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A numerical matrix methodology is applied to quantum problems with periodic potentials. The

procedure consists essentially in replacing the true potential by an alternative one, restricted by an

infinite square well, and in expressing the wave functions as finite superpositions of eigenfunctions

of the infinite well. A matrix eigenvalue equation then yields the energy levels of the periodic

potential within an acceptable accuracy. The methodology has been successfully used to deal with

problems based on the well-known Kronig-Penney (KP) model. Besides the original model, these

problems are a dimerized KP solid, a KP solid containing a surface, and a KP solid under an

external field. A short list of additional problems that can be solved with this procedure is presented.
VC 2016 American Association of Physics Teachers.
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I. INTRODUCTION

The potentials appearing in the Schr€odinger equation as
considered in undergraduate courses are traditionally expected
to have two basic didactic properties: first, they should illus-
trate relevant physics (energy quantization, tunneling, features
of the steady states, etc.) of real quantum systems; and second,
the Schr€odinger equation should have analytical or semi-
analytical solutions that, hopefully, can be worked out by the
students. Unfortunately, the second condition severely reduces
the set of suitable potentials, which hampers our ability to
illustrate quantum phenomena.

It has been long recognized that this difficulty can be eased
if numerical methods for solving the Schr€odinger equation are
also employed.1 There are several numerical techniques that,
while not excessively specialized, can deal with this equation.
Most popular, perhaps, are finite-difference methods, which
are easy to understand and employ in their simplest ver-
sion.1–4 These methods clearly show how the requirement of
physically acceptable bound solutions leads to energy quanti-
zation.2 Recently, Marsiglio has described a quite different
numerical procedure in which the Schr€odinger equation and
its solutions are written in matrix and vector form, respec-
tively, in the basis of the infinite square-well eigenfunctions.
These authors have obtained approximate solutions for the
Schr€odinger equation in one dimension (harmonic potential,
finite square well,5 and a set of periodic potentials6) and for
the radial equation for three-dimensional potentials with
spherical symmetry (Coulomb, Yukawa, and finite spherical
well potentials).7

The matrix approach has some nice features. First, it helps
students understand vector spaces and the matrix representation
of quantum operators. Typically, in undergraduate courses, the
matrix representation of quantum operators appears when dis-
cussing angular momentum (Pauli matrices, Clebsch-Gordan
coefficients) and degenerate perturbation theory,8 but its con-
nection to the previously well-studied Schr€odinger formalism
is unclear. The approach of Refs. 5–7 provides a simple way to
relate the two formalisms. It is especially fortunate that, in
this approach, the solutions are expanded in the basis of the in-
finite square-well eigenfunctions because this is just a Fourier
expansion, a topic many students are already familiar with.
Finally, this approach leads to a numerical method that is quite
simple to use, accurate, valid for a large number of potentials

(essentially, all potentials V(x) for which the integral of V(x)
times the product of sinusoidal functions can be evaluated),
and can be easily programmed, especially with modern soft-
ware packages such as MATHEMATICA, providing in many cases
excellent results with quite modest computational cost. (We
include as supplementary material the MATHEMATICA codes
employed to solve the systems and examples considered in this
paper.9)

Another nice feature of the matrix approach is that it pro-
vides at once numerical estimates of the first N energies and
eigenfunctions of the Schr€odinger equation, where N can be
set at will. Compare this with the standard finite-difference
approach, where energies and eigenfunctions are obtained one
by one.4 This property makes the matrix method especially
suitable for the study of periodic potentials, where many ener-
gies are involved in the formation of energy bands. Moreover,
in some cases the energies lie so close together that some of
them, and their corresponding eigenfunctions, can be easily
missed by standard finite-difference methods. The matrix
approach is free of this problem.

In this paper, we exploit these characteristics of Marsiglio’s
matrix approach to the study of periodic potentials, with the
Kronig-Penney (KP) model as archetype.10 This model is
commonly used in courses in solid-state physics to justify
qualitatively the appearance of energy bands. There exist sev-
eral procedures to solve the Schr€odinger equation with such a
potential.6,11,12 These procedures use the original approach of
Kronig and Penney’s paper, which starts from wave functions
compatible with the Bloch theorem. Such procedures there-
fore require some knowledge of solid-state physics, which
most undergraduates have not studied when they first encoun-
ter quantum physics. The method that we present here, on the
contrary, does not require any background in solid-state
physics; the energy bands arise naturally from the formalism.
Thus, this method can ease the difficulties that students face
when they extend their knowledge about quantum physics to
crystalline solids.

In Sec. II, we present the matrix formalism and point out
its convenience for dealing with periodic potentials when a
sufficiently large number of unit cells (periods) are consid-
ered. In Sec. III, we apply this method to the study of the
original KP model, a dimerized KP solid, a KP solid contain-
ing a surface, and a KP solid under an external field. The
usefulness of this method to provide the time evolution of
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quantum systems is illustrated with an example involving the
KP solid under an external field.

We note here that there are two especially useful comple-
mentary references to the present paper. One is Ref. 4, in
which the original KP model, the KP solid under an external
field, and some other interesting variations of the KP model
(doped lattices and amorphous lattices) are studied numeri-
cally using a finite-difference method. The other is Ref. 6,
where Marsiglio’s approach is used to obtain numerical solu-
tions within a single unit cell, which are then extended by
means of Bloch’s theorem to periodic potentials.

II. THE MATRIX METHOD

Let H0 be the Hamiltonian for an infinite square-well
potential (box) of width L

H0 ¼ �
�h2

2l
d2

dx2
þ Vinf xð Þ; (1)

where

VinfðxÞ ¼
0; 0 � x � L
1; otherwise;

�
(2)

and l is the mass of the particle. The eigenfunctions of H0

are

up xð Þ ¼

ffiffiffi
2

L

r
sin

ppx

L

� �
; 0 � x � L

0; otherwise;

8><
>: (3)

and the corresponding eigenvalues are

Eð0Þp ¼
�h2p2p2

2lL2
; (4)

with p ¼ 1; 2;….
Let us now denote by ~H the Hamiltonian

~H ¼ � �h2

2l
d2

dx2
þ V xð Þ (5)

of the Schr€odinger equation

~H jwi ¼ Ejwi (6)

that we want to solve. Note that the potential V(x) is not nec-
essarily limited to the domain 0 � x � L.

The first approximation in the matrix method consists in
replacing the solutions of Eq. (6) with those of

Hjwi ¼ Ejwi; (7)

where

H ¼ H0 þ V ¼ � �h2

2l
d2

dx2
þ Vinf xð Þ þ V xð Þ: (8)

Equation (7) is just Eq. (6) but with V(x) replaced by
VinfðxÞ þ VðxÞ. This approximation is valid, for example,
when the eigenfunctions wðxÞ of ~H are negligible outside the
box.5 However, in this paper, we will use this procedure to

study periodic potentials, a case where the above condition
does not hold. Specifically, we will replace the infinitely
repeating potential V(x) with a finite periodic potential
VinfðxÞ þ VðxÞ encompassing just a few periods inside the
region 0 � x � L (see Fig. 1). Although the wave functions
of the (fully) periodic ~H are not at all negligible outside the
box, our rationale here is that the effects of the box bounda-
ries on some quantities (e.g., the allowed energies) will be
negligible if the number of periods inside the box is large
enough. We will see that one can get an excellent qualitative
and even quantitative description of true periodic systems by
enclosing just a few periods within the box.

The next step is to note that the eigenfunctions fupðxÞg of
H0 form a complete set of basis states for H, so we can
express any solution wðxÞ of the Schr€odinger equation (7) as
the Fourier series

jwi ¼
X1
m¼1

cmjumi; (9)

where fcmg is a list of undetermined Fourier coefficients.
Inserting Eq. (9) into Eq. (7) and using the orthonormality of
the fupðxÞg functions, we obtain the eigenvalue equation in
matrix form

X1
m¼1

Hnmcm ¼ Ecn; (10)

where Hnm ¼ hunjHjumi is the nm matrix element of H in
the Fourier basis; that is,

Hnm¼dnm E 0ð Þ
n þ

2

L

ðL

0

sin
npx

L

� �
V xð Þsin

mpx

L

� �
dx; (11)

with n;m ¼ 1; 2;… and dnm being the Kronecker delta.
The matrix equation (10) is fully equivalent to the

Schr€odinger equation (7) but is impractical because it is infi-
nite in dimension. Fortunately, not all the coefficients fcmg
are required for an accurate representation of the wave func-
tion wðxÞ. As a second approximation, we therefore assume
that it suffices to retain only a finite number N of terms in
Eq. (9), and to similarly truncate the sum in Eq. (10) at
m¼N. The value of N is chosen to obtain some predefined
accuracy. In practice, for example, one starts with a trial
value of N and then increases this value until the effect of
the increase on the energy eigenvalues is less than some
desired threshold.

In summary, the numerical matrix method of Refs. 5–7
consists of (1) embedding the potential within an infinite

Fig. 1. The true potential V(x) (dashed) and the auxiliary potential VinfðxÞ þ
VðxÞ (solid) for the Kronig-Penney model.
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square well; (2) expanding the wave function in the basis of
eigenstates of the infinite square well, retaining only the first
N terms of the expansion, with N chosen self-consistently;
and (3) solving the eigensystem in Eq. (10), truncated at
dimension N, to obtain the low-lying energies and the associ-
ated wave functions.

III. PERIODIC POTENTIALS

A. Kronig-Penney model

We study first the standard Kronig-Penney potential,
which serves as a simple model of the periodic potential of a
crystal.10 We consider a one-dimensional crystal of lattice
parameter a, where in each unit cell there is a centered bar-
rier of width b. The Kronig-Penney potential is then

VKPðxÞ ¼
V0; jx� xrj < b=2

0; otherwise;

�
(12)

where xr ¼ �a=2þ ra is the position of the rth barrier, and r
is an integer. Analytical solutions for this potential are
reported in the original paper10 and elsewhere.12–15 All of
these authors assume periodic boundary conditions, so that
the Bloch theorem can be used.

Here, we instead use the matrix approach described above,
embedding the potential within an infinite square well of
width L so that the KP potential VKP is replaced by

VinfðxÞ þ VKPðxÞ ¼
1; x � 0 or x � L
V0; jx� xrj < b=2

0; otherwise;

8<
: (13)

where r ¼ 1;…; nb, with nb ¼ L=a the number of barriers.
The matrix elements Hnm ¼ HKP

nm given in Eq. (11) are then

HKP
nm ¼ Eð0Þn dnm þ V0

Xnb

r¼1

hnmðxr; bÞ (14)

with

hnm s; bð Þ ¼ 2

L

ðsþb=2

s�b=2

sin
npx

L

� �
sin

mpx

L

� �
dx: (15)

This integral can be readily evaluated using trigonometric
identities to obtain hnmðs; bÞ ¼ Fnmðsþ b=2Þ � Fnmðs� b=2Þ,
with

Fnn xð Þ ¼ x

L
� sin 2pnx=Lð Þ

2pn
(16)

and

Fnm xð Þ ¼
sin m� nð Þpx=L
� �
p m� nð Þ

� sin mþ nð Þpx=L½ �
p mþ nð Þ (17)

for n 6¼ m. In what follows, we will use units such as
�h2=2l ¼ 1 and a¼ 1, which implies that energies are in units
of �h2=2la2.

Figure 2 shows the energies En for a periodic potential
with barrier width b¼ 1/6, nb¼ 10 barriers (L¼ 10), and
V0 ¼ 100, calculated using the matrix method with N¼ 100.
The continuous lines represent the energies calculated from

the analytical Kronig-Penney solution. This plot shows that
the agreement between the matrix method and the analytical
results, even for only ten barriers, is excellent. The differ-
ence between the two sets of data is of the order of 0.1%.
We note that the error in the calculated energies depends on
the ratio nb=N, so that one should use larger N values for
larger nb values. Our results also agree with those obtained
using a variant of the matrix formalism by Pavelich and
Marsiglio,6 who make explicit use of the Bloch theorem to
build the wave functions for the periodic Kronig-Penney
system.

The computational cost of such a matrix calculation is min-
imal by today’s standards. For nb of the order of a few tens
and N a few hundreds, most of the computation time is
devoted to the evaluation of the N2 matrix elements Hnm,
whereas the time required to find the eigenvalues and eigen-
vectors is negligible.9 The matrix elements are calculated
from the 2N quantities Fnmðsþ b=2Þ and Fnmðs� b=2Þ
defined above, so that the computation time is reduced by
evaluating these in advance. On the other hand, Eq. (14) indi-
cates that the number of operations required to evaluate each
matrix element scales as nb. Therefore, the time required by
the matrix method to find the solutions scales as nb N2. Using
MATHEMATICA on a conventional personal computer, the calcu-
lation of the data of Fig. 2 takes around three seconds.

Notice that in Fig. 2 we plotted the energy levels vs a
scaled version of the quantum number n; using solid-state
physics nomenclature, this scaled quantum number is the
wave number kn ¼ np=L. It turns out that this wave number
is actually related to the overall shape of the wave functions.
In particular, the function sinðnpx=LÞ is a good approxima-
tion for the envelope of the wave function for the nth state,
at least away from the square-well edges; this effect is illus-
trated in Fig. 3 for selected values of n. These are the “Bloch
standing waves” described by Johnston and Segal.4

B. From energy levels to energy bands

Here, we show how energy bands appear as the number of
internal barriers inside a square well is increased. Our
approach is similar to that employed by Cota et al. for the
KP model with Dirac delta barriers.16 Figure 4 shows the
energy levels of the system formed by nb barriers of height
V0 ¼ 100 and thickness b¼ 1/6 placed, as shown in Fig. 1,

Fig. 2. Energies En vs wave numbers kn ¼ np=L for the one-dimensional

Kronig-Penney potential with b¼ 1/6 and V0 ¼ 100. Note the band struc-

ture. The matrix method values were obtained for nb¼ 10 (L¼ 10) and

N¼ 100.
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inside a infinite square well of width L¼ nb. The number of
levels below V0 increases with the number of unit cells, and
they gather to yield intervals of allowed levels (the bands),
separated by regions with no allowed energies (the gaps or
forbidden energies).

C. Dimerized Kronig-Penney

We consider now a dimerized Kronig-Penney model in
which the barriers are alternately shifted right or left by a
distance u (see Fig. 5). This model is equivalent to a KP
model with a unit cell of length 2 (the dimer), containing
two barriers placed at locations ð1=2Þ þ u and ð3=2Þ � u.

For the special case of Dirac delta barriers, the dimerized
KP model has been studied by Go~ni et al.17 The periodic
potential is then VðxÞ ¼ 2P

P
rdðx� xrÞ, where xr ¼

�1=2þ r � ð�1Þru and 2P is a parameter that determines
the strength of the barrier. The analytical calculations of Ref.
17 predict the appearance of energy gaps whose positions
and widths depend on the dimerization parameter u.

In order to compare these analytical results with those
from the matrix method for barriers of width b and height

V0, we must employ thin, high barriers (b! 0 and V0 !1
with the bV0 ¼ 2P held fixed) that mimic Dirac delta bar-
riers.10,18 We have used b¼ 1/100 and V0 ¼ 100 for the
results displayed as open symbols in Fig. 6. This figure
shows good agreement between the theoretical gap widths
and those calculated with the matrix approach. In this
respect, a minor technical point about our numerical estimate
of the gaps between bands is in order. Let us assume that the
extreme values of two contiguous bands are En and Enþ1.
Then our (improved) estimate of the size of the gap between
the two bands is the difference between the extrapolation
value at the middle point from the right, Enþ1 � ðEnþ2

�Enþ1Þ=2, and from the left, En þ ðEn � En�1Þ=2.
Figure 6 also displays the numerical results obtained with

b¼ 1/10, V0 ¼ 10 (filled symbols), and with b¼ 1/5, V0 ¼ 5
(crossed symbols). These additional data show that the gaps
shrink as the barriers thicken. It is also notable that for rela-
tively thick barriers with b¼ 1/10 the gaps are still close to
those of delta-type barriers; however, the discrepancies are
already important for b¼ 1/5. Note finally that the differen-
ces with the behavior for delta barriers increase with the
order of the gaps.

D. Surface electronic states in the Kronig-Penney model

Next we modify the original Kronig-Penney model to add a
“surface” that can cause the appearance of so-called (Tamm)

Fig. 3. Eigenfunctions wnðxÞ vs x for (starting at top left) n¼ 1, n¼ 9,

n¼ 10, and n¼ 16, obtained by means of the matrix method for b¼ 1/6,

V0 ¼ 100, nb¼ 10 (L¼ 10), and N¼ 100. The dashed curves are the func-

tions 0:6 sinðnpx=LÞ.

Fig. 4. Numerical matrix results (symbols) for the energy levels vs number

of barriers (or cells) for configurations as in Fig. 1 with b¼ 1/6, V0 ¼ 100,

and N¼ 100. The dashed lines correspond to the band limits of the original

KP model.

Fig. 5. Potential for the dimerized Kronig-Penney model. Solid line: dimer-

ized potential with parameter u 6¼ 0; dotted line: original (u¼ 0) potential.

Fig. 6. The three first gap widths vs the dimerization parameter u for the

dimerized KP model. Open symbols: results from the matrix method for the

first (circles), second (diamonds), and third (squares) gap, obtained with

b¼ 1/100, V0 ¼ 100 (open symbols), b¼ 1/10, V0 ¼ 10 (filled symbols) and

b¼ 1/5, V0 ¼ 5 (crossed symbols). In all cases, nb¼ 80 and N¼ 200. Solid

lines: analytical results for the Dirac delta KP model.17
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surface states.19–22 This surface is represented by a potential
Vvac that the electron has to surmount to escape from the crys-
tal to the vacuum (as shown in Fig. 7). Since surfaces consti-
tute local breakdowns of the translational symmetries of ideal
solids, the wave number k appearing in the eikx factor of the
Bloch waves, which is always real for ideal crystals, may, in
some cases, be complex,20,22 leading to wave functions local-
ized near the surface with energies inside the forbidden
energy gaps of the ideal infinite crystal.

A model amenable to a relatively simple analytical
description is the (semi-infinite) KP model with an infinite
number of equidistant Dirac delta barriers placed to the right
of a surface (vacuum) represented by a constant potential
Vvac. Such a potential can be written as

VðxÞ ¼ Vvac hðxs � xÞ þ 2P
X1
r¼1

dðx� xrÞ; (18)

where hðxÞ is the Heaviside step function, 2P is the strength
of the delta barriers, xs is the position of the surface, and
xr ¼ xs � 1=2þ r are the positions of the barriers. For the
fully infinite KP ideal crystal (without surfaces), the disper-
sion relation is well known8,10,18,20

cos k ¼ cos nþ Pn�1 sin n; (19)

where n2 ¼ E. Here, k must be real for the Bloch wave func-
tion to remain finite. Shortly after the Kronig-Penney
work,10 Tamm19 realized that this real k requirement no lon-
ger holds for a semi-infinite crystal [defined, for example, as
in Eq. (18)], and that solutions with complex wave numbers
of the form k ¼ ibþ mp, with b > 0 real and m ¼ 0; 1;…,
may exist. In these cases, the energies E ¼ n2 of the surface
states for a KP lattice with delta barriers of strength 2P and a
surface of height Vvac ¼ n2

0 are20,22,24

ncotn ¼ n2
0

2P
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

0 � n2
q

; (20)

provided that b > 0. These energies are inside the forbidden
energy gaps. In order to show the space localization of the
surface states it is convenient to define the relative probabil-
ity density25 RðxÞ ¼ jwsðxÞj2=jwsð0Þj2, where wsðxÞ is a sur-
face state wave function.

It turns out that no surface state can exist unless its energy
satisfies the so-called Tamm existence condition,24

n2
0 < n2 þ P2, which, using Eq. (20), can be restated in an

equivalent way: surface states can only exist for vacuum
potentials Vvac smaller than the limit defined by

n2
0 � P2

� 	1=2

cot n2
0 � P2

� 	1=2

¼ n2
0

2P
� P: (21)

For Vvac !1 the Tamm existence condition is never satis-
fied, no forbidden-energy-gap state appears, and only stand-
ard KP energy bands coming from Eq. (19) remain.

A similar analytical treatment for the case of two surfaces,
to the left and right of a finite train of equidistant Dirac delta
barriers, is possible but more involved,20,21 and will not be
considered here. However, it turns out that the preceding
analysis for the infinite system provides an accurate descrip-
tion for even relatively small finite systems,20 which we will
use in our matrix approach. Physically, the effects of a sur-
face at the right on the phenomena occurring at the left are
negligible if the two surfaces are far apart.

The study of surface states (with two surfaces) in the finite
KP model by means of the matrix method is straightforward:
in the box of length L we place nb ¼ L� 3 barriers of width
b and height V0 at positions xr¼ r, with r ¼ 2; 3;…; nb þ 1,
and then attach a barrier of height Vvac and width 1þ b=2 to
each infinite wall, as shown in Fig. 7. The position of the left
surface is then xs ¼ 1þ b=2. This way the widths 1� b of
all the nb þ 1 valleys are the same, just to mimic the model
with Dirac delta barriers. The matrix elements Hnm are then
readily obtained [cf. Eq (14)]

Hnm¼Eð0Þn dnmþV0

Xnbþ1

r¼2

hnmðxr;bÞ

þVvac½hnmðxL;1þb=2ÞþhnmðxR;1þb=2Þ�; (22)

with xL ¼ xs=2 and xR ¼ L� xL.
Figure 8 plots the relative probability density RðxÞ ¼
jws

1ðxÞj
2=jws

1ð0Þj
2

corresponding to the first surface state of
the semi-infinite Dirac delta KP model with P¼ 10 and
Vvac ¼ 50.20 The analytical model, through Eq. (20), yields
only two surface states, with energies Es

1 ¼ 6:65 and
Es

2 ¼ 26:44, for this case. Figure 8 also shows the correspond-
ing R(x) as obtained by the matrix method with N¼ 400 for
nb¼ 10 barriers of thickness b¼ 1/6, b¼ 1/12, and b¼ 1/96,
with V0 ¼ 2P=b. For finite crystals, each surface energy is
actually split into a pair of values fEs;a

n ;Es;b
n g, which coalesce

into the infinite crystal value Es
n when nb !1.20 Table I lists

Fig. 7. The potential for a finite Kronig-Penney solid with two surfaces of

height Vvac at xs and L� xs.

Fig. 8. Results of the matrix method for the relative probability density

RðxÞ ¼ jws
1ðxÞj

2=jws
1ð0Þj

2
of the first surface state with P¼ 10, Vvac ¼ 50,

N¼ 400, nb¼ 10, and with b¼ 1/6 (dotted), b¼ 1/12 (short-dashed), and

b¼ 1/96 (long-dashed). The solid line is the theoretical result for Dirac delta

barriers.20
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both energies in each case for nb¼ 10, and for comparison
also lists the (coalesced) energy for nb¼ 20. The agreement
of the numerical matrix results with the theoretical ones corre-
sponding to the infinite KP model with Dirac delta barriers
improves as we reduce the thickness of the barriers, as
expected.

According to Eq. (21), the maximum value of Vvac that
supports a surface state is Vvac � 107 for the KP model with
Dirac delta barriers with P¼ 10. For larger values of Vvac,
the surface state leaves the forbidden energy gap, entering an
allowed energy band, and the wave function loses its damped
behavior. For b¼ 1/96, P¼ 10, nb¼ 10, and N¼ 400, the
limiting Vvac value that one finds numerically9 is around 110,
in good agreement with the value Vvac � 107 of the Dirac
KP model. Thus, the value Vvac ¼ 50 that we have chosen
ensures the existence of surface states. Besides, this is a sen-
sible value for the surface potential felt by an electron: for a
lattice parameter a¼ 4 Å, Vvac ¼ 50 is equivalent to roughly
12 eV, which is a reasonable vacuum potential value.

E. Kronig-Penney model with an external field

Finally, we consider the problem of a finite Kronig-Penney
solid in the presence of a uniform electric field ��, that is,
VeðxÞ ¼ �xþ VinfðxÞ þ VKPðxÞ, where VKPðxÞ is given in Eq.
(13). The shape of the potential VeðxÞ is shown in Fig. 9. The
matrix elements Hnm are just those of the KP model, HKP

nm ,
plus the contribution He

nm from the external field

He
nm ¼

2�

L

ðL

0

sin
npx

L

� �
x sin

mpx

L

� �
dx

¼

�L

2
; m ¼ n;

0; mþ n ¼ even;

� 8mn � L

p2 m2 � n2ð Þ2
; mþ n ¼ odd:

8>>>>><
>>>>>:

(23)

The numerically calculated energy bands for different val-
ues of the field strength are shown in Fig. 10; wave functions
corresponding to the lowest allowed energy for the same
fields appear in Fig. 11. In all cases, we have used b¼ 1/6,
V0 ¼ 100, nb¼ 20, and N¼ 100.

The first obvious effect of the field consists of the reduction
of the forbidden band widths with increasing field strength;
eventually, for strong enough fields, the forbidden bands dis-
appear. The low-energy wave functions shift towards the
region of lower potential, with a larger shift for larger field
intensities. It is remarkable how little the energy bands change
with the external field in comparison to what happens for the
wave functions; compare, for example, the energy bands and
wave functions w1ðxÞ for �¼ 0 and � ¼ 1=100.

A complementary discussion of the behavior of the bands
and wave functions of the Kronig-Penney model with an
external field can be found in Ref. 4.

F. Additional problems

Many other problems, similar to those discussed above,
could be considered. For instance, the effect of point defects
(and complex associations) in the band structure of crystals
can be studied by modifying the widths and heights of some
barriers in the Kronig-Penney potential. In this situation, res-
onant levels within bands or localized electronic states
within the forbidden energy gaps should appear (see Secs. III
D and III E in Ref. 4). Another example is a simple model of
amorphous materials: one could study disordered KP models
where the heights and/or widths and/or separations of the
barriers are random.4,26

In Sec. III D, numerical results for the surface states of fi-
nite crystals were compared with the corresponding analyti-
cal results for the infinite crystal, but a further comparison
could be carried out between numerical and analytical results
for the finite crystal (see, for example, Sec. 3.3 of Ref. 20 for
the theoretical discussion of this case), for a crystal with a
distorted surface,22,23 or with an external field.25 Energy
bands for non-rectangular periodic potentials (such as the
Mathieu sinusoidal potential) can also be studied.6

Finally, the matrix approach provides a straightforward
way to compute the time evolution of some quantum states.
Assuming that Wðx; 0Þ �

PN
n¼1 anwnðxÞ is a fair approxima-

tion to the initial quantum state, we know that27

Table I. Surface state energies for the Kronig-Penney solid shown in Fig. 7,

with Vvac ¼ 50 and N¼ 400. For nb¼ 20 we write only a single value because

Es;a
n and Es;b

n are equal to two decimal places.

b Es
1 (nb¼ 10) Es

1 (nb¼ 20) Es
2 (nb¼ 10) Es

2 (nb¼ 20)

1/6 8.22, 8.23 8.23 31.91, 31.92 31.92

1/12 7.37, 7.37 7.37 28.99, 29.00 29.00

1/96 6.77, 6.78 6.83 26.86, 26.86 27.02

Fig. 9. Potential for a Kronig-Penney solid with a constant electric field �.
Fig. 10. Band structure for several values of the field strength � for a KP

solid with b¼ 1/6, V0 ¼ 100, nb¼ 20, and N¼ 100.
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Wðx; tÞ �
XN

n¼1

an e�iEnt=�h wnðxÞ: (24)

We have seen in Secs. III A–III E that the matrix method pro-
vides good approximations for the eigenvalues En and eigen-
functions wnðxÞ ¼

PN
m¼1 cðnÞm umðxÞ appearing in this

expression. Then, in order to evaluate Eq. (24), one needs
only compute the coefficients an

an ¼ hwnjWðx; 0Þi �
XN

m¼1

cðnÞ�m humjWðx; 0Þi; (25)

where

humjW x; 0ð Þi ¼
ffiffiffi
2

L

r ðL

0

sin
mpx

L

� �
W x; 0ð Þ dx: (26)

As an example, in Fig. 12 we show the probability density
jWðx; tÞj2 obtained from Eqs. (24) through (26) for an initial
Gaussian wave packet

W x; 0ð Þ ¼ 1

pr2ð Þ1=4
exp �

x� x0ð Þ2

2r2


 �
; (27)

for three different cases of the system of Sec. III E; namely,
a case with no barriers and no external field, a case with bar-
riers and no external field, and a case with external field but
no barriers. Another interesting task would be to study how
the position of the wave packet changes according to the
value of the external field and/or the size of the barriers. For
example, for the case with �¼ 10 and V0 ¼ 0, it is a worth-
while exercise to check that the movement of the location
of the peak of the wave packet, xmax, shown in Fig. 12
from t¼ 0 to t¼ 0.26, obeys Newton’s second law, xmax ¼
x0 ��t2=2l.

IV. SUMMARY

In this paper, we have shown that the numerical matrix
procedure described by Marsiglio5 can be easily applied to
periodic potentials that model a variety of interesting phe-
nomena in solid state physics. The matrix method is espe-
cially appropriate for these systems, because it conveniently
yields, with high accuracy, a whole list of eigenvalues (e.g.,
the energy bands) and the associated eigenfunctions. This
method is also simple to program and use, and quite efficient
computationally. We have employed this procedure to show
that some characteristics of fully periodic systems, such as
the existence of energy bands and forbidden intervals, appear
already when one considers a relatively small number of unit
cells. We have illustrated the capability of the method by
applying it to the Kronig-Penney (KP) potential and some
related systems, such as a dimerized KP solid, a KP solid
with surfaces, and a KP solid with an external electric field.
Finally, we have shown that the method can be readily
employed to obtain the time evolution of quantum states.
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