle in a continuous
medium. Since the relation between Sn and vt is purely
geometric, it can immediately be translated to mortal
walkers. Therefore, our results for S�n can be used to find
the average volume v�

t of the Wiener sausage generated by
a mortal Brownian particle up to time t. Explicitly, S�n with
n � 1 for a walker in a d-dimensional simple cubic lattice
with lattice constant ‘ and the Wiener sausage volume v�

t

generated by a spherical diffusing particle of radius R � ‘
up to time t ¼ n‘2=ð2dDÞ are related by v�

t � ‘S�n
for d ¼ 1 and by v�

t � 	dð‘=RÞ2RdS�n for d � 2, 	d being
a constant that depends on dimension [27].

This connection greatly expands the interesting world
of stretched exponential relaxation discussed in the litera-
ture for several decades. It is well known that the evalu-
ation of the number of distinct sites visited (or the volume
explored) up to a given time is tantamount to the evaluation
of the survival probability �ðtÞ up to that time of a fixed
target particle of radius R surrounded by a concentration of
diffusing point traps (target problem). The connection is
�ðtÞ � expð�cvtÞ, which also holds for evanescent traps
with the replacement of vt by v�

t . The identification of
these traps as defects (i.e., carriers of free volume) is the
basis of the defect diffusion model to explain the stretched
exponential (or Kohlrausch-Williams-Watts) relaxation, in
which ln�ðtÞ � t
. However, only the values 
 ¼ 1=2 and

 ¼ 1 are possible for normal nonevanescent diffusive

defects because Sn / vt / t1=2 for d ¼ 1 (and then 
 ¼
1=2) and Sn / vt / t for d � 2 (and then 
 ¼ 1). This
limited model [28] was extended in [29] by assuming
that the movement of the defects can be described by a
continuous time random walk (CTRW) model with a
power-law waiting time c ðtÞ � t�1�	, 0<	< 1, which
leads to 
 ¼ 	=2 for d ¼ 1 and 
 ¼ 	 for d � 1 [20]. That
is, stretched exponential relaxation with 
 � 1=2 in this
scenario is explained by assuming anomalous diffusion of
the defects, with diffusion exponent 	 (leading to subdif-
fusion when 0<	< 1). In this context we point to a
recent statistical model of random relaxation processes in
disordered systems. It provides a general way to under-
stand nonexponential relaxation processes [30,31].

Our results provide another route for explaining
stretched exponential relaxation even for the case of
normal defect diffusion by allowing the defects to dis-
appear during the relaxation process [24,32]. As we have
shown, different kinds of evanescence lead to different
laws of relaxation. For example, from Eq. (11) we see that
for d � 3, v�

t / t1�� for �< 1, so that one can arrive
at stretched exponential relaxation with exponent 
 ¼
1� � when the concentration of defects decays as a
power law. Moreover, if the concentration of defects
decays as �ðtÞ � 1=t for large t, which corresponds to
� ¼ 1, one finds that v�

t / lnt, which in turns leads to
algebraic relaxation [33–35].

Trapping problem.—The survival probability of the tar-
get in the target problem is frequently and appropriately
used as a first approximation (the ‘‘Rosenstock approxi-
mation’’) to the survival probability of the target in the
so-called trapping problem in which the target diffuses and
the traps are frozen [14]. Our results can also be applied to
this problem, now for the case of traps whose concentration
decreases with time [36].
Conclusions.—As noted earlier, it is surprising to find

important solvable problems involving simple random
walks, but we appear to have done so in the case of random
walkers that evanesce in the course of their motion.
A number of classic problems, such as the distinct number
of sites visited as a function of time, or the survival
probability of a target pursued by randomly walking traps,
or any number of other quantities, change dramatically
when the walkers can die in the course of their motion.
To mention but one or two such changes, we showed that
the average number of distinct sites visited by an evanesc-
ing walker in n steps as n ! 1 may be finite (depending
on the speed of evanescence), whereas it is clearly infinite
if the walkers live forever. Another, closely related to this,
is the survival probability of a target in the presence of
mobile traps. If the traps live forever, the target will even-
tually disappear with certainty; if the traps evanesce, the
target may be spared.
We have also enriched the world of stretched exponen-

tial relaxation of a target as calculated using the defect
diffusion model. When the defects live forever, stretched
exponential behavior in the CTRW model is obtained only
if their diffusion is anomalous. Here we have shown that
the same stretched exponential behavior is obtained with
normally diffusing defects provided they evanesce but do
so sufficiently slowly. Indeed, although not addressed here,
it may happen that particles are subdiffusive and also have
a finite lifetime [37,38]. Other problems for evanescent
walkers related to explored territory (or distinct sites vis-
ited) include the distribution of the distinct number of sites
visited, walks with different waiting time distributions
(CTRWs), and Lévy flights and walks. We are currently
pursuing these and other related problems.
This work was partially supported by the Ministerio de

Ciencia y Tecnologı́a (Spain) through Grant No. FIS2010-
16587, by the Junta de Extremadura (Spain) through Grant
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