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We study normal diffusive and subdiffusive processes in a harmonic potential (Ornstein-Uhlenbeck process)
on a uniformly growing or contracting domain. Our starting point is a recently derived fractional Fokker-Planck
equation, which covers both the case of Brownian diffusion and the case of a subdiffusive continuous-time
random walk (CTRW). We find a high sensitivity of the random walk properties to the details of the domain
growth rate, which gives rise to a variety of regimes with extremely different behaviors. At the origin of this
rich phenomenology is the fact that the walkers still move while they wait to jump, since they are dragged by
the deterministic drift arising from the domain growth. Thus, the increasingly long waiting times associated
with the aging of the subdiffusive CTRW imply that, in the time interval between two consecutive jumps, the
walkers might travel over much longer distances than in the normal diffusive case. This gives rise to seemingly
counterintuitive effects. For example, on a static domain, both Brownian diffusion and subdiffusive CTRWs
yield a stationary particle distribution with finite width when a harmonic potential is at play, thus indicating
a confinement of the diffusing particle. However, for a sufficiently fast growing or contracting domain, this
qualitative behavior breaks down, and differences between the Brownian case and the subdiffusive case are
found. In the case of Brownian particles, a sufficiently fast exponential domain growth is needed to break the
confinement induced by the harmonic force; in contrast, for subdiffusive particles such a breakdown may already
take place for a sufficiently fast power-law domain growth. Our analytic and numerical results for both types of
diffusion are fully confirmed by random walk simulations.
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I. INTRODUCTION

Diffusion in growing domains is a phenomenon of great
interest in a number of disciplines, e.g., in cosmology [1-4]
and biology [5]. In cosmology, examples include scattering of
electromagnetic radiation in inhomogeneous magnetic fields
[6,7] during the expansion of the universe; in biological
media, particle dissemination often takes place on timescales
where the physical growth of the embedding medium cannot
be neglected. For instance, embryonic tissue growth via cellu-
lar division takes place during the spreading process, leading
to the formation of a morphogen gradient [8,9], whereby the
local concentration of morphogens may influence the growth
process itself [9]. Diffusion of substances throughout growing
organs [5,10-19] has also been invoked to explain phenomena
such as the formation of pigmentation patterns [5], teeth
primordia in animals [10], and the growth of microorganisms
into colonies [20]. Finally, stochastic transport in growing do-
mains is also a topic of great interest in finance, where random
walk models have played a major role since the seminal work
of Bachelier [21]. In this context, the phenomenon of inflation
[22] can be thought of as an additional shift in a walker’s
position arising from a dilation of the spatial domain.

Even though diffusion in growing domains has been stud-
ied over several decades, a surprisingly large number of
open questions remain. For example, despite recent progress
[23-26], a comprehensive theory of first-passage processes
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and encounter-controlled reactions in growing domains is still
missing. That said, the particular cases studied so far clearly
demonstrate that an expansion or contraction of the spatial
domain may impact the kinetics and the spatial organization
induced by encounter-controlled reactions very significantly.
Of course, the reason is that, for a sufficiently fast growth
of the domain, the encounter rate of diffusing particles is no
longer dominated by diffusive transport alone; the particle
drift associated with the domain growth or contraction must
also be taken into account and may actually even become
dominant. By way of example, consider the system studied in
Ref. [24], i.e., the coalescence and annihilation reaction in one
spatial dimension. Among other findings, it was shown that a
sufficiently fast domain growth results in a premature halt of
the ongoing reactions, thereby leading to a nonempty frozen
state. Furthermore, the dynamic self-ordering of the reagents
is frustrated, and the time evolution becomes very sensitive to
the initial condition.

Another open problem is the characterization of biased
random walks in growing domains. Of special interest in this
context is the effect of anomalous diffusion processes, which
have attracted great interest in recent years as a means to
model stochastic transport in biological media [27-34]. The
interplay between the anomalous diffusion process and the
domain growth may give rise to nontrivial effects, both in the
absence [35,36] and presence [37] of a biasing force. Recent
work has, e.g., shown that biased walks on growing domains

©2019 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.012142&domain=pdf&date_stamp=2019-07-26
https://doi.org/10.1103/PhysRevE.100.012142

F. LE VOT, S. B. YUSTE, AND E. ABAD

PHYSICAL REVIEW E 100, 012142 (2019)

violate the generalized Einstein relation [37], even in the case
of normal diffusion. While interesting effects already arise in
the case of a constant force [37], a more complex type of bias,
e.g., one arising from a Hookean force, is expected to yield an
even richer phenomenology in combination with anomalous
diffusion processes. Exploring this phenomenology is the
main goal of this paper, both for normal and for anomalous
diffusion.

On a fixed domain, the combination of normal diffusion
and the harmonic potential associated with the Hookean force
yields the celebrated Ornstein-Uhlenbeck (OU) process [38].
Indeed, the OU process and variants thereof [39-47] find a
wide variety of applications in different fields such as finance
[39-41], optics [44], etc. In particular, subdiffusive versions
of the OU process are relevant for the field of financial
mathematics [45].

Interestingly, the Fokker-Planck equation describing the
evolution of a Brownian particle on an exponentially contract-
ing one-dimensional domain turns out to be identical with that
of a standard OU process on a static domain (for a suitable
parameter choice, this follows from Eq. (33) in Ref. [23]). In
fact, in Sec. III, Eq. (18), we will see that the drift induced by
an exponential domain contraction on a diffusing particle can
be mimicked by a harmonic potential with a suitably chosen
elastic constant. Conversely, an exponential growth of the
domain is expected to soften the effect of the harmonic force,
resulting in the onset of a new effective harmonic potential
with a decreased elastic constant.

It should therefore come as no surprise that some features
controlled by the stiffness of the potential turn out to be
strongly affected by such a domain growth and notably the
ergodicity properties of the OU process [46]; see Sec. III B.
In what follows, we will explore systematically the major
changes induced by the domain kinetics on the OU process.
In light of the previous paragraph, the study of such prop-
erties may be relevant both for growing and for nongrowing
biological systems in which the motion of diffusing entities is
confined by optical tweezers, since the effect of the latter is
well approximated by a harmonic potential [48,49].

The remainder of this paper is organized as follows. In
Sec. II, we briefly outline the derivation of a recently ob-
tained fractional Fokker-Planck equation (FFPE) [37] that is
then taken as a starting point for subsequent calculations.
Sections Il and IV are respectively devoted to the phe-
nomenology of the normal diffusive and of the subdiffusive
process on a uniformly growing or contracting domain. Fi-
nally, in Sec. V, we summarize our main conclusions and
suggest possible ways of extending the present work.

II. CTRW MODEL AND FFPE FOR DIFFUSION
ON A GROWING DOMAIN

In Ref. [37], a FFPE for a subdiffusive random walk
evolving on a uniformly growing domain was derived. The
starting point to obtain the FFPE is a continuous-time random
walk (CTRW) model [50,51] in which the diffusive particles
(also called walkers in what follows) are subject to the action
of an external force. The walkers are assumed to perform
instantaneous jumps at randomly distributed times. The force
field is only at play when the particles jump, in which case

it induces a bias in the jump direction. In the separable
version of the model, the statistics of the walk is dictated by
the waiting time and the jump length probability distribution
functions (pdfs).

To set the stage, we will focus on the 1d case (a general-
ization to the higher dimensional case proceeds along similar
lines). A given physical point on the 1d domain is shifted as a
result of the domain growth. Thus, its coordinate y changes
in the course of time. For convenience, one also defines a
so-called comoving coordinate x, which is simply the initial
position yo of this point. For a uniformly growing domain,
one has a simple relationship between the physical coordinate
and the comoving coordinate, namely,

y(1) = a(t)x ey

with a(¢f) > 0. In the language of cosmology, the time-
continuous function a(?) is called the “scale factor” [52]. For
a growing (contracting) domain, one has a > 0 (a < 0). We
shall occasionally use the terms “expanding” and “shrinking”
as synonyms of “growing” and “contracting.”

Let us assume that y describes the position of a walker per-
forming a biased, separable CTRW on the growing domain.
Two different types of biasing forces can be distinguished,
namely, those acting on the walker at all times [47,51,53] and
those that are only at play when the walker jumps, resulting
in an asymmetric jump length pdf [37,47,51,54]. As already
mentioned, we shall focus on the second case here. Were
the walk taking place on a static domain, the particle would
remain at the same physical position between two consecutive
jumps; on a growing or shrinking domain, this is no longer
true, since the particle is drifted in physical space because of
the displacement of the (expanding or contracting) “volume
element” in which it dwells. From the point of view of the
walker’s motion, this kind of drift can be viewed as arising
from a physical force; in fact, the effect of an exponential
contraction on the diffusing particle turns out to be equivalent
to the action of the harmonic force in the OU process [47].

In our model, the effect of the external force field will be
included by means of the following jump length distribution
[37]:

A,y 1) =217 (y = Y)IA™ (Y, )O( — )
+B*(y, 0K -y, 2)

where A*(y — y') is a symmetric pdf for the jump length |y —
y'| with a typical variance 202, In Eq. (2), A*(Y/, t) [B*(y', )]
denotes the probability that a random walker located at y’
takes an instantaneous jump to the right (left) at time z.
Obviously, one has B*(y', 1) = 1 — A*(y/, t). From Eq. (2),
one finds that the mean value of the displacement of the walker
in a single jump is 2ec[A*(y', t) — B*(y/, t)], where

1 o0
£=— / dy y " (y) (3)
o Jo

is a dimensionless constant.

In the comoving reference frame, the corresponding jump
length pdf A(x, x’, t) can be derived by applying probability
conservation arguments. One has A*(y, y)dy = A(x, x’, t)dx.
Hence,

ACe, X' 1) =a@)A* (a(t)x, at)x', t). 4)
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This can be written out as follows:
Al x' 1) =210, X', DHAGK, HO(x — x)
+ B, 1)0x" —x)], (5

where A(x,t) = A*(a(t)x,t), B(x,t) = B*(a(t)x’,t) and
A, x', 1) = a(t)A*(a()(x — x')). As one can see, in the
comoving reference frame the pdf A adopts the same form as
the pdf corresponding to a CTRW process on a static domain,
except for the fact that a time dependence comes in. This time
dependence arises from the change of the jump length by a
factor 1/a(t) in the comoving reference frame.

In what follows, we will consider two special yet important
types of pdfs. The first class has the following long-time
asymptotic form:

at®
rd—oa)
with 0 < o < 1 and the characteristic time t. In the standard
case of a static domain, this type of pdf is known to yield
subdiffusion, i.e., diffusion with a sublinear time growth of
the mean squared displacement (msd) proportional to #¢. In

particular, for our numerical random walk simulations, we
will use the Pareto pdf:

o A\
(A1) = —(1 + —) , (7)

o a)Ot

@(AL) ~ (At~ (6)

where w, = t/['(1 — «)]'/*. The other class of pdfs we will
consider are those leading to normal diffusion, i.e., leading
to an msd proportional to f. In particular, we will use the
exponential distribution

p(A1) = ~exp (—5), ®)
T T
although any other pdf with a finite first-order moment would
also yield normal diffusion.

Let us now introduce the pdf W (x, t), which is associated
with the (infinitesimal) probability W (x, t)dx of finding the
walker within the interval delimited by x and x + dx at time
t. This pdf has of course a counterpart in physical space,
hereafter denoted by W*(y, ¢). From probability conservation,
one has W*(y,t) = W(y/a(t), t)/a(t). The FFPE for W (x, t)
is [37]

WD _ Du g [IW
ot a?(t) ! dx2
1 1 0[2¢e0 A—B) DFO‘W( 0 ©)
- - X
a(t) &, 9x| 1@ 0= e
where A—B=Ax,t)—B(x,t) =A%y, t) — B*(y,t) =
A* — B* and
2
D, = = (10)
-CC(

is the anomalous diffusion coefficient. Thus, the bias aris-
ing from the external force is implemented by an increased
probability for jumps in the direction of the force and by
the corresponding decrease of the probability for jumps in
the opposite direction. For normal diffusion as well as for
subdiffusive CTRW processes, the relationship between the

external force F*(y,t) and A* — B* is well known; one has
F*o /KT = 2¢(A* — B*) or, equivalently,

F* _ 2e0

T
where Eq. (10) and the generalized Stokes-Einstein-
Smoluchowski relation ®,&, = KgT [37,55] have been taken
into account. Here, Kp, T, and &, respectively stand for the
Boltzmann constant, the temperature, and the generalized
friction constant. In what follows, we will assume that the
nonzero bias A* — B* in the jump probability depends on the

force but not on the domain growth or contraction. Under this
assumption, Eq. (9) becomes

WD _ Da pig [E)ZW}
ar 20" | a2
1 109 e
SO E o [F(x,1)oD*W(x,1)], (12)
with F(x,t) = F*(a(t)x, t).

Note that, taken together with the constraint [A* — B*| < 1,
Eq. (11) implies that the effect of the force saturates if its
magnitude exceeds the limit 2,60 /7%; as soon as this is the
case, the bias reaches its maximum value, and so the particle
always jumps in the same direction (to the right, say, if A* = 1
and B* = 0). The integrodifferential operator on the right-
hand side (rhs) of (12) is the so-called Griinwald-Letnikov
fractional derivative of order 1 — «. A straightforward defi-
nition of this operator in terms of the Laplace transform of its
argument is the following:

oD f () = L7 s f ()], (13)

where the Laplace transform L is defined by

(A* — BY), an

LIf1(s) = fis) = /O ditf(yexp(—st).  (14)

When the function f(¢) is continuous and sufficiently well be-
haved at the origin (see, e.g., Egs. (2.255), (2.248) and (2.240)
in Ref. [56]), the Griinwald-Letnikov operator is equivalent
to the Riemann-Liouville fractional derivative, defined as
follows:

t

ol = oo [T
['(a) ot Jg (t —u)l—
In the OU process, the diffusive particles are subjected to
an external harmonic potential associated with the Hookean
force F*(y) = —«y, which is directed toward the potential
minimum at y = 0. In terms of the comoving coordinate, one
has F(x,t) = —kxa(t), and consequently, Eq. (12) takes the
following form:

15)

W _ Du
ot a(@) !

PWT k9 Y
[W} + ga—x[X()Dt W(.X,l)].
(16)

Equation (16) will be the starting point of our subsequent
analysis. The resulting solutions will be compared with the
outcome of random walk simulations (see the Appendix).
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III. OU PROCESS FOR A BROWNIAN PARTICLE
ON A GROWING DOMAIN

In the case of a Brownian particle (« = 1), Eq. (16) takes
the simplified form

aW(x,t) D 0w n Kk 0 LW (x. 1)] (17
= — X X, )
ot a*(t) ox2 = &£ ox
with ® = O and £ = . It is worth noting that Eq. (17) may
not be derived only in the framework of the CTRW model
but also by means of other methods, such as the Langevin ap-
proach introduced in Refs. [23] and [25]. The corresponding
Langevin equation in physical coordinates reads

¥t +dt) = y(t) + (vy + v)dt +V2DdW(@),  (18)

where W(t) stands for a Wiener process, v = F*(y)/& =
—ky/& is the intrinsic drift velocity, and vy = ya/a stands
for the drift velocity associated with the deterministic domain
growth (in the language of cosmology, vy is the “Hubble
velocity”).

At this stage, a remark on the physical interpretation of
Eq. (18) is in order. Note that, in the contracting case a < 0,
the structure of Eq. (18) corresponds to that of a Langevin
equation for an OU process with an increased elastic constant
Keff = k — £a/a that is in general time dependent [only in the
particular case of an exponential contraction a(t) = exp(Ht)
with H < 0 does one have a stationary effective constant
keff = kK + £|H|]. Even in the absence of the harmonic force,
one still has an effective harmonic potential with a time-
dependent elastic constant k. = —£a/a. For a power-law
scale factor, a(t) = [(t +1y)/to]” with y < 0, one obtains
a time-decreasing constant k. = £|y|/(t + o), leading to a
1/t long-time decay. The problem of normal diffusion in a
harmonic potential with a time-dependent elastic constant (a
so-called breathing parabola) has been the object of extensive
research (see, e.g., Ref. [57] and references therein).

As in the case of a static domain, the propagator solution
of Eq. (17), i.e., the solution corresponding to the initial
condition W (x, 0) = 8(x — xy) on the infinite 1d line, can be
obtained by the method of characteristics (see, e.g., Sec. 3.8.4
in Ref. [58]). One finds

W (k, 1) = Wo(k(t)) exp [-k*a 2 (1)], (19)
with k(t) = ko exp(kt /&) and

exp(2ku/&)

aw)
The hat symbol in Eq. (19) denotes the Fourier transform,
defined as follows:

Firen = = [

—0Q

o2(t) = D exp(—2«t /£) / du (20)
0

(o]

dx exp(—ikx)f(x). 20
At the initial time, t = 0, the walker is assumed to be at the
position xp. This implies

Wo(ko) = exp(ikoxo) = explik exp(—«1/E)xol.  (22)

The inverse Fourier transform of the rhs is a Gaussian distri-
bution

Wx,t) =

_ 2
= x@)] > (23)

1
—— €X
NETE0) p( 402

with the (time-decaying) mean value
(x(r)) = exp (—«1 /&) = xo exp (=1 /1;), (24)

where the characteristic relaxation time 7, = & /k has been
introduced. The expression for ¢, tells us that a small friction
or a large harmonic force favor a quick localization of the
particle about the origin. As one might have anticipated, the
behavior described by Eq. (24) turns out to be independent of
the scale factor a(t).

From Eq. (23), the propagator in physical space (also
termed “physical propagator” hereafter) immediately follows
as

_ 2
W) = M) 03)

4oy (1)

[amal(t)

with (y(¢t)) = a(t){x(t)) and ayz(t) = a2(t)0xz(t). Note that
the above result contains as a special case the solution cor-
responding to a static domain (a(¢) = 1). This special case
is characterized by a time-dependent semivariance a\,z(t),
namely,

o2(t) = M . (26)
When yy = x¢ = 0, the propagator approaches an equilibrium
Gaussian distribution whose semivariance is avz(oo) =2t,/2,
which means that the width of the particle distribution even-
tually stabilizes as a result of the trade-off between diffusive
spreading and the strong localization induced by the harmonic
force.

What happens in the case of a growing or contracting
domain? Here, the domain growth exerts a drag force on
the particle which results in a deterministic drift (“Hubble
drift”). The Hubble drift will be directed toward the origin
if the domain shrinks or away from it if the domain grows.
One may easily guess that the behavior of the system will be
very sensitive to the functional form of the scale factor. This
is indeed confirmed by a detailed analysis, which is carried
out in the next two subsections for the special cases of a
power-law scale factor and an exponential scale factor.

One might also want to know what happens in the case
of a nonmonotonic scale factor, e.g., a bounded oscillatory
function. In this case, it is easy to see from Eq. (24) that
(y(t)) = a(t)(x(t)) displays the same oscillatory behavior as
a(t), except for the fact that it is dampened by an exponen-
tial factor. As for the behavior of (y?(¢)) = a?(¢)(x*(t)), one
concludes from Eq. (20) that it must also be an oscillatory
function, but in this case the oscillations are not dampened.

A. Power-law growth

Our specific goal here will be to explore the behavior of
W*(y, t) for a scale factor of the form a(z) = [(t + 79)/tp]”. As
we have seen, the solution for a deterministic initial condition
of the form §(y — y¢) is a Gaussian bell with a time-dependent
mean value and variance. Since the relation (y) = a(t)(x)
holds, the first-order moment of the physical coordinate is
obtained by multiplying Eq. (24) with the scale factor a(z).
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o)

FIG. 1. Time evolution of (y) for yo = 10, ® = 1/2, and ¢, =
& /K = 10*. Solid lines depict the theoretical solutions for a power-
law expansion—see Eq. (27)—with #, = 10° and, from top to bot-
tom, y = 1/4,1/10, 0, —1/4. The symbols depict simulation results.

The resulting expression is

Y
() = yo exp (—f) (’ foto) . @7)

Since the constant 7, is always positive, (y) tends to O (the
minimum of the harmonic potential) at long times. However,
the transient behavior depends on the sign of the expression
vy + v = a/a — 1/t,, which appears in the first term on the
rhs of the Langevin equation (18). For a power-law scale
factor, one has vy +v =y /(t + 1) — 1/t,. Thus, for 7y >
yt., one has vy + v < 0 at any time ¢ > 0; this implies that
the decay is monotonic, reflecting the fact that at all times
the frictional force is small enough and the harmonic poten-
tial sufficiently stiff for the walker to overcome the Hubble
drift. In contrast, when 7y < yt,, the decay to the origin is
nonmonotonic; the particle tends to move away from y = 0
as long as vy +v > 0, i.e., up to a time tyx = Y1, — o >
0 when a maximum (V)max = yoexp(io/t, — 1)yt /i)]V is
reached. From then on, one has vy + v < 0, and the particle
is increasingly dragged to the origin as the Hookean force
becomes larger. This behavior is shown in Fig. 1, where the
time evolution of (y) given by Eq. (27) is displayed for ¢, =
10%, to = 10°, and different values of y. For this parameter
choice, the relaxation is nonmonotonic if y > 1/10.

The analytical prediction is in excellent agreement with
simulation results, which are also shown in Fig. 1. To obtain
the simulation results in this figure and in all the subsequent
figures of the present work, a Gaussian jump length pdf

: - (28)

exp| —

4o P\
with 02 = 1/2 and the exponential waiting time pdf (8) with
mean value T = 1 have been used. With this parameter choice,
the values of ¢ and of the diffusion coefficient [respectively
obtained from Egs. (3) and (10)] are ¢ = 1//7 and ® = 1/2.
From Eq. (20) and the relation ,7(1) = a*(1)o (1), one can
also easily calculate an exact expression for the semivariance

Ay =

¢

t/tr

FIG. 2. Double logarithmic representation of (y(¢)) = 20?2 for
yo = 0 and a power-law domain growth or contraction [cf. Eq. (29)].
The values of y are, from top to bottom, y = 2, 0, —2. We have taken
to =103, ® = 1/2, and t, = 10*. Symbols depict simulation results
(10° runs were performed). The horizontal dashed line represents the
asymptotic variance D¢, = 5000.

of the physical propagator. One obtains

2 v 2
o2(t) = Dryexp [——(t+t0)“<t+t°> E2y<_ﬂ>
t, o 1,

_ (’ +ZO>E2), |:—%(t +ro)]}, (29)
1o t,

where E,(z) = f loo duexp(—uz)u~" denotes the exponen-
tial integral function. For large times, the semivariance ap-
proaches the asymptotic value a)?(oo) =D1,/2, as in the
static case. This result is valid for any value of y; it is obtained
by inserting the asymptotic approximation (cf. Eq. (5.1.51) in
Ref. [59])

E,(z) ~exp(—2)/z, z— 09, 30)

into Eq. (29) and by subsequently taking the limit + — oo.
In this limit, one obtains for any value of y a stationary
propagator that turns out to be the same as in the static case.
In other words, with respect to the static case, a power-law
growth or contraction only provokes changes in the transient
behavior but does not significantly affect the confinement
induced by the harmonic force in the long time limit. The
specific value of y (positive or negative) only has an influence
on how quickly the propagator converges to the stationary
profile. This is also manifested by the fact that the Hubble
velocity vy = yy/(t + fp) tends to zero as ¢ goes to infinity,
and so the result for the static case is recovered in this limit.

The time evolution of the variance 20),2 (t) is shown in Fig. 2
for three different values of y (recall that y = O corresponds
to the static case). In the static case, the initial § peak first
widens, but as soon as the Hookean force starts to become
non-negligible, the widening is slowed down; eventually, the
variance stabilizes at a fixed value. A power-law contraction
of the domain (y < 0) preserves this qualitative behavior, but
the transient values of the variance observed before the final
value is reached become smaller.
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FIG. 3. Physical propagator W*(y, t) for an OU process on grow-
ing, static, and contracting domains at time ¢ = 2!7. In all cases, we
have chosen ¢, = 10* and ©® = 1/2. Solid lines depict the analytical
propagator, Eq. (25) with Eq. (29). The growth and contraction
rates correspond to a power-law with parameters f, = 10> and y =
—2,0,2 (from top to bottom at y = 0). The triangles, the empty
squares, and the filled circles represent the respective simulation
results obtained after 10° runs.

In contrast, for a growing domain (y > 0), the behavior is
nonmonotonic; the propagator first widens until a maximum
value of 20)?(t) is reached, and then it becomes narrower until
the stationary profile is reached. Thus, at sufficiently short
times, the physical propagator is widened by the combination
of diffusion and domain growth; however, beyond a charac-
teristic time, the harmonic force becomes strong enough to
limit the dispersion of the particle about the origin induced
by the Brownian jumps and by the outward Hubble drift.
The characteristic time at which the variance begins to decay
can be computed by solving the equation dayz(t)/dt =0
numerically.

In Fig. 3, three physical propagators corresponding to three
different values of y = —2,0,2 and a common relaxation
time ¢, = 10* are displayed for a given time t = 2!7 ~ 10°!2
(the longest simulation time employed in Fig. 2). The value of
t has been chosen large enough to ensure that, in the case of
a static domain, the obtained propagator is very close to the
stationary profile attained for t — oo (see Fig. 2). For y = 2,
one can see that the propagator is slightly more flattened than
the stationary one, while for y = —2, it is slightly sharper.
Note, however, that the typical width of each propagator is
practically the same, in agreement with the result of Fig. 2
for t = 2!7. As one can see from Fig. 3, the theoretical
curves match very well the random walk simulation results
represented by the symbols.

B. Exponential growth

The case of an exponential scale factor a(t) = exp(Hrt)
bears special relevance, since the Langevin equation (18)
tells us that an OU process on a static domain is equivalent
to diffusion in an exponentially contracting domain with a
suitably chosen value of H (see also Ref. [47]). As a result
of this equivalence, it is clear that the OU process on an
exponentially growing domain may give rise to an interesting

competition depending on the values chosen for « /& = t, and
for H.

More precisely, the semivariance displays the following H
dependence: For H # 1/t,,

1 —exp [2(H — tr_l)t]

206y —
o, (1) =9 20, —H)

, (31a)

and for H = 1/t,,

o] (1) =Dt (31b)

Note that for H # 1/t,, the semivariance can be obtained from
the result (26) for a static domain by performing the replace-
ment 1/t, — 1/t, — H. As in the case of the first-order mo-
ment, the behavior again depends on the sign of 1/¢, — H. As
we already know, a sufficiently fast growth (H > 1/t,) ends
up breaking the confinement of the particle. As a result of this,
the propagator keeps widening in the limit # — oo, which is
manifested in the divergence of the variance, sz (t—00)— 0.
In contrast, a slow growth (0 < H < 1/t,) or a contraction
(H < 0) entails convergence of the system to a stationary
profile. This behavior is reminiscent of the one observed in the
case of a static domain, but in the present case the asymptotic
semivariance is different, O’yz(OO) =9/[2@, ! — H)]. Thus,
regardless of the smallness of H, an exponential growth or
an exponential contraction always modifies the width of the
stationary propagator obtained in the case of a static domain.
Note that this behavior differs from the one observed in the
case of a power-law growth. The duration of the transient is
also different, since the coefficient 1/¢#, in the exponential of
Eq. (26) is replaced with 1/t, — H in the case of a growing
domain [cf. Eq. (31a)].

When implemented on a growing domain (H > 0), the OU
process exhibits a dramatic change in behavior. The propa-
gator in physical space is the Gaussian function (25) with
mean value (y) = ypexp(?/ty)/exp(t/t,) and semivariance
given by Eq. (26), where we have introduced the Hubble
time ty = 1/H characterizing the domain growth rate. In
contrast with the case of a power-law scale factor, the mean
value of the physical coordinate grows exponentially when
ty <t., or is fixed at the initial position yy when ty =1¢,.
Only for t, < ty does (y) decay to the origin. This interesting
behavior reflects a competition between the outward Hubble
drift and the Hookean force, whose joint action cancels out
for ty = ¢, [in this case, the Hubble velocity vy = y/ty and
the velocity v = —y/t, associated with the action of the
restoring force compensate each other in Eq. (18)]. Thus, the
particle performs a pure Brownian motion about yy. One thus
concludes that the domain growth is exactly compensated by
the harmonic force, implying the equivalence of the latter to
the action of a contracting Hubble drift with |H| = 1/t,.

Displayed in Fig. 4 are results for W*(y, ¢) obtained both
from theory and simulations. Profiles corresponding to the
initial condition W*(y, 0) = 6(y) and computed for a given
time ¢ = 2'5 ~ 10*32 are plotted for a fixed value of ¢, = 10*
and different values of H. Depending on the value of H, the
subsequent evolution of the propagator will be different. In
the cases where H < 0, the depicted propagators are indistin-
guishable from the stationary one; for the case 0 < H < 1/1,,
the propagator is close to the stationary one, but can still be
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FIG. 4. Physical propagator W*(y,t) evaluated at time ¢ = 2'°
for a harmonic potential with #, = 10%, a diffusion constant ® =
1/2, and an exponential domain growth with different values of H.
Solid lines correspond to the analytical propagator [Eq. (25) with
Eq. 31)] for H = —107%,0,5 x 107°,107*, 1.2 x 10~* (from top
to bottom at y = 0). The dashed line (almost undistinguishable from
the solid line corresponding to H = 5 x 107> and t = 2'5) represents
the long-time asymptotic profile for H = 5 x 107>, The symbols are
the corresponding simulation results for 10° runs.

distinguished from the latter. This comes as no surprise since
as H increases, the decay slows to the final value [cf. Eq. (26)].
In contrast, when H > 1/t,, the propagators widen all the
time. Of course, as H increases, the corresponding physical
propagator widens.

Armed with the above results, we are now in the position to
discuss how an exponential contraction or expansion affects
the weak ergodicity properties [60,61] of the OU process.
From our previous discussion on the Langevin equation (18),
we recall that the effective elastic constant in the present
case is Kkef = k — EH. For H < 0, one always has ke > 0,
implying that the resulting process is equivalent to an OU
process on a static domain, albeit with an increased elastic
constant. For such a standard OU process, it has been recently
shown that, as soon as the initial particle distribution is a
nonequilibrium one, the ensemble-averaged msd and the time-
averaged msd differ considerably [46], implying weak ergod-
icity breaking. On the other hand, one sees from Eq. (18) that
the OU process on a domain with a time growth dictated by the
scale factor a(t) = exp(xt/&) effectively results in standard
Brownian motion (k. = 0); this is obviously a process where
the ensemble-averaged msd and the time-averaged msd are the
same, and hence one concludes that ergodicity is restored by
a suitably chosen domain growth.

IV. SUBDIFFUSIVE OU PROCESS
ON A GROWING DOMAIN

We now turn our attention to the subdiffusive case o < 1.
In this case, the evolution equation (16) contains the fractional
derivative (D,~, which arises from the long-time limit of
the CTRW process [51]. This complicates extraordinarily the
task of finding analytical solutions for Eq. (16), and one has
to resort to numerical approaches. Fortunately, one can obtain
explicit expressions for the comoving moments and for the

physical moments, whence key insights about the underlying
physics can be gained.

As already done for the o = 1 case, it is convenient to
introduce a characteristic relaxation time. To this end, we
generalize the definition of ¢, as follows:

t,:tr(a):<é—a>a, 0O<a<l1. (32)
K

The value for the normal diffusive case is recovered in the
limitoe — 1.

In order to obtain the differential equation governing the
evolution of the comoving mth order moment, we follow
the standard procedure, i.e., cross multiplication of Eq. (16)
with x™ and subsequent integration over the domain of the
spatial domain. One then obtains a (descending) hierarchy of
differential equations:

dix™y  mm—1)D, o m— m o m
= oD W) = 2D, (33)

where the definition (32) has been used. The result (33) comes
as no surprise, since such hierarchies are typical of diffusion
problems. Correspondingly, in physical space one has

diy™)
dt

m—2
_ m—2 11—« <y >
_m(m - I)ZDO,a ODt [w}
_ ﬁamOD}_a[O} >] +
e am

The above equations remain valid for @ = 1, in which case the
fractional derivatives are replaced with the identity operator,
and a set of ordinary differential equations is obtained.

As in the Brownian case, we are interested in the specific
cases of a power-law scale factor and an exponential scale
factor. However, before addressing these two specific cases,
we will give some general results for arbitrary a().

mImy.  (34)

a

A. Results for arbitrary scale factor

Our subsequent discussion will focus on the first- and
second-order moments (m = 1, 2). To this end, we shall take
Egs. (33) and (34) as starting points.

1. First-order moment
Setting m = 1 in Eq. (33), one gets

dw_ 1
7 = tg ODt <x)1 (35)

whose solution is

(x(®) = x0Eo,1( = (1/1,)%), (36)

where E, | denotes a Mittag-Leffler function [56,62]. For
o = 1, this function takes the form of an exponential, and one
recovers Eq. (24). Note also that the first-order moment in the
comoving coordinate takes the same form as the first-order
moment for the case of a static domain [55].

The physical first-order moment (y(¢)) = a(z){x(¢)) will
either blow up or decay to the origin depending on whether
the scale factor grows faster than the Mittag-Leffler function.
For negative large arguments, the asymptotic behavior of the
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Mittag-Leffler function is [56]

1
Eop(=2) ~ ————
P T —w
a result which will be useful to study the long-time behavior
of (y(t)) for specific forms of the scale factor.

Z%m7

o #p, (37)

2. Second-order moment

Without loss of generality, we will hereafter assume that
yo > 0. Although one can consider moments of arbitrary
order, the substantial differences between the Brownian case
and the subdiffusive case already manifest themselves at the
level of the second-order moment. For m = 2, Eq. (33) takes
the form

dix?) 20,17 2

= — = oD} (x?). 38
7 2 T@) t;”o T (x) (33)
Its counterpart in physical space is
d<y2) ! 2 1— (y2> a 2
=29, —— oD, 7% = 2—(y"). 39
- R b R

In order to analyze the case of a growing domain, let us
first recall the main results for the case of a static domain,
which is recovered by taking a(t) = 1 in Egs. (38) and (39).
A straightforward way of studying the long-time behavior
amounts to first setting a(r) = 1 in Eq. (39) and then taking
the Laplace transform of the resulting equation. This yields

N 29,

2(s)) = . 40
VO = S ey e O
Taking into account that (Eq. (1.80) of Ref. [56])
1
L[tP By p(—at*)] = ————, 41
7 B ()] = e @)

one has, from Eq. (40),

02(1)) = YeBa 1 (= 2(t /1,)%) + 2Dty 140 (— 22 /1,)%).
(42)

Then, from Eq. (37), one finds that the second-order moment
will tend to a constant value in the long-time limit, (y>(00)) =
D,t¥. As in the case o = 1, this simply reflects the fact that a
balance between diffusive spreading and the confining effect
of the restoring force is established (even though the spreading
is subdiffusive in the present case).

A procedure similar to the one described above also works
for the case of a growing domain, that is, when a(t) is
a monotonically growing function in time. From Eq. (38),
one finds the Laplace-transformed second-order moment in
comoving space:

X5 21%)5[;_;)]
s+ (2/12)s'e s+ (2/10)s' e

The first term on the rhs does not depend on the scale factor
and yields the same type of decay as in the static case, i.e.,
a decay governed by a Mittag-Leffler function. Consequently,
the contribution of this term to (y*(¢)) will be y(z)a2 (t)Eq1(—
(t/t,)*). As one can see, this contribution can either increase
or decrease in time depending on the chosen scale factor. In

(x2(s)) =

(43)

the next subsections, we will study the joint effect of the first
and the second terms in Eq. (43) for the special cases of a
power-law and exponential domain growth. Note that, for an
oscillatory scale factor, the qualitative behavior of the first
two moments is the same as in the case of normal diffusion:
From Egs. (36) and (43), we conclude that (y(¢)) goes to zero
is an oscillatory way, while the msd performs nondecaying,
bounded oscillations.

B. Power-law growth
1. First-order moment

From Eq. (36), one finds the exact expression for the
physical first-order moment, i.e.,

t+1\" o
() =yo< 0) Eo1(— /1)), (44)
whence the long-time behavior
Yot,' _
1) ~ —————t""" 45
OO~ (45)

follows. Thus, for & < y, the first-order moment diverges as
t7~%, whereas for o > y, it decays to the origin according to
the same power law; finally, when « = y, (y(¢)) displays a
plateau in the long-time limit. Beyond this asymptotic behav-
ior, the exact solution (44) reveals interesting transient effects,
reflecting the subtle interplay among the domain growth, the
harmonic force, and the diffusive transport.

To start with, note that (y(¢)) always decays for short times
because of the behavior of its time derivative, given by the
expression

dly) y(t+i
dt yoto to

y—1
> Eo 1 (= (/1,)%)

Y
—ym“(t%t“) 1 Equl — (t/1)%). (46)

Indeed, when o < 1, the second term on the rhs diverges to
—ooast — 0.

In the case y > 0, one can distinguish several regimes for
the behavior at intermediate times depending on the values of
the relaxation time #, and of a typical time 7 after which the
expansion of the domain can be considered to play a relevant
role. This typical time can, e.g., be defined as the time at which
an arbitrary segment of the domain has doubled its length,
a(tg) = 2. For the case of power-law growth, this quantity
depends on both characteristic parameters, tg = tg(to, ).
Analogously, in the case of a contracting domain (y < 0), one
can define a typical time #c(f), y) at which the length of a
segment is one half of the initial length, a(z¢) = 1/2.

For 1z < t,, Fig. 5(a), the domain expansion begins to play
a relevant role comparatively early, implying that (y(¢)) starts
to increase at a time around fg, before finally entering the
asymptotic regime described by Eq. (45). Note, however, that
when o < y, (y(t)) may still exhibit a local minimum at a
time close to fg, i.e., before its preasymptotic time growth
(see the curve for y = 5/9 in Fig. 5). For the specific case
o = y, note also the onset of the asymptotic plateau predicted
by Eq. (45).
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35

0

FIG. 5. Lin-log plot of the time evolution of (y(z)) for a sub-
diffusive OU process on a domain subject to a power-law growth
and/or contraction. For the cases of growing domains, one has
tg <t, in panel (a) and 7z > ¢, in panel (b). The starting point is
¥o = 10. For both panels, we have taken o« = 1/2, ®, = 1/2, and
to = 10°. We have chosen « /&, = 107 (¢, = 10°) in panel (a) and
k/E, =3.5x 1073 (t, = 8.16 x 10*) in panel (b). The solid lines
represent the theoretical prediction given by Eq. (44), whereas the
symbols represent numerical results obtained from 10° simulations
of the random walk. The values of #z for the cases of a growing do-
main (y =5/9, 1/2,1/3) are 2.48 x 10°,3 x 10°, 7 x 10°, whereas
the value of 7c for the case of a shrinking domain (y = —2) is
4.14 x 10,

In the opposite situation where g > t,, Fig. 5(b), the
intermediate regime vanishes, and so three different behaviors
are obtained. For « > y, (y(t)) becomes a strictly decreasing
function; for « < y, it exhibits a local minimum; finally, for
o = y it tends to a constant value from above.

Let us now focus on the cases of a static domain (y = 0)
and of a shrinking domain (y < 0). At sufficiently long times,
the spreading effect of diffusion is overcome by the confine-
ment induced by the restoring force, which is enhanced by
the domain contraction in the latter case. As a result of this,
a slow decay of (y(t)) is observed at sufficiently short times;
this slow decay is followed by a faster decay at longer times.
This qualitative behavior does not depend on the particular
choice of 7y and ¢,..

2. Second-order moment

For a power-law scale factor a(t) = (1 +t/ty)", Eq. (43)
becomes

x(z) + 21?(;)t(‘;‘U(a, 14+ o —2y,st)

s+ (2/1%)s!

where U denotes Tricomi’s confluent hypergeometric func-
tion. The behavior of this function for s — 0 can be found
in Ref. [59] [see Egs. (13.5.6)—(13.5.12) therein]. For xy = 0,
one has

((s) = , @

2y Tl@—2y) 2y—1 :
toy%s v ify <a/2,

(2(9) ~ Dot — 75 log(sty) i y = /2, (48)

1§ s ! if y > a/2.

The long-time behavior of the comoving second-order mo-
ment is obtained with the help of a Tauberian theorem [63]:

L) (L) py, <0,

Ter(-27) | 1o
sin(mra) (%) o log(t) if y =uo/2, 49)

b2

(1)) ~ Dyt

I'y—o) —a .
raras (i) ify > a/2.
Consequently, in physical space one has
I'(a—2y) .
@I -27) ify <a/2,
(2(0)) ~ Dot | P log (1) ity =2 (50)
r@y—ao) y—a .
ot () ify > a/2.

Thus, three different asymptotic regimes can be distinguished
depending on the values of « and y. These theoretical results
are confirmed by numerical simulations; see Fig. 6. This
behavior, which is very different from the one observed in the
Brownian case, will be discussed in detail in what follows.

To start with, we note that only a sufficiently slow domain
growth (y < «/2) can give rise to the onset of a stationary
state. Such a steady state results from the trade-off between
diffusive spreading (enhanced by the Hubble drift) and the
restoring force directed toward the origin (cf. Fig. 2 with
Fig. 6). In addition, the asymptotic value (y>(co)) displays
a dependence on y that was absent in the o = 1 case. In
other words, when o < 1, the signature of the domain growth
persists for arbitrarily long times.

Let us now consider the opposite case of a fast domain
growth (y > «/2). When o < 1, the distribution of subdif-
fusive particles becomes increasingly sparse as a result of
an increasing interparticle distance. The variance displays an
unbounded growth, as opposed to what happens when the
particles are Brownian (o = 1). Since the change in behavior
in the vicinity of o = 1 is somewhat counterintuitive, the
underlying physics must be carefully explained.

For Brownian walkers as well as for subdiffusive walkers,
the typical distance traveled by diffusion up to a given time
is proportional to the mean number of steps taken. However,
Brownian walkers typically cover a much longer distance
than subdiffusive ones; the reason is that the jump rate is
constant for a Brownian walker, while for a subdiffusive
one, it decreases in time due to the aging of the CTRW
process. Such aging effects lead to anomalously long waiting
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FIG. 6. Double-logarithmic representation of (y*(t)) for subdiffusive particles on a domain subject to a power-law domain growth or
contraction with #g, ¢ < t, [panel (a)] and tg, ¢ > t, [panel (b)]. In both panels, « = 1/2, D, = 1/2, and yo = 0. We have used 7, = 10? and
t, = 105 in panel (a) and #, = 10° and ¢, = 8.16 x 10* in panel (b). The values of y for the cases of domain growth are 1/3,1/4, and 1/6,
respectively, leading to tx = 7 X 103, 1.5 x 10*, and 6.3 x 10* in panel (a) and to tz =7 x 10°, 1.5 x 10°, and 6.3 x 10° in panel (b). For
contracting domains, the value y = —1 yields #o = 103 in panel (a) and t- = 10° in panel (b), whereas for y = —5, one has #- = 148.70 in
panel (a). Solid lines have been computed from a numerical inversion of Eq. (47). The symbols correspond to simulation results. Dashed lines

represent the asymptotic long-time behavior given by Eq. (50).

times during which the walker is under the sole influence
of the Hubble drift, which tends to induce a strong particle
separation. The harmonic potential cannot totally counteract
this effect, because CTRW particles only feel this potential
when they take instantaneous jumps. In spite of this, the
effect of the restoring force is manifested by the existence of
different asymptotic regimes. In the forceless case, one has
(y*(t)) o<t at long times, since diffusive transport plays
a minor role in comparison with the Hubble drift [35]. In
contrast, when the restoring force is at play, one has a slower
spreading (y*(¢)) o< t>¥~%. Thus, a power-law domain growth,
no matter how fast, is unable to completely suppress the
signature of the harmonic potential in the long-time regime.

In the marginal case y = «/2, the behavior characteristic
of the driftless case is also modified by a prefactor t ~“. Indeed,
as shown in Ref. [35], one has (y?(¢)) o t* log(¢) in the
absence of the harmonic force, whereas the growth dictated
by Eq. (50) is purely logarithmic.

Finally, note that for y > «/2, the long-time behavior of
(y*(t)) depends not only on the time exponent y of the scale
factor but also on #;.

The approach of (y*(¢)) to the asymptotic regime is another
important point (see Fig. 6). Let us first consider the case
y > 0. Once again, a discussion in terms of 7z and ?, is
pertinent. When #g < 1., Fig. 6(a), the time evolution of the
physical variance displays three different regimes, namely,
a diffusion-controlled early-time regime, an intermediate
regime where both diffusion and domain growth contribute
significantly to the walker’s motion, and a final asymptotic
long-time regime. In a double logarithmic representation, the
slope of (y2(t)) when the crossover from the early-time regime
to the intermediate regime takes place can only grow [see
Fig. 6(a)]. In the opposite case, tg > t,, one also has an
intermediate regime, in this case due to the coexistence of
diffusion and a non-negligible harmonic force. Here, the slope
of (y*(t)) decreases when the crossover from the early-time
regime to the intermediate regime takes place [see Fig. 6(b)].

However, the most interesting scenario appears for power-
law contractions (y < 0); see the corresponding curves in
Figs. 6(a) and 6(b). For Brownian particles, (y*(¢)) is a

nondecreasing function of time, but in the present case
0 < o < 1 it may exhibit an interesting transient oscillation
(“bump”). The y < 0 cases depicted in Fig. 6(a) correspond
to the situation f¢ < t,. After an initial growth of (y2(t))
due to subdiffusive spreading, the joint contribution of the
force field and of the inward Hubble drift tends to drive the
particle toward the origin, and eventually a stationary physical
propagator with finite width settles.

In order to explain the above phenomenon, it is convenient
to first examine the force-free case, since a bump may already
arise in this case for a sufficiently large value of |y|. From
Ref. [35], it is known that the spreading effect of a subdif-
fusive CTRW prevails over the confining effect of a Hubble
drift arising from a power-law contraction. Thus, the variance
diverges in the long-time limit. However, for sufficiently large
|7 |, the power-law contraction may result in a transient decay
of the variance before the final time growth characteristic of
the long-time asymptotics is eventually attained (see Fig. 7).
It should be noted at this point that it is not difficult to
find the mathematical conditions under which the transient
oscillation appears in the force-free case. The details are given
in Sec. IV B 3.

When a harmonic potential is incorporated into the above
picture, the confining effect of the Hubble drift is enhanced. If
the elastic constant « is sufficiently small, one has . > f¢.
In this case, if an oscillation is observed well before ¢,, it
will be preserved, and only the long-time asymptotics will be
affected by the restoring force, implying that the variance will
no longer diverge as in the force-free case, but rather tend to
a constant value [see curves for y = —1, —5 in Fig. 6(a)].
This reflects the fact that, at times ¢ ~ ¢,, the coordinate
y takes values which are sufficiently large to ensure that
the increased harmonic force effectively counterbalances the
effect of subdiffusive spreading.

In the case 7 > t,, a transient oscillation can still be seen
[cf. the y = —1 curve in Fig. 6(b)]. At times that are roughly
between 7. and 7¢, the dynamics essentially corresponds to
the case of a static domain; i.e., the growth of the variance
is counterbalanced by the harmonic force, and the variance
tends to a finite value. At longer times, the contraction tends
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FIG. 7. Double-logarithmic representation of (y*(¢)) for subdif-
fusive particles on a power-law growing domain in the absence of
the restoring force (x = 0). The solid lines, from top to bottom,
are the theoretical values for y = —1, —5. The remaining param-
eters (o, ®,, tp) are those of Fig. 6(a). Dashed lines represent
the long-time asymptotic behavior (y*(¢)) ~ 2D,t%/[T(a)(a — 2y)]
(see Ref. [35]). In the horizontal axis, ¢ is divided by the value of ¢, of
Fig. 6(a) in order to facilitate the comparison between both figures.

to transiently drive the particles toward the origin, but this is
eventually insufficient to counterbalance the effect of diffusive
spreading, and the variance goes to a constant value at times
t > tc. This actually happens for arbitrarily small values of
|y| (provided that the condition f¢ > f. holds). When the
Hubble drift becomes significant, the particles have a weaker
tendency to spread than in the case #¢ < t,.; therefore, the
recovery of the amplitude is not so strong in this case, and
the oscillation is somewhat “dampened.”

3. Onset of a bump in the force-free case

In what follows, we determine the precise mathematical
conditions under which the transient oscillation appears in
the force-free case. In particular, for a given value of the
anomalous diffusion exponent « and a power-law contraction,
we obtain the critical value of the exponent y below which
such a bump exists.

The bump observed for sufficiently small y is characterized
by the coexistence of a local maximum (y*)max = (v (fmax))
and a subsequent local minimum (y?)pin = (V> (fmin)) in the
curve describing the time evolution of (y?(¢)). Consequently,
there must be an inflection point (y?), = (y*)(t,) that is
reached at an intermediate time fy,x < #x < fmin. This point
is characterized by vanishing first- and second-order time
derivatives. For a power-law contraction, when y is increased
starting from a sufficiently small value, the maximum and the
minimum get closer, until one has fy,x = f, = fyin and they
eventually merge. We may use the vanishing of the first two
time derivatives to find the critical value y, above (below)
which the bump disappears (appears).

Let us first consider the case of a contraction dictated by an
arbitrary scale factor. Imposing the condition d (y?) /dt = 0 on

vl
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FIG. 8. Logarithmic representation of |y, | vs « in the absence of
an external force field (« = 0), as given by Eq. (55) (solid line). The
squares show the estimated theoretical value of |y, | for a fractional
OU process with k /&, = 107>, In all cases, ®, = 1/2 and t, = 10°.

Eq. (39) (with 1/¢, = 0), one finds

a®Dyt*!

a ()
The next step is to obtain an analytical expression for
d*(y*)/dt?> by differentiating Eq. (39). An equation for
t, is obtained by taking Eq. (51) as well as the condi-
tions d(y?)/dt|,_, =0 and d*(y*)/dt*|,_, =0 simultane-
ously into account. Eventually, one obtains

0 = (51)

P Lt (52)
g In(=a/a)li=,
Note that, for an exponential contraction (i.e., constant a/a)
or in the case of normal diffusion (¢ = 1), there is no bump
(t, = 0). However, for the case of interest here, i.e., a power-
law contraction, a/a = y /(t + tp), one finds for any y < y,,
the universal value

l—«

te = to. (53)
Now, for this type of contraction, one knows the exact value
of the msd [37]:

2
<y2>=#©a 4 — yta2F1(0(,2V§1+05;_t/t0)-
(1 +a) to

(54)

Inserting this expression into Eq. (51) and taking into account
Eq. (53), one finally finds that a bump in the msd will exist if
y < V., with y, satisfying the equation
o2vetl
Fi(a, 2y 1 o —1 =—. 55

2F1(e, 2y 1 + a5 (o — 1) /) e —1) (59
In Fig. 8, we plot |y.| as a function of «. For the sake of
comparison, we also provide estimates of some critical values
|ve| for an OU process in the presence of a small harmonic
force. In this case, the critical values are obtained by means
of the numerical inversion of Eq. (47) in the following way.
First, for a given value of «, we evaluate the msd starting from
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FIG. 9. Physical first-order moment of a subdiffusive particle
initially located at yo = 10 on an exponential expanding or shrinking
domain. The other parameter values are & = 1/2, D, = 1/2, 17! =
2.5 x 107, and, from top to bottom, H = 107, 0, —10~°. Symbols
represent simulation results obtained from 10° runs.

values of y well below the corresponding y. for the force-free
case. Then, we increase the value of y stepwise by applying
successive increments Ay = 1072, and after each increment
we check whether the nonmonotonic time dependence of the
msd is preserved. Our estimate of y, for the OU process is
simply the largest value of y for which this is still the case.

C. Exponential growth
1. First-order moment

From Eq. (36), in the case of an exponentially growing (or
decreasing) scale factor the physical first-order moment is

(@) = yoexp(Ht)Eq,1( — (t/1:)"). (56)

As in the power-law case, (y(¢)) is a decreasing function at
short times because the derivative of this function,

d
% = yo exp(H1)[HEq 1 ( — (1/1,))

— (t/t)* "B — /1)), (57)

is negative and divergent as t — 0.

In contrast, the long-time behavior depends once again on
the sign of H. For H > 0, (y(¢)) blows up, since the slow
asymptotic decay of the Mittag-Leffler function is not able
to compensate the fast growth of the exponential. Because
of the change in sign of the time derivative, one must have
a minimum given by the condition d{y(¢))/dt = 0|,_,  (see
Fig. 9). The corresponding time #yi, can be computed nu-
merically. It is expected to be of the order of 7y, which is
roughly the timescale for which the Hubble drift starts to play
an important role.

For the case H < 0 of a contracting domain, the first-order
moment decays to zero faster than in the case of a static
domain. One actually expects that for times ¢ = 1/|H]|, {y(¢))
will already be very close to zero.

2. Second-order moment

An exponential scale factor a(t) = exp(Ht) destroys the
stationary state resulting from the tradeoff between subd-
iffusive spreading and the restoring force. For H > 0, the
variance grows without bound, whereas an exponential con-
traction (H < 0) induces a very strong particle localization
about the origin. We will first address the case of exponential
growth (H > 0), since the procedure employed to obtain the
long-time behavior of the physical second-order moment is
the same as in the case of a power-law domain growth (cf.
Sec. IVB).

According to Eq. (43), the Laplace-transformed comoving
second-order moment reads as follows:

X2+ 2D, (s +2H)™

W) == () (58)
For s — 0, one has
(% (s)) ~ % (59)
whence the long-time behavior
) ~ (x5 + 2" D H *)Ea 1 (— 2(t/t,)*), H >0,
(60)

follows by virtue of a Tauberian theorem. Correspondingly,
the asymptotic growth of the physical second-order moment
is given by the expression

G = @O 0) ~ (x§ +2' D H )
X Bo.1((t/t,)*)exp(2Ht), H > 0. (61)

As we can see from the above equation and from Eq. (37),
regardless of the values of 75 and 7., an exponential growth
always overcomes the confining effect of the harmonic po-
tential; subdiffusive particles are thus able to spread further
and further. The behavior is therefore different from the one
observed in the Brownian case @ = 1, characterized by either
confinement (for ty = 1/H > t,) or unlimited dispersal (for
ty = 1/H < t,). The behavior also differs from the case of
a power-law domain growth, where (for subdiffusive parti-
cles) the influence of the harmonic potential is present for
arbitrarily long times. Here, the signature of the force appears
in the argument of the Mittag-Leffler function via ¢,, but the
long-time behavior is clearly dominated by the exponential
exp(2H?t). In contrast, recall that, for a power-law growth,
Eq. (50) states that the variance goes to a constant value for
y < /2, increases logarithmically for y = «//2, or increases
as a power law for y > «/2 (as already mentioned, in the
latter case the asymptotic time growth o 2 observed on a
static domain is dampened with a prefactor t=* induced by
the restoring force).

Displayed in Fig. 10 is the physical second-order moment
for H =107% and ¢, = 4 x 10%. An excellent agreement be-
tween the theoretical curve and the simulation result is found.
The theoretical curve stems from the numerical computation
of the inverse Laplace transform of Eq. (59). As one can see,
this curve overlaps with the one for the static case until a time
of the order of 1/H and blows up at longer times. At very
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FIG. 10. Double logarithmic plot of the time evolution of the
physical second-order moment for a subdiffusive particle initially
located at yo = 0 on an exponentially growing domain. We have
seta =1/2, D, =1/2,t, =4 x 10°, and H = 1078, The squares
represent the numerical results obtained after 10° simulation runs.
The solid line is the theoretical curve. The dashed line corresponds
to the long-time behavior as given by Eq. (61). The two remaining
curves correspond to the cases with either no force (short-dashed
line) or no domain growth (dash-dotted line).

long times, the theoretical curve tends to the curve for the
force-free case.

3. Second-order moment for an exponential contraction

Let us now focus on the case of exponential contraction,
corresponding to a scale factor a(t) = exp(Ht) with H < 0.
In the absence of forces, random walkers obeying the heavy-
tailed waiting time distribution (6) will be strongly localized
at the origin at sufficiently long times (in fact, the physical
propagator tends quickly to a § function, a behavior that was
termed “big crunch” in Refs. [35,37]). A harmonic potential
with a minimum at the origin will enhance the big crunch
effect, in the sense that the strong narrowing of the pdf will
take place at earlier times than in the force-free case. As a
result of this, all the moments (and in particular the second-
order one) will quickly go to zero.

For our subsequent analysis, it is convenient to directly
work in physical coordinates. For exponential expansions or
contractions, it is very easy to find the Laplace-transformed
second-order moment from Eq. (59) by means of the shift
theorem. One gets

D) = (G = 2H)) = —— f) (; /Zt@)(j - TR
(62)
For small s, one has
035 — 0) ~ D e oo (63

t7*(—=2H)'=* — H

The corresponding Tauberian theorem then provides the long-
time behavior:

@a ta—l

74(=2H)'"* — H T'(«)

*(t — 00)) ~ H<0. (64)

100 |

FIG. 11. Double logarithmic representation of (y*(¢)) for yo = 0,
a=1/2,t,=4x10* ®,=1/2, and H = —107>. The squares
represent simulation results obtained after 10° runs. The solid curve
corresponds to the numerical inversion of (62). The dashed line
corresponds to the asymptotic long-time behavior, Eq. (64). The
other lines correspond to the static case H = 0, Eq. (42) (dash-dotted
line) and to the force-free case x = 0 (short-dashed line).

As expected, one obtains an asymptotic inverse-power decay
to the origin with exponent o — 1. In Fig. 11, the time
evolution of the second-order moment in the presence of a
Hookean force associated with a relaxation time ¢, = 4 x 10*
(solid curve) is compared with the force-free case (short-
dashed curve) for a Hubble parameter H = —107>. As one
can see, the turning point (maximum) is slightly shifted to an
earlier time by the harmonic force. This enhanced big crunch
effect highlights the strength of an exponential contraction, as
opposed to a combination of the harmonic potential with a
weaker, power-law contraction. Recall that, in the latter case,
the effect of subdiffusive spreading is not totally overcome
by the domain contraction, and this results in a nonvanishing
value of the asymptotic variance (y*>(c0)) (cf. Fig. 6).

D. Numerical solution

In contrast with the Brownian case, finding exact expres-
sions for the propagator of subdiffusive CTRWSs on a growing
domain turns out to be a very difficult task. In the case of a
static domain, one can obtain the propagator of a subdiffusive
particle in the presence of an external force field from the
corresponding propagator for a Brownian particle [51], but
this method does not work for a growing domain. The source
of the difficulties stems from the fact that, in the present
case, knowing the probability for the walker to have taken a
certain number of steps n up to a given time ¢ is not enough;
knowledge of the probabilities that the n steps of the random
walk were taken at specific times <t is also needed [37]. In
spite of this drawback, Eq. (16) can be integrated numeri-
cally by means of the fractional Crank-Nicolson method of
Ref. [64]. This method is an unconditionally stable finite-
difference method where the space-time region of integration
is discretized by a mesh spacing of size Ax and time steps
of size At. Shortly, we will see that the agreement of the
numerical integration procedure with numerical simulations is
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FIG. 12. Physical propagators at t = 2'% for an exponential ex-
pansion with H = —2.5 x 107>, 0, 2.5 x 107> (from top to bottom
at y = 0). The solid lines correspond to the numerical solutions of
Eq. (16); the symbols are results from random walk simulations (10°
runs). Inall cases @ = 1/2, 9, = 1/2,and ¢, = 10°.

excellent, except in the immediate vicinity of the points where
the propagator is nondifferentiable.

Figure 12 shows the physical propagators corresponding
to different values of H for a subdiffusive particle initially
located at yp = 0 and subsequently subjected to the action
of the harmonic potential. Obviously, in this case all the
propagators are symmetric with zero mean. As already seen
from the results obtained for the moments, the domain growth
or contraction only modifies the specific value of the typical
width, but it does not affect the qualitative long-time behavior
(recall that for H < 0 the propagator tends to 6(y), whereas
for H > 0 it never stops getting flat).

In contrast, when yg # 0, the propagators are nonsymmet-
ric with respect to y = 0, as shown in Fig. 13 for yp = 10. In
this figure, one can see that the Hubble drift and the restoring
force shift the cusp of the propagator from y, to a different

0.10 —
s H=25x10"
0.08} o H=0 1
. Il o H=25x10"
£ 006} ]
L
=
S

FIG. 13. Physical propagators evaluated at time t = 2 for the
initial condition W*(y, 0) = §(y — 10) and three different exponen-
tial expansions with, from top to bottom at y =0, H = —2.5 x
1073, 0, 2.5 x 1073, The solid lines represent the numerical solution
of Eq. (16), whereas symbols are results from random walk simula-
tions (10° runs). In all cases, & = 1/2, D, = 1/2, and ¢, = 10°.

position in the course of time. Note, however, that the prop-
agator remains at all times nondifferentiable at y = ypa(?). It
should also be noted that the numerical integration procedure
yields spurious values in the vicinity of ypa(t) because of
the sharp, §-peaked initial condition (which is approximated
by the function 1/Ax for xo — Ax/2 < x < xo + Ax/2 and
0 otherwise), and because of the finiteness of the integration
step. While this unwanted effect can be minimized by reduc-
ing the size of the time step, this procedure quickly becomes
very costly in terms of computer processing time. Therefore,
we have replaced the spurious numerical results at a(t)yo with
the linear extrapolation of the numerical values of W (x, ) [or,
equivalently, W*(y, t)] calculated from the two nearby mesh
points situated to the left, say, of a(t)yo. In Figs. 12 and 13, we
have used Ax = 0.1 and Ar = 0.1. The size of the integration
domain was always chosen large enough to ensure that the
finite boundary effects were negligible.

V. CONCLUSIONS

In this paper, we have studied diffusion processes in a har-
monic potential (i.e., OU processes) on uniformly expanding
or contracting domains. We have found that the impact of a
domain growth process on the properties of diffusing particles
may be very different depending on whether these are Brow-
nian or subdiffusive. More precisely, the asymptotic equi-
librium between the random force responsible for diffusive
spreading and the restoring force may or may not break down
depending on the type of diffusion process and on how quickly
the domain expands. For instance, in the case of power-law
domain growth, the Brownian propagator eventually reaches
the same equilibrium state as on a static domain. When the
particle’s motion is governed by a subdiffusive CTRW, the
system may still tend to an equilibrium state (albeit one that is
different from the stationary state attained on a static domain);
however, it is also possible that the long-time behavior is
essentially controlled by the domain growth when the latter is
sufficiently strong. In the case of an exponential scale factor,
the long-time behavior of a subdiffusive CTRW is always de-
termined by the domain growth or contraction. However, for
Brownian particles, this only happens if the Hubble parameter
H exceeds a certain positive threshold value; otherwise, the
system tends to a stationary propagator, albeit different from
the one attained on a static domain.

The extreme sensitivity of CTRW particles to the domain
growth can be ascribed to aging; the diffusive spreading of
such particles proceeds more slowly in the course of time due
to a decrease in the jump rate. As a result of this, the Hubble
drift, which acts even when the particles do not jump, becomes
increasingly relevant as ¢ grows; eventually, it ends up playing
a key role in the dynamics.

Another important difference between Brownian and sub-
diffusive CTRW particles discussed here concerns the func-
tional form of the propagator. In the case of a growing or
shrinking domain, Brownian particles still follow a Gaussian
distribution, but for CTRW particles, the functional form of
the propagator changes with respect to that corresponding to
the static case. This holds true even in the absence of a force.
This feature is a manifestation of the memory effects induced
by the subdiffusive CTRW model.
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At this stage, a brief discussion on the possible implica-
tions of our findings for real-world systems is pertinent. As we
have already noted, there is an equivalence between the OU
process in a shrinking domain and the OU process on a static
domain with a modified, time-dependent elastic constant. This
suggests that, for subdiffusive particles of CTRW type, a
nonmonotonic behavior of the msd can also be observed
in experiments where a trapping potential is conveniently
modified by a time-dependent force field.

Moreover, with the advent of recent technical achieve-
ments, it is nowadays possible to track and characterize the
trajectories of micro- and nanosized objects performing in
vivo intracellular diffusion (see, e.g., Ref. [46] and refer-
ences therein); in many instances, the motion is intrinsically
subdiffusive but can be influenced by exerting forces on the
diffusing particles in a controlled fashion, e.g., via quasihar-
monic potentials created by optical or magnetic tweezers [65].
However, if the embedding cells are part of a growing organ,
diffusion may take place while cell division is at play [65], and
the question of how the corresponding tissue growth affects
the motion of diffusing molecules arises. In this context, we
believe that the model discussed here may provide a useful
starting point to study such issues.

We close by noting that the present work can be gen-
eralized in many ways, e.g., by considering other types of
subdiffusive processes, such as fractional Brownian motion
with Hurst exponent < 1/2. Because of the lack of aging
in this case, the phenomenology observed in the CTRW
case is expected to change drastically. Finally, the study of
superdiffusive processes such as Lévy flights in the above
context is also of interest.
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APPENDIX: SOME REMARKS ON THE
SIMULATION ALGORITHM

In the simulations, the relation between the force and the
bias given by Eq. (11) will be taken into account. To simulate
the CTRW process underlying Eq. (12), we have used the
following effective force:

Iyl < de,

bl > d. (AD

w,n _ |—Kky  for
Fro = {—ch for

with d. = 2&,e0 /(%K ). The simulation results obtained with
this force at a given time ¢ should practically be the same
as the results obtained from Eq. (16), provided that 7 is
sufficiently large for the walker to enter the diffusive regime,
while the walker remains within a region of radius d. with a
probability close to one. If the latter condition is not fulfilled,
the diffusive description is not appropriate; the reason is that
the walker’s motion becomes deterministic, since the proba-
bility of the walker to jump toward the origin is one as soon as
ly| = d. [cf. Eq. (11)]. In the case of a sufficiently fast domain
growth, the drift induced by the latter pulls the walker away
from the origin, implying that the typical distance traveled by
the walker will exceed d,; the walker is then practically forced
to take the next jump in the opposite direction. The parameters
in the simulations have been chosen in such a way that the
distance traveled by the walkers is almost always smaller than
d., and so the diffusive description holds.
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