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First-encounter time of two diffusing particles in confinement
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We investigate how confinement may drastically change both the probability density of the first-encounter time
and the associated survival probability in the case of two diffusing particles. To obtain analytical insights into this
problem, we focus on two one-dimensional settings: a half-line and an interval. We first consider the case with
equal particle diffusivities, for which exact results can be obtained for the survival probability and the associated
first-encounter time density valid over the full time domain. We also evaluate the moments of the first-encounter
time when they exist. We then turn to the case with unequal diffusivities and focus on the long-time behavior
of the survival probability. Our results highlight the great impact of boundary effects in diffusion-controlled
kinetics even for simple one-dimensional settings, as well as the difficulty of obtaining analytic results as soon
as the translational invariance of such systems is broken.
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I. INTRODUCTION

As most chemical reactions are encounter-controlled, the
first-encounter time (FET) of the reactants is one of the central
quantities characterizing diffusion-influenced reactions. The
first study of the FET goes back to Smoluchowski, who re-
duced a many-body reaction problem for two species (i.e.,
a bimolecular reaction) with a vast excess of one of them,
to the problem of two diffusing reactive particles [1]. By
selecting a coordinate system that follows one of the diffus-
ing particles, the original problem is reduced to the simpler
problem of a single particle diffusing toward a static target
(or sink). Smoluchowski solved this problem and determined
the survival probability, whence the probability density of the
first-passage time to the target (here equivalent to the FET)
and the associated reaction rate immediately follow.

Since Smoluchowski’s seminal work, first-passage times
to fixed targets have been thoroughly investigated for various
kinds of diffusion processes, chemical kinetics, and geometric
settings [2–25]. In particular, when the fixed target is small,
one deals with the so-called narrow escape problem, for which
many asymptotic results have been derived [26–34] (see also
a review [35]). Another well-explored research direction con-
cerns multiple particles diffusing on infinite lattices or in
Euclidean spaces. This general setting allows one to investi-
gate elaborate chemical reactions involving various species,
the effect of inter-particle interactions (e.g., excluded vol-
ume), and cooperativity effects when, for instance, several
predators hunt for a prey [36–43]. In this context, one clearly
identifies two types of problems, (i) those where any pair of

particles can interact with each other as long as such inter-
actions are not precluded by geometric constraints, and (ii)
those where particles of a given species (usually the majority
species) do not interact with one another, but do so with
a target particle or with a set of targets. The first type is
well exemplified by binary reactions such as one-species and
two-species coalescence/annihilation reactions [44], whereas
the second type includes the so-called target problem and the
trapping problem, as well as variants thereof [38–40,45–60].
In particular, the generic question on how the mobility of
a target or a trap impacts the reaction rate has long been a
subject of interest [38–40,45,56,61–65]. The third direction
regroups numerical works, in which diffusion-reaction pro-
cesses are modeled by molecular dynamics or Monte Carlo
simulations [66–68]. While such approaches are admittedly
the most realistic ones, they often lack analytic insights which
are often of great help for the intuitive understanding and
systematic characterization of diffusion-reaction processes.

Quite surprisingly, the influence of confinement on the
FET distribution of two diffusing particles and on the asso-
ciated chemical reactions is much less studied. The evident
consequence of the presence of a confining boundary is the
translational symmetry breaking that prohibits the reduction
of a problem involving two diffusing particles to the problem
of a single particle diffusing toward a static target. One there-
fore has to describe the dynamics of two particles inside a
confining domain, and the solution of the relevant diffusion-
reaction equations becomes much more sophisticated. We are
aware of only several works dealing with such problems,
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and they are concerned with the simplest possible scenario
of infinite reaction rate: the reaction takes place with unit
probability upon encounter. In situations when the fate of the
reaction products is not of primary interest (e.g., if the reac-
tion products are inert), one may formally consider that any
two diffusing walkers annihilate irreversibly upon encounter
but do not interact otherwise. Fisher coined the term “vi-
cious walkers” for such nonintersecting walks [69,70]. Upon
Fisher’s systematic study of their statistical properties, vicious
walkers became an important paradigm in statistical physics.
Fisher’s original formulation was in terms of lattice walks,
but the diffusive limit of the latter is often considered, as it
greatly simplifies the mathematical treatment. In this diffusive
approximation, Bray and Winkler studied one-dimensional
vicious walkers in a potential, including the case of an interval
[71]. Further references on vicious walkers in finite systems
are given at the end of Sec. II.

As far as other works are concerned, Agliari et al. investi-
gated the first-encounter problem on branched and comblike
structures, with special emphasis on the encounter probability
[72–74]. Amitai et al. estimated the mean FET between two
ends of a polymer chain by computing the mean time for a
Brownian particle to reach a narrow domain in the polymer
configuration space [75]. Tejedor et al. investigated diffusion
of two particles with equal diffusivities on an interval with
either absorbing or reflecting boundary conditions and com-
puted two quantities: the probability that the random walkers
meet before one of them is removed at the boundaries of an
absorbing interval, and the typical encounter time of the two
walkers in the presence of reflecting boundaries [76]. The
related epidemic spreading problem has been discussed in
Ref. [77]. Tzou et al. studied the mean FET for two particles
diffusing on a one-dimensional interval by solving numeri-
cally the underlying diffusion equations and by deriving some
asymptotic relations [78]. In particular, they studied under
which conditions a mobile trap can capture a diffusing particle
more efficiently than a fixed trap. Even for such a simple
geometric setting, an analytical solution of the problem was
not provided. More recently, Lawley and Miles computed
the mean FET for a very general diffusion model with many
small targets that can diffuse either inside a three-dimensional
domain, or on its two-dimensional boundary, their diffusivities
are subject to random fluctuations, while their reactivity can
be stochastically gated [79]. However, a systematic study of
the FET distribution for diffusing particles in confinement is
still missing.

In this paper, we consider two Brownian particles A and B
diffusing inside a bounded Euclidean domain with reflecting
boundary, and investigate the probability of both particles not
having met up to a given time t . This quantity is the survival
probability for a pair of two molecules with infinite reactiv-
ity so that their first collision leads to a chemical reaction:
A + B → C. In chemical kinetics, the survival probability can
be interpreted as the fraction of particles still reactive at time
t with respect to the initial number of particles. The survival
probability determines other important quantities: the prob-
ability density of the FET, its mean value and higher-order
moments, as well as the reaction rate.

For two diffusing spherical particles without confinement
(i.e., in Rd ), the survival probability and related quantities

are functions only of the initial distance between the centers
of the particles, of the sum of their radii, and of the sum
of their diffusion constants. In contrast, confinement induces
new length scales involving distances between the particles
and the reflecting boundary, and changes chemical kinetics,
particularly at long times at which the typical distance trav-
eled by particles is comparable with the system size. Even
though most chemical reactions occur under confinement, its
impact on the survival probability and related quantities re-
mains poorly understood. In view of these shortcomings, our
work aims to shed further light on the role of confinement
in diffusion-limited bimolecular reactions. To this end, we
will use both analytical tools and numerical simulations. In
contrast with some previous works, our analysis will extend
beyond the long-time asymptotic regime whenever possible,
since the influence of the domain boundaries may already be-
come apparent for comparatively short times. As it turns out,
the interaction with the reflecting boundaries does not only
alter the value of the mean FET, but also affects higher order
moments, which assess the impact of trajectory-to-trajectory
fluctuations and the statistical significance of the mean FET.

The paper is organized as follows. In Sec. II, we formulate
diffusion-reaction problem and summarize the main known
theoretical results that are relevant for our study. In Sec. III,
we consider the most studied case of two particles diffusing
on a half-line R+ with reflecting endpoint at 0. We provide the
exact solutions for the survival probability, the FET probabil-
ity density, as well as the moments of the FET. In Sec. IV, we
explore the FET problem for diffusion on an interval (0, L)
with reflecting endpoints. In spite of the apparent simplicity
of this geometric setting, much fewer analytical results are
known, especially for unequal diffusivities. First, we consider
in Sec. IV A the problem with equal diffusivities, for which
an exact solution for the survival probability, the FET density
and moments are obtained in the form of spectral expansions.
Next, we discuss in Sec. IV B the case of unequal diffusiv-
ities; even though the exact solution is unknown, we assess
the accuracy of a previously obtained asymptotic formula for
the mean FET [78] and investigate the long-time decay of
the survival probability in the general case by studying the
behavior of the smallest eigenvalue of the Laplace operator
in this setting. In particular, we show that the associated
decay time depends on both D1 and D2 in a complex way.
Finally, our main conclusions are summarized in Sec. V. In
summary, our results for the survival probability and related
quantities reveal the intricate dependence on both diffusivities
as soon as the interaction with the boundaries comes into play,
and highlight the difficulties of obtaining analytical results
for diffusive systems under confinement due to the lack of
translational invariance in space. While some aspects of this
first encounter problem have been analyzed in earlier works,
many of the reported properties are new, to our knowledge.

II. SUMMARY OF KNOWN RESULTS

In this section, we summarize some theoretical results on
the first-encounter time in the one-dimensional case. Even
though these results are known, they are dispersed in the
literature and not easily accessible. The problem of the FET
of two diffusing particles in the one-dimensional case is very
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specific and different from higher-dimensional settings: (i) the
particles can be pointlike and still meet with probability one;
(ii) the particle cannot overpass each other without meeting,
i.e., their initial order is always preserved. These two prop-
erties allow one to derive some analytical solutions which
are not available in higher dimensions. Nevertheless, the one-
dimensional setting provides a solid theoretical background
and some intuition on the FET and related properties in higher
dimensions. Beyond this immediate justification, the consid-
ered setting is also directly related to several fundamental
problems in statistical physics concerning fibrous structures
[80], polymer networks [81], wetting transitions, dislocations,
and melting [69,82].

We consider the problem of finding the FET for two
independent pointlike particles diffusing with diffusion coef-
ficients D1 and D2 on a domain � ⊂ R with reflections on
its boundary ∂�. Let us, respectively, denote by x1 and x2

the starting positions of the particles and assume that x1 � x2

without loss of generality. The FET T of these particles is
a random variable characterized by a cumulative probability
distribution, P {T < t}, or, equivalently, by the survival prob-
ability S(t |x1, x2) = P {T > t}. As the encounter depends on
the positions of both particles, it is natural to consider their
joint dynamics in the phase space � × �. In particular, the
survival probability satisfies the backward diffusion equation
(which in the present homogeneous setting with constant
diffusivities is formally equivalent to the usual diffusion equa-
tion),

∂S

∂t
=

(
D1

∂2

∂x2
1

+ D2
∂2

∂x2
2

)
S (x1, x2) ∈ � × �, (1)

subject to the initial condition S(t = 0|x1, x2) = 1 for x1 �= x2,
the Neumann boundary condition on the reflecting boundary
∂� (there is no net diffusive flux across the boundary), and the
Dirichlet boundary condition S(t |x1, x2 = x1) = 0, meaning
an immediate reaction upon the first encounter. Once the sur-
vival probability is found, one easily gets the FET probability
density,

H (t |x1, x2) = − ∂

∂t
S(t |x1, x2), (2)

and the associated moments,

〈T k〉 = k
∫ ∞

0
dt t k−1 S(t |x1, x2) (3)

(note that, depending on the problem at hand, such integrals
may not converge, i.e., some moments or even all of them can
be infinite). Alternatively, integrating Eq. (1) over time from 0
to ∞ and taking into account Eq. (3) for k = 1, one finds that
the mean FET 〈T 〉 satisfies

−1 =
(

D1
∂2

∂x2
1

+ D2
∂2

∂x2
2

)
〈T 〉 (x1, x2) ∈ � × �, (4)

the Neumann boundary condition ∂〈T 〉/∂n = 0 on the re-
flecting boundary ∂�, and the annihilation reaction condition
〈T 〉(x1, x2) = 0 when x1 = x2. Similar equations are available
for higher-order integer moments.

It is natural to assume that the domain � is connected
(otherwise, the particles could not move from one component
to another, and the problem would be trivially reduced to

that with a single component). As a consequence, there are
only three possible settings: (i) � = R, (ii) � is a half-line,
and (iii) � is a finite interval. The first case, also known as
“the diffusing cliff” in the literature on first-passage processes
[4], is well studied; as already anticipated, Smoluchowski’s
argument reduces the original problem to that of a single
effective particle diffusing with diffusivity D1 + D2 toward a
fixed target. The related survival probability is retrieved by
solving the simple diffusion equation on a half-line,

Sfree(t |x1, x2) = erf

[
δ√

4(D1 + D2)t

]
, (5)

where erf (z) is the error function and δ ≡ x1 − x2 is the initial
separation distance between the particles. Thus, the statistics
of the FET depends only on the sum of diffusion coefficients
and on the initial interparticle distance. In particular, the long-
time decay of Eq. (5) is obtained from the asymptotic behavior
of the error function:

Sfree(t |x1, x2) ∼ δ√
π (D1 + D2)t

, t � δ2

D1 + D2
. (6)

The FET probability density follows upon differentiating
Eq. (5) with respect to time,

Hfree(t |x1, x2) =
δ exp

(− δ2

4(D1+D2 )t

)
√

4π (D1 + D2)t3
, (7)

implying the long-time behavior

Hfree(t |x1, x2) = δ t−3/2

√
4π (D1 + D2)

, t � δ2

D1 + D2
. (8)

The mean FET, as well as higher-order moments, are infinite.
In fact, even though the particles meet with probability 1, long
trajectories before encounter provide dominant contributions
to these moments. In the following, these results for the infi-
nite system will be used as a reference for the half-line and for
the finite interval.

The solutions for both a half-line (� = R+) and an interval
[� = (0, L)] are obtained by stretching one of the coordinates
to reduce Eq. (1) to a diffusion equation with equal diffusiv-
ities on a planar domain (see below). The half-line case has
been extensively studied by Redner et al. (see Refs. [4,37] and
references therein). In particular, the long-time asymptotic
behavior of the survival probability was provided in Ref. [4].
Despite such extensive studies, the main focus so far was
clearly on the long-time asymptotics, to the extent that we
have not been able to directly find the exact solution of this
problem, but rather the solution of an equivalent problem with
a single particle diffusing in a wedge with absorbing bound-
aries. For this reason, not only do we provide this solution in
Sec. III, but we also analyze some interesting features charac-
terizing the moments of the FET and the transient behavior of
the survival probability.

Apart from the above results, problems of vicious walkers
under geometric constraints remain widely unexplored. In
Ref. [69], Fisher considered the effect of an absorbing wall
on the reunion statistics of identical or dissimilar walkers;
the reunion of dissimilar walkers was subsequently studied by
Fisher and Gelfand [83]. Forrester [84] investigated finite size
effects introduced by periodic boundaries.
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The problem of diffusion on an interval has been stud-
ied much less extensively. Bray and Winkler considered the
problem of N vicious walkers in different settings, including
an interval with reflecting endpoints [71], thereby general-
izing previous results by Krattenthaler [85]. However, they
restricted their analysis to the case of identical particles and
focused on the asymptotic long-time behavior of the survival
probability. More recently, Forrester et al. [86] considered
from another viewpoint the reunion statistics of noninter-
secting Brownian motions (i.e., surviving vicious walks) on
an interval with periodic, reflecting and absorbing boundary
conditions. In the absorbing case, they showed that the nor-
malized reunion probability is related to the statistics of the
outermost Brownian path on the half line. These results were
further explored by Liechty [87]. We will revisit the problem
of diffusion on an interval in Sec. IV.

III. HALF-LINE

A. Survival probability

We consider the problem of the first-encounter time for
two particles started from points x1 > x2 and diffusing with
diffusion coefficients D1 and D2 on the positive half-line R+
with reflections at 0. As mentioned in Sec. II, this problem is
equivalent to two-dimensional diffusion in the half-quadrant
(or wedge of angle π/4) with reflecting horizontal axis and
the absorbing diagonal. Rescaling the coordinate of the second
particle by

√
D1/D2, i.e., setting new coordinates y1 = x1

and y2 = x2
√

D1/D2, one maps the original problem onto the
problem of isotropic diffusion (with diffusion coefficient D1)
in a wedge �0 = {0 < r < ∞, 0 < θ < �}, with reflecting
ray at θ = 0 and absorbing ray at θ = �, and with the wedge
angle

� = atan
(√

D1/D2
)
. (9)

The latter ray accounts for the encounter condition y1 =
x1 = x2 = y2

√
D2/D1 when two particles meet. The initial

position in the wedge is determined by polar coordinates

(r0, θ0) with r0 =
√

y2
1 + y2

2 =
√

x2
1 + x2

2D1/D2 and θ0 =
atan(y2/y1) = atan(x2

√
D1/D2/x1). Note that the assumed

condition x1 > x2 implies θ0 < �.
In polar coordinates, the survival probability reads

S(t |x1, x2) = U (t |r0, θ0), where the function U (t |r0, θ0) sat-
isfies the diffusion equation,

∂

∂t
U = D1�U, (10)

subject to two boundary conditions:(
∂U

∂θ

)
θ=0

= 0, Uθ=� = 0. (11)

Due to the symmetry, one can replace �0 by a twice larger
wedge � = {0 < r < ∞, − � < θ < �}, with Dirichlet
condition U = 0 on its boundary. Note that a similar prob-
lem but with different boundary conditions was studied by
Ben-Naim and Krapivsky to investigate the slow kinetics of
Brownian maxima [88].

The radial Green’s function for a wedge domain � was
provided in Ref. [89] (see p. 379)

G(r, θ, t |r0, θ0) =
∞∑

n=1

e−(r2+r2
0 )/(4D1t )

D1t
Iνn [rr0/(2D1t )]

× 1

2�
sin[νn(θ + �)] sin[νn(θ0 + �)],

(12)

where νn = πn/(2�), and Iν (·) is the modified Bessel func-
tion of the first kind. To use the result of Ref. [89], here we
have considered the wedge of angle 2� and we have then
shifted the angular coordinate by �. The integral of this for-
mula over the arrival point (r, θ ) yields the survival probability

S(t |r0, θ0) =
∫ �

−�

dθ

∫ ∞

0
dr r G(r, θ, t |r0, θ0)

= 4
∞∑

n=1

1 − (−1)n

πn
sin(νn(θ0+�))Rνn (r0/

√
D1t ),

(13)

where

Rν (z) = e−z2/4
∫ ∞

0
dx x e−x2

Iν (xz)

=
√

π

8
ze−z2/8

[
I ν−1

2
(z2/8) + I ν+1

2
(z2/8)

]
. (14)

Note that this function approaches 1/2 in the limit z → ∞
and behaves as Rν (z) ∝ zν as z → 0. The probability density
of the FET then reads

H (t |r0, θ0) = 2r0√
D1 t3/2

∞∑
n=1

1 − (−1)n

πn
sin[νn(θ0 + �)]

× R′
νn

(r0/
√

D1t ), (15)

where

R′
ν (z) =

√
π ν

8
e−z2/8[I ν−1

2
(z2/8) − I ν+1

2
(z2/8)

]
. (16)

Note that if one sets x1 = x2 + δ in Eqs. (13) and (15) and
takes the limit x2 → ∞, one recovers Eqs. (5) and (7) for an
infinite system.

As discussed by Redner [4], the survival probability decays
asymptotically as

S ∝ (r0/
√

D1t )π/(2�) ∝ t−π/(4�) (t → ∞), (17)

so that the probability density decays as H ∝ t−π/(4�)−1. Note
that, since one always has π/(4�) > 1/2, the long-time decay
of both S and H is faster than in the free case [cf. Eqs. (6) and
(8)]. This simply reflects the fact that the boundary favors a
faster reaction.

Surprisingly, the early time behavior of the solution seems
to have received much less attention in the literature in
comparison with the long-time asymptotics. In fact, at short
times, subleading corrections characterize the departure of
Eq. (13) from the free solution Eq. (5) arising from the per-
turbation introduced by the reflecting boundary. In a recent
work addressing the diffusion of a random walker in a two-
dimensional wedge with absorbing boundaries [90], Chupeau
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et al. noted that the series representation in Eq. (13) does not
allow one to extract the short-time behavior because the use
of the asymptotic expansion of the modified Bessel functions
would yield a divergent series. Instead, Chupeau et al. sug-
gested to resort to the integral representation of the modified
Bessel functions to derive an alternative form of S(t |r0, θ0).
This yields an exact expression in terms of complementary
error functions and an integral remainder, but for some spe-
cific values of � the latter disappears [91]. For example, when
� = π/4 (which corresponds to D1 = D2), one finds

S(t |r0, θ0,� = π/4) = erf (
√

2y sin ϕ0) erf (
√

2y cos ϕ0),
(18)

where ϕ0 = θ0 + � and y = r2
0/(8D1t ). In terms of x1 and x2,

this gives

S(t |x1, x2, D2 = D1)

= erf

(
x1 − x2√

8D1t

)
erf

(
x1 + x2√

8D1t

)
(19a)

= Sfree(t |x1, x2, D2 = D1) erf

(
x1 + x2√

8D1t

)

= Sfree(t |x1, x2, D2 = D1)

− Sfree(t |x1, x2, D2 = D1) erfc

(
x1 + x2√

8D1t

)
. (19b)

The last term in Eq. (19b) quantifies the effect of the boundary
on the survival probability.

Another case in which a closed-form expression in terms of
error functions is available is � = π/6 corresponds to D2 =
3D1:

S(t |x1, x2, D2 = 3D1) = erf

(
x1 − x2√

16D1t

)

+ erf

(
x1 + x2√

16D1t

)
− erf

(
x1√
4D1t

)
, (20)

where the first term on the rhs corresponds yet again to the free
solution with diffusion coefficient D1 + D2 = 4D1. Equations
(19a) and (20), as well as the alternative general representa-
tion of the survival probability obtained in Ref. [90], provide
a good starting point to study the role of the boundary by
comparing the early-time behavior of the solution with that
of Eq. (5), as discussed in Sec. III B.

B. Comparison with the free case

It is instructive to compare the behavior of S and H
with their counterparts for the free case. Clearly, δS ≡
Sfree(t |x1, x2) − S(t |x1, x2) � 0 at all times. As time goes
by, δS first increases from its initial value δS(t = 0) = 0,
then attains a maximum value at a time t�, and finally de-
creases until it eventually vanishes in the limit t → ∞. One
has ∂δS/∂t |t=t� = 0, implying H (t�|x1, x2) = Hfree(t�|x1, x2).
Thus, the value of t� can be obtained by solving this equation
numerically.

Figure 1 illustrates the typical behavior of the FET density.
In an infinite system, the FET density reaches a maximum at
tfree = δ2/[6(D1 + D2)]. In the half-line system, the density
peaks at a time tHL. Finally, both curves cross at t�.
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FIG. 1. FET density for the free case (dashed line) and for the
half-line (solid line). The chosen parameter values are x2 = 0.5, δ =
3, D1 = 1, and D2 = 10. Vertical dashed lines indicate the times tfree

and tHL when peaks of the FET density are attained in both cases, as
well as the crossing time t�.

Finally, we note that, for x2 > 0 and a fixed D2, one has
S(t |x1, x2) → Sfree(t |x1, x2) as D1 → ∞; however, this is not
the case if one fixes D1 and then takes the limit D2 → ∞.

In some special cases, the obtained analytic expressions
are more transparent and therefore easier to interpret. For
instance, for D1 = D2 and x2 = 0, Eq. (19a) becomes

S(t |x1 = δ, x2 = 0, D2 = D1) =
[

erf

(
δ√

8D1t

)]2

= S2
free(t |x1 = δ, x2 = 0, D2 = D1). (21)

Thus, the time tζ after which the survival probability is just a
fraction 0 < ζ < 1 of the free solution is simply

tζ = δ2

8D1 [erf−1(ζ )]2
. (22)

From this equation, one immediately obtains t� = t1/2 ≈
0.55 δ2/D1, which is roughly 6.6 larger than tfree =
1

12 δ2/D1 � tHL.
In most considered settings, we observed tfree < tHL. How-

ever, it is also possible to get tfree > tHL when the particle 2
starts very close to the boundary. In this situation, the dif-
ference tfree − tHL can be nonnegligible when D1 and D2 are
comparable. For instance, in the aforementioned case x2 = 0
and D2 = D1, one always has tHL < tfree regardless of the
initial separation δ and of the diffusivity D1. This can be
easily seen by differentiating Eq. (21) with respect to time and
by subsequently requiring that the derivative of the resulting
expression for the FET density, H (t ) = 2SfreeHfree, vanishes at
t = tHL. This condition yields

dHfree

dt

∣∣∣∣
t=tHL

= H2
free(tHL)

Sfree(tHL)
. (23)

Since the right-hand side is always a positive quantity, the
solution tHL of the above equation must correspond to a time
when Hfree is still increasing and has not yet reached the
maximum at t = tfree, implying tHL < tfree.

We close this subsection with a short general discussion on
how the early-time behavior is affected by the boundary. In the
case of an obtuse wedge 2� > π/2 (i.e., D1 > D2), the free
solution is a good approximation up to relatively long times.
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FIG. 2. Time evolution of the survival probability as given by the
exact solution in Eq. (13), the free solution in Eq. (5) and the approx-
imation Eq. (24). The chosen parameter values are x1 = 0.9, x2 =
0.1, D1 = 1, and D2 = 5, leading to r0 ≈ 0.901, � ≈ 0.421, and
θ0 ≈ 0.05.

This holds even if the particle starts close to the boundary,
provided that δ is not too small and D2 is not too large. In the
case of an acute wedge 2� < π/2 (i.e., D1 < D2), the time
up to which the free solution is a good approximation, can be
significantly shorter. The free solution is still an acceptable
approximation as long as � > π/6 but it progressively dete-
riorates as D2 increases for a fixed D1. If D2 is not too large
(such that π/10 < � � π/6), a better early-time approxima-
tion can be obtained from Eq. (39) in Ref. [90] by retaining
the first two complementary error functions,1

S(t |x1, x2, D2, D1) ≈ 1 − ψ−︸ ︷︷ ︸
Sfree (t )

−ψ+ , (24)

with

ψ± = erfc

(
x1 ± x2

2
√

(D1 + D2)t

)
(25)

(since the complementary error function is a monotonically
decreasing function, for fixed x2 the correction ψ+ to the
free solution becomes increasingly important with decreasing
interparticle distance δ). The good accuracy of the approxima-
tion Eq. (24) in comparison with the free solution is illustrated
in Fig. 2.

C. Moments of the FET

We now provide exact expressions for the moments of the
FET density. They can be computed from the survival prob-
ability by applying Eq. (3). Different behaviors are observed

1We note that, in the language of Ref. [90], the free
solution corresponds to the asymptotic behavior S(y) � 1 −
erfc[

√
2y sin (2� − ϕ0)] of the survival probability, which holds in

the limit y ≡ r2
0/(8D1t ) → ∞ in the parameter range of our prob-

lem (ϕ0 > �). This is different from their prediction S(y) � 1 −
erfc[

√
2y sin (ϕ0)], which is not valid in this range. The difference

arises because, in our case, ψ+ = o(ψ−), rather than ψ− = o(ψ+)
(note that −ψ+ and −ψ− were respectively termed ψ1 and ψ2 in
Ref. [90]).

depending on the parameter �. If � � π/4 or, equivalently,
D1 � D2, then one sees from Eq. (17) that the mean FET is
still infinite, as in the free case. In turn, if D1 < D2, the mean
FET becomes finite and can be computed from Eq. (3) as

〈T 〉 = 4
∞∑

n=1

1 − (−1)n

πn
sin[νn(θ0 + �)]

∫ ∞

0
dt Rνn

(
r0√
D1t

)
,

and the last integral reads
√

2π

32

r2
0

D1

∫ ∞

0

dz

z3/2
e−z

[
I νn−1

2
(z) + I νn+1

2
(z)

]

= r2
0

2D1
(
ν2

n − 4
) .

The last equality holds for νn > 2, which is valid for all n =
1, 2, 3, . . . since � < π/4. We thus get the mean FET as

〈T 〉 = 2r2
0

D1

∞∑
n=1

1 − (−1)n

πn
(
ν2

n − 4
) sin[νn(θ0 + �)]. (26)

Using the identity [92]

∞∑
n=1

[1 − (−1)n] sin(πnx)

πn(z2 − π2n2)

= sin(z) − sin(zx) − sin[z(1 − x)]

2z2 sin(z)
, (27)

we compute the mean FET as

〈T 〉 = r2
0

4D1

[
cos(2θ0)

cos(2�)
− 1

]
. (28)

Thanks to trigonometric relations, one finds

cos(2θ0) = 1 − tan2(θ0)

1 + tan2(θ0)
= x2

1D2 − x2
2D1

x2
1D2 + x2

2D1
(29)

[and similar for cos(2�)]. After simplifications, we finally get
a remarkably simple formula

〈T 〉 = x2
1 − x2

2

2(D2 − D1)
= δ(2x1 − δ)

2(D2 − D1)
, (30)

which is valid for x1 > x2 and D1 < D2 [note that this result
could alternatively be derived by solving the Poisson Eq. (4)
for the MFET]. This is precisely the MFPT for a single
particle with the initial position x2 and diffusivity D2 − D1

to a fixed absorbing endpoint x1 of an interval (0, x1) with
reflections at 0.2 Thus, the mean FET for the problem with a
slowly diffusing target (started at x1) is the same as the mean
FET for the problem with a fixed target at x1 if the diffusivity
D2 of the rapidly diffusing particle is replaced with D2 − D1.
However, this equivalence is only manifested at the level of

2Equation (30) can be easily found from the corresponding Green
function on the interval (0, x1) with Dirichlet/Neumann boundary
conditions at the endpoints, or by realizing that the problem is
equivalent to that on an interval of doubled length 2x1 and two
fully absorbing endpoints, whose solution is well-known from the
literature, see, e.g., Ref. [4].
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the mean FET, since already the variance is different for these
two problems, as we show below.

The crucial difference between the two particles here is that
the second particle [started from x2 ∈ (0, x1)] remains bound
to a finite interval between 0 and the first particle (started
from x1), whereas the latter is bound to a half-line between the
second particle and infinity. When D1 > D2, the first particle
diffuses faster and can undertake very long excursions whose
contributions make the mean FET infinite, as in the case of
a single particle on the half-line with a fixed absorbing end-
point. In other words, as the slower second particle does not
typically “catch” the first one until after a very long time, its
diffusion is not relevant. In contrast, when the second particle
diffuses faster (D2 > D1), the first particle cannot efficiently
“run away” from it, and this setting is similar to diffusion on
a finite interval, for which the mean FET is finite.

According to Eq. (3), the long-time decay Eq. (17) implies
that the higher-order moment 〈T k〉 exists if � < π/(4k) and
is given by

〈T k〉 = 4k
∞∑

n=1

1 − (−1)n

πn
sin[νn(θ0 + �)]

×
∫ ∞

0
dt t k−1 Rνn

(
r0√
D1t

)

= 2k

(
r2

0

D1

)k ∞∑
n=1

1 − (−1)n

πn
sin[νn(θ0 + �)] �k (νn),

(31)

where

�k (ν) =
√

2π

23k+1

∫ ∞

0

dz

zk+1/2
e−z

[
I ν+1

2
(z) + I ν−1

2
(z)

]
. (32)

For integer-order moment k, one can use the following
Laplace transform [93]

∫ ∞

0
dt e−pt tμ Iν (at )

= aν�(μ + ν + 1)

2ν pμ+ν+1�(ν + 1)

× 2F1

(
μ + ν + 1

2
,
μ + ν + 2

2
; ν + 1;

a2

p2

)
(33)

(where 2F1(a, b; c; z) is the Gauss hypergeometric function) to
obtain

�k (ν) = (k − 1)!
k∏

j=1

1

ν2 − (2 j)2
, (34)

which completes the computation of the kth order moment:

〈T k〉 = 2(k!)
(
r2

0

/
D1

)k
∞∑

n=1

1 − (−1)n

πn
sin[νn(θ0 + �)]

×
k∏

j=1

1

ν2
n − (2 j)2

. (35)

Using again the summation identity in Eq. (27), we get

〈T 2〉 = − r2
0

6D1
〈T 〉 +

(
r2

0

/
D1

)2

96

[
cos(4θ0)

cos(4�)
− 1

]
,

whence

〈T 2〉 =
(
x2

1 − x2
2

)(
5x2

1D2 + 5x2
2D1 − x2

1D1 − x2
2D2

)
12(D2 − D1)

(
D2

1 + D2
2 − 6D1D2

) . (36)

The variance then is

σ 2
T = x4

1 − x4
2

6(D2 − D1)2

× 6
(
x2

1 − x2
2

)
D1D2 + (

x2
1 + x2

2

)(
D2

2 − D2
1

)
(
x2

1 + x2
2

)(
D2

1 + D2
2 − 6D1D2

) . (37)

Note that the condition � < π/8 (with k = 2) is equivalent
to D1/D2 < 3 − 2

√
2 ≈ 0.1716, which is precisely one of the

roots of the quadratic polynomial in the denominator. When
D1/D2 approaches this value, the variance diverges, whereas
the mean remains finite.

As said earlier, this expression differs from the variance
for an effective problem of a particle diffusing with diffusion
coefficient D2 − D1 to a fixed target at x1:

σ 2
T , eff = x4

1 − x4
2

6(D2 − D1)2
. (38)

Indeed, Eq. (37) can be written as

σ 2
T = σ 2

T , eff W (x2/x1, D2/D1), (39)

where

W (x, η) = 1 − 2
1 − 6η + x2

(1 + x2)(1 − 6η + η2)
, (40)

for 0 � x � 1 and η > η0 = 1/(3 − 2
√

2) ≈ 5.8284. One
can easily check that for any 0 � x � 1, W (x, η) is a
monotonously decreasing function of η, which varies from
+∞ at η = η0 to 1 as η → ∞. In other words, the variance
σ 2
T is always greater than σ 2

T , eff but approaches the latter
as η = D2/D1 goes to infinity. In turn, the dependence of
W (x, η) on x = x2/x1 is rather weak.

IV. INTERVAL

In this section, we consider the FET problem for two
particles diffusing on an interval � = (0, L), which is equiv-
alent to anisotropic diffusion on the square (0, L) × (0, L).
As this domain is bounded, the governing diffusion operator,
D1∂

2/∂x2
1 + D2∂

2/∂x2
2, has a discrete spectrum, its eigenfunc-

tions form a complete basis in the space of square-integrable
functions on � × �, and the survival probability admits a
spectral expansion [94]. In particular, the survival probability
decays exponentially

S(t |x1, x2) ∝ exp(−t/T ) (t → ∞), (41)

with the decay time T (D1, D2), determined by the smallest
eigenvalue of the diffusion operator. This behavior is in sharp
contrast with the power-law decay Eq. (17) for diffusion on a
half-line.
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We treat separately two cases: D1 = D2, for which an ex-
act solution and much more advanced analysis are possible
(Sec. IV A), and D1 �= D2, for which we focus on the long-
time limit (Sec. IV B).

A. Equal diffusivities

We search for the distribution of the first-encounter time
for two particles diffusing with equal diffusivities, D1 = D2,
on an interval (0, L) with reflecting endpoints. As discussed in
Sec. II, the N = 2 problem is equivalent to two-dimensional
diffusion on the square (0, L) × (0, L) with reflecting edges
and absorbing diagonal. Our previous assumption x1 > x2 im-
plies that the particle is actually restricted to the isosceles right
triangle � = {0 < x1 < L, 0 < x2 < x1} with reflecting edges
and absorbing hypotenuse. For this domain, one can construct
the eigenfunctions of the Laplace operator by antisymmetriz-
ing the known eigenfunctions on the square:

un1,n2 (x1, x2) = cn1,n2 [cos(πn1x1/L) cos(πn2x2/L)

− cos(πn2x1/L) cos(πn1x2/L)], (42)

with the indices 0 � n1 < n2, and the normalization coeffi-
cients are

cn1n2 = 2

L

1√(
1 + δn10

)(
1 + δn20

) . (43)

As this set of eigenfunctions is complete (see Appendix A and
[95–98]), the survival probability can be written as a spectral
decomposition:

S(t |x1, x2) =
∞∑

n1=0

∞∑
n2>n1

bn1,n2 un1,n2 (x1, x2) e−D1tλn1 ,n2 , (44)

where λn1,n2 = π2(n2
1 + n2

2)/L2 and

bn1,n2 =
∫

�

dx1 dx2 un1,n2 (x1, x2)

= 2L2cn1,n2 (1 − (−1)n1+n2 )

π2
(
n2

2 − n2
1

) . (45)

This expression is a particular form of the general anti-
symmetrized expression for N vicious walkers provided in
Ref. [71]. An alternative spectral representation of the survival
probability was derived in Ref. [76]:

S(t |x1, x2) = 4

π2

∞∑
n1=0

∞∑
n2=0

e−D1tλ′
n1 ,n2

× sin
[

π (n1+1/2)(x1−x2 )
L

]
sin

[
π (n2+1/2)(x1+x2 )

L

]
(n1 + 1/2)(n2 + 1/2)

,

(46)

where λ′
n1,n2

= 2π2[(n1 + 1/2)2 + (n2 + 1/2)2]/L2. The de-
cay time in the long-time limit is simply

T (D1, D1) = 1

D1λ0,1
= L2

π2D1
. (47)

In the long-time limit, the double sum in Eq. (44) is essen-
tially determined by a single decay mode associated with

T (D1, D1), and one obtains

S(t |x1, x2) ≈ 8

π2
{cos(πx2/L) − cos(πx1/L)}e−D1π

2t/L.

(48)
In the particular case x1 = L, the average of Eq. (48) over a
uniform distribution of x2 on the interval [0, L] yields

Suniform(t ) � 8

π2
e−D1π

2t/L (t → ∞). (49)

This expression will be compared to the target problem dis-
cussed below (see Sec. IV A 1).

From Eq. (2), the probability density of the FET is given as

H (t |x1, x2) = D1

∞∑
n1=0

∞∑
n2=n1+1

bn1,n2 un1,n2 (x1, x2) λn1,n2

× e−D1tλn1 ,n2 . (50)

The mean and higher-order moments of the FET can be ob-
tained from Eq. (3):

〈T k〉 = k!
∞∑

n1=0

∞∑
n2>n1

bn1,n2(
D1λn1,n2

)k
un1,n2 (x1, x2). (51)

In Appendix B, we employ the summation technique to partly
evaluate this double sum. In particular, we derive the follow-
ing expression for the mean FET (for x1 � x2):

〈T 〉 = (x1 − x2)[2L2 + 6x2(L − x1) − (x1 − x2)2]

12D1L

+ L2

D1

∞∑
n=1

cos
(
πn x2

L

)
vn

( x1
L

) − cos
(
πn x1

L

)
vn

( x2
L

)
(πn)3

,

(52)

where vn(x) = cosh[πn(1−x)]−(−1)n cosh(πnx)
sinh(πn) (for x1 < x2, one

needs just to exchange x1 and x2). An alternative spectral rep-
resentation of the mean FET, based on Eq. (46), was derived
in Ref. [76]:

〈T 〉 = (x1 − x2)[L − (x1 − x2)/2]

2D1

− L2

D1

∞∑
k=0

sin
[

π (k+1/2)(x1−x2 )
L

]
π3(k + 1/2)3

× sinh
[

π (k+1/2)(x1+x2 )
L

] + sinh
[

π (k+1/2)(2L−x1−x2 )
L

]
sinh[π (2k + 1)]

.

(53)

Tejedor et al. discussed approximations for this exact relation,
in particular, when both particles are initially close to an
endpoint of the interval [76].

It is well known that the fluctuations in the values of
T in many first-passage time problems can be enormous
[4,10,99,100]. Equation (51) allows us to compare 〈T 〉 and the
standard deviation σT =

√
〈T 2〉 − 〈T 〉2 in the present case of

two particles in an interval (Fig. 3). We see that the standard
deviation is larger, and even much larger in some cases, than
the mean FET when the initial positions of the particles are
close. For example, we see that the standard deviation is
always larger than the mean FET when both particles start
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FIG. 3. Normalized mean FET (solid lines) and standard devi-
ation (dashed lines) versus the initial position of the left particle
for several initial positions of the right particle. The symbols show
simulation results with 106 runs, obtained for L = 1000 and particles
with diffusion coefficient D1 = D2 = 1/2.

in the same half of the interval. This is illustrated with more
detail in Fig. 4 where a contour plot of the ratio σT /〈T 〉 on
the x1–x2 plane is shown.

1. Comparison with the problem of a diffusing particle in a sea of
diffusing traps

By symmetry, the above problem with x1 = L can be
mapped to an equivalent problem where particle 1 starts at the
middle of an interval (0, 2L), and is surrounded by particle 2
(which starts at x2 and has diffusivity D2 = D1), and a ficti-
tious mirror particle 2′ (which is originally located at 2L − x2

and follows symmetrically the trajectory of the particle 2).
One could thus wonder to what extent this problem is similar
to other problems in which the distance to the nearest neigh-
bors on a one-dimensional setting determines the survival
probability of the particle.

x L

x
L

FIG. 4. Contour plot of σT /〈T 〉 on the plane of initial positions
x1–x2. Contour lines corresponding to several values of this ratio
(which is shown as a label) are provided.

One such problem is the computation of the survival proba-
bility of a diffusing pointlike target with diffusivity D1 in a sea
of identical noninteracting point traps, each of them diffusing
with diffusivity D2 = D1. The traps are initially scattered at
random with a global density ρ on the infinite real line. In
the limit t → ∞, it can be shown that the survival probability
of the target averaged over an ensemble of initial conditions
is Starget (t ) � e−4ρ(D2t/π )1/2

[38–40]. Taking the density value
ρ = 1/L and D2 = D1 yields

Starget (t ) � e−4(D1t/π )1/2/L (t → ∞), (54)

i.e., an asymptotic decay that is slower than the one prescribed
by Eq. (49).

In the target problem, there are large trap density fluctu-
ations which entail the formation of large gaps between the
target and the closest traps in certain statistical realizations. In
contrast, the maximum distance from particle 2 (and its mirror
particle 2′) to the target at any time can never exceed the value
L in our expanded system. This accelerates the decay of the
survival probability with respect to that observed in the target
problem, despite the fact that in the latter more than just two
particles (actually, an infinite number of them) are available to
kill the target, since the traps can overpass each other.

Finally, it is also worth noting that the decay observed in
our one-dimensional problem is similar to that observed in
the three-dimensional target problem with diffusing target of
finite extent [101]; in both cases, the decay is exponential,
since the reflecting boundaries and the increased dimension-
ality, respectively, facilitate the mixing of the reactants and
accelerate the decay of the survival probability.

B. Unequal diffusivities

Here we investigate the mean FET 〈T 〉 and the decay
time T (D1, D2) for the case D1 �= D2. In particular, we will
consider the cases in which one of the diffusivities is much
smaller than the other, say ε2 = D2/D1 � 1.

1. Mean FET

In Ref. [78], Tzou et al. studied Eq. (4) and found the
following asymptotic expression for the mean FET for ε � 1:

D1〈T 〉
L2

= uo(x̄1, x̄2, ε) + εV1(x̄1, x̄2/ε) + ε2V2(x̄1, x̄2/ε),

(55)
where

u0(x̄1, x̄2, ε) = (1 + ε2)

(
x̄1 − x̄2 − x̄2

1

2
+ x̄2

2

2

)
(56)

is the outer solution, and

V1(x, η) = −
∞∑

n=0

2

α2
n

e−αnη sin(αnx), (57)

V2(x, η) =
∫ ∞

0

dω F̂ (ω)

cosh(2πω)
cosh [2πω(x − 1)] cos(2πωη),

(58)

032118-9



LE VOT, YUSTE, ABAD, AND GREBENKOV PHYSICAL REVIEW E 102, 032118 (2020)

FIG. 5. Scaled mean FET 〈T 〉 vs. the ratio D2/D1 (with D1 =
0.5) for {x1/L = 0.75, x2/L = 0.25} (triangles, L = 500), {x1/L =
0.75, x2/L = 0.5} (circles, L = 500), and {x1/L = 0.9, x2/L = 0.7}
(squares, L = 1000). The symbols show simulation results with 106

runs. The dotted line is the outer solution Eq. (56), the dashed line
is the uniform solution Eq. (55) when one term is retained in the
infinite series, whereas the solid line is the same solution with ten
terms retained.

F̂ (ω) being the Fourier cosine transform of

f (η) = η

∞∑
n=0

2

α2
n

e−αnη, (59)

αn = (n + 1/2)π , and x̄ = x/L. In Fig. 5 we compare these
expressions with simulation results. We see that when the
diffusivity of one of the particles is much smaller than the
diffusivity of the other, i.e., for D2 � D1, Eq. (56) is a simple
and accurate expression for estimating the mean FET, 〈T 〉,
especially when the two particles start close to each other.

In the limiting case of D2 → 0, i.e., for ε → 0, one gets

〈T 〉 = 2L(x1 − x2) − x2
1 + x2

2

2D1
, (60)

which is just the mean FPT of a diffusive particle with dif-
fusion coefficient D1 that starts at x1 and is surrounded by
an absorbing frontier at x2 and a reflecting barrier at L [see
Eq. (30) and the discussion below this equation].

Note that Tzou et al. in Ref. [78] did not assess the accuracy
of their asymptotic formulas. They were mainly interested by
the question whether, to survive, it is better for one of the
particles to move randomly or remain immobile.

2. Decay time

In the case D1 �= D2, one can still stretch the original
square along one coordinate into a rectangle to get isotropic
diffusion (Fig. 6). In particular, the smallest eigenvalue λmin of
the Laplace operator in the right triangle with (reflecting) Neu-
mann boundary conditions on legs (0, L1) and (0, L2) (with
L1 = L and L2 = L

√
D1/D2 resulting from stretching) and

(absorbing) Dirichlet boundary condition on the hypotenuse

(a) (b) (c)

FIG. 6. Schematic illustration of the first-encounter problem for
two particles with unequal diffusivities D2 < D1 on the interval
(0, L). (a) The original first-encounter problem is mapped onto
anisotropic diffusion in a square (0, L) × (0, L) with diffusivities
D1 and D2 along coordinates x1 and x2. The condition x1 > x2 re-
stricts the starting point to the isosceles right triangle (gray region).
(b) In new variables y1 = x1 and y2 = x2

√
D1/D2, this problem is

equivalent to isotropic diffusion in the right triangle with legs (0, L1)
and (0, L2), where L1 = L and L2 = L

√
D1/D2. The larger angle

of the triangle is � = atan(L2/L1) = atan(
√

D1/D2 ). Neumann (N)
boundary condition is imposed on both legs, whereas Dirichlet (D)
boundary condition is imposed on the hypotenuse. (c) Due to the
reflection symmetry of the ground eigenfunction of the Laplace oper-
ator, the smallest Laplacian eigenvalue λmin in the above triangle can
be determined from that in the rhombus with the size � = √

L2
1 + L2

2

and the acute angle α = π − 2�, where a Dirichlet boundary condi-
tion is imposed on all edges.

determines the decay time T ,

T (D1, D2) = 1

D1λmin(D1, D2)
. (61)

Unfortunately, the eigenvalues and eigenfunctions of the
Laplace operator are not known for arbitrary right triangles.

However, the limiting case of one slowly diffusing par-
ticle, D2 � D1, can be worked out. Note that, in this case,
one deals with strongly elongated triangles. Due to Neumann
boundary conditions on the two legs, the original right trian-
gle can be quadrupled by double reflection along each leg,
yielding a rhombus with absorbing boundary condition on
all four sides. This operation does not change the smallest
eigenvalue. As D2 � D1, the obtuse angle 2� of the rhombus
is close to π , whereas the acute angle α = 2�0 = π − 2� =
2 atan(

√
D2/D1) is small. In Ref. [102], the following asymp-

totic behavior for the smallest eigenvalue was derived:

λmin � π2

�2α2

[
1 − 22/3a′

1

π2/3
α2/3 + O(α4/3)

]
, (62)

where � is the side length, α � 1 is the angle, and a′
1 ≈

−1.0188 is the first zero of the derivative of the Airy function.
In our setting, �2 = L2

1 + L2
2 = L2(1 + D1/D2) and α = 2�0

so that

λmin � π2

4L2(1 + D2/D1)

D2/D1

atan2(
√

D2/D1)

×
(

1 − 24/3a′
1

π2/3
atan2/3(

√
D2/D1) + . . .

)
. (63)
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Expectedly, the smallest eigenvalue multiplied by L2 is just a
function of D2/D1. As a consequence, the decay time reads

T (D1, D2) � 4L2

π2D1

(D1 + D2)atan2(
√

D2/D1)

D2

×
(

1 + 24/3a′
1

π2/3
atan2/3(

√
D2/D1) + . . .

)
.

(64)

In the limit D2 → 0, the decay time approaches a constant,
T (D1, 0+) = 4L2/(π2D1). We emphasize that this limit is
different from the one obtained in the case of a static target
fixed at x2 and a particle diffusing on the interval (x2, L), for
which the decay time is T (D1, 0) = 4(L − x2)2/(π2D1). In
other words, the limit D2 → 0 is singular, i.e.,

lim
D2→0

T (D1, D2) = T (D1, 0+) �= T (D1, 0). (65)

In fact, even when D2 is very small but strictly positive, the
memory of the starting position x2 of the slow particle is lost
in the long-time limit, implying that x2 does not influence
the timescale of the slowest decaying mode. In this respect,
the decay time T (D1, D2) is considerably different from the
mean FET, which depends on both starting point x1 and x2,
see Fig. 5.

Figure 7(a) shows the behavior of the smallest eigenvalue
λmin as a function of D2/D1. At D2 = D1, we recover the
square case considered in Sec. IV A, with L2λmin = π2. In
turn, as D2 decreases, L2λmin also decreases and reaches the
value π2/4. One can see that the asymptotic Eq. (63) accu-
rately captures the behavior of λmin for D2/D1 � 0.01. It is
worth noting that the next-order correction term appearing in
the second line of Eq. (63) is necessary because the leading
term alone (dashed line) fails to reproduce well the behavior.
Figure 7(b) further illustrates that T (D1, D2) is not a function
of D1 + D2 alone (as in the free case) but depends on both D1

and D2 in a more intricate fashion.

V. CONCLUSIONS

In this paper, we investigated the impact of confinement
on the FET distribution for two diffusing particles. In spite of
the practical importance of this problem in chemical physics
and related disciplines, it has received little attention in
comparison with other first-passage problems, even for one-
dimensional systems. We focused on two settings: a half-line
and an interval. In the half-line case, the survival probability
S(t |x1, x2) and the related probability density H (t |x1, x2) of
the FET were already formally known, but had not been
studied in detail, in particular in the short-time limit. We thus
carried out a thorough analysis of both short- and long-time
asymptotic behaviors, as well as a comparison with the free
case (without reflecting endpoint at the origin). In addition,
we derived and discussed the behavior of the mean FET and
its variance.

The case of an interval was even less studied. Both
S(t |x1, x2) and H (t |x1, x2), as well as the moments of the FET,
can be written in terms of explicit spectral expansions in the
case of equal diffusivities. We compared the mean FET and
its standard deviation to quantify the role of fluctuations of the
FET. We also compared the behavior for two particles with the
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FIG. 7. (a) Smallest eigenvalue of the diffusion operator as a
function of D2/D1 for two particles diffusing on an interval (0, L)
with diffusivities D1 and D2. Filled circles show the eigenvalue
obtained numerically by a finite element method in Matlab PDEtool,
whereas solid and dashed lines represent the asymptotic Eq. (63),
with and without the subdominant term, respectively. (b) Associated
decay time T vs. D2 as obtained from Eq. (61) for D1 + D2 = 1 and
L = 1.

problem of a diffusing particle in a sea of diffusing traps, and
found a faster decay of the survival probability in the former
case. Finally, we investigated the case of unequal diffusivi-
ties in the limit D2 � D1. First, we checked the quality of
the asymptotic approximation for the mean FET reported in
Ref. [78]. Second, we obtained another asymptotic relation
for the decay time characterizing the survival probability and
the probability density in the long-time limit.

As shown by our results, geometric confinement implies
the onset of additional time scales associated with the diffu-
sion times of the particles to the reflecting boundaries. Even in
the case of a single boundary, subtle effects emerge, e.g., the
FET probability density may be peaked at times earlier or later
than in the free case depending on the parameter choice. In the
case when particle 1 diffuses slowly, the mean FET is equal
to the mean FPT for a single particle with diffusivity D2 − D1

moving between the origin and an absorbing point at x1, but
the variances are different. In the presence of two boundaries
(an interval), fluctuations of the FET can also be important.
Moreover, we showed that the mean FET and the decay time
are different and exhibit sophisticated dependences on both
diffusivities D1 and D2. This observation breaks a common
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intuitive thought, inspired by the free case, that only D1 + D2

matters. Finally, we illustrated that the limit D2 → 0 is sin-
gular by deriving the asymptotic behavior of the decay time.
In other words, the long-time behavior of the survival prob-
ability is different for an immobile target (D2 = 0) and for a
very slowly diffusing target (D2 ≈ 0). This observation may
question common assumptions of static targets in biological
systems, in which everything is moving.

As we have seen, the additional scales introduced by
boundaries result in the onset of very rich behavior and drastic
modifications with respect to the free case. Even in simple
settings, it is often not possible to obtain exact analytic results,
as exemplified by the computation of the dominant decay
mode in the interval problem. From a broader perspective,
a variety of processes (fluorescence, phosphorence, and lu-
miniscence quenching, reactions of solvated electrons, proton
transfer, radical recombination reactions, enzyme-ligand in-
teractions, etc.) have been shown to display reaction rates that
are often of the same order of magnitude as the predictions
of Smoluchowski’s theory [1,2], but still display important
deviations. Assessing the role of boundary effects in some of
these systems may help to better quantify these discrepancies.
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APPENDIX A: COMPLETENESS OF THE EIGENBASIS
FOR THE ISOSCELES RIGHT TRIANGLE

In this Appendix, we prove that the Laplacian eigenbasis
used in Sec. IV A is complete. Even though this result should
be known, we could not find its proof in the literature.

The starting point of the proof is the fact that the functions

φn1n2 (x1, x2) = cn1n2 cos (πn1x1/L) cos (πn2x2/L),

(n1, n2 = 0, 1, 2, . . .), (A1)

with Eq. (43), form a complete set of (orthonormal) eigen-
fuctions of the Laplace operator on a square of side L with
reflecting boundaries. In other words, any square-integrable
function f on the square can be decomposed in this basis:

f (x1, x2) =
∞∑

n1=0

∞∑
n2=0

bn1n2φn1n2 (x1, x2), (A2)

where

bn1n2 = 〈
φn1n2

∣∣ f
〉 =

∫ L

0

∫ L

0
φn1n2 (x1, x2) f (x1, x2)dx1dx2.

(A3)
Let us now assume that f has the symmetry f (x1, x2) =
− f (x2, x1). This symmetry has the following implications for
the values of the Fourier coefficients bn1n2 :

(i) bnn = 0. In fact, by definition

bnn = 〈φnn| f 〉 = 2

L

∫ L

0

∫ L

0
F (x1, x2)dx1dx2, (A4)

where, for n �= 0,

F (x1, x2) = cos (πnx1/L) cos (πnx2/L) f (x1, x2). (A5)

But note that, due to the symmetry of f ,
F (x1, x2) = −F (x2, x1). This implies that the integral∫ L

0

∫ L
0 F (x1, x2)dx1dx2 over the lower triangle � = {0 � x1 �

L, 0 � x2 � x1} is equal (but with opposite sign) to the inte-
gral over the upper triangle �̄ = {0 � x1 � L, 0 � x1 � x2}.
Therefore, bnn = 0. The proof for n = 0 is straightforward.

(ii) bn1n2 = −bn2n1 . In fact, by definition

bn2n1

= 2

L

∫ L

0

∫ L

0
cos (πn2x1/L) cos (πn1x2/L) f (x1, x2)dx1dx2

(A6)

or, using the property f (x1, x2) = − f (x2, x1),

bn2n1 − 2

L

∫ L

0

∫ L

0
cos(πn1x2/L)

× cos (πn2x1/L) f (x2, x1)dx2dx1 = −bn1n2 . (A7)

This is also true if n1 = 0 or n2 = 0.
Using the results bn1n2 = −bn2n1 and bnn = 0, one finds

that any function f (x1, x2) with the property f (x1, x2) =
− f (x2, x1) can be uniquely represented in terms of the eigen-
functions un1,n2 (x1, x2) = φn1n2 (x1, x2) − φn2n1 (x1, x2) with
0 � n1 < n2. Note, however, that the property f (x1, x2) =
− f (x2, x1) does not imply any restriction on the value of f
on the lower triangle �. Thus, any square-integrable func-
tion f (x1, x2) defined on � can be uniquely represented
in terms of the eigenfunctions un1,n2 (x1, x2) = φn1n2 (x1, x2) −
φn2n1 (x1, x2) with 0 � n1 < n2. In other words, un1,n2 (x1, x2)
with 0 � n1 < n2 form a complete set of Laplacian eigenfunc-
tions on �.

APPENDIX B: MFET FOR THE INTERVAL

In this Appendix, we present a lengthy and technical
derivation of the mean FET of two particles diffusing with
equal diffusivities on the interval (0, L) with reflecting end-
points. We start by rewriting Eq. (51) explicitly as

〈T k〉 =Ck

∞∑
n1=0

∑
n2>n1

1 − (−1)n1+n2(
1 + δn1,0

)(
α2

n2
− α2

n1

)(
α2

n1
+ α2

n2

)k

× [
cos

(
αn1 x1

)
cos

(
αn2 x2

) − cos
(
αn1 x2

)
cos

(
αn2 x1

)]
,

where αn = πn, Ck = 8(k!)(L2/D1)k , and we rescaled x1 and
x2 by L for shorter notations. Note that here we have assumed
that x1 � x2. As this expression is antisymmetric with respect
to the exchange x1 ↔ x2, one would need to change the sign
for x1 < x2.
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We first separate the term with n1 = 0, for which we get

S(0)
k = Ck

2

∞∑
n2=1

1 − (−1)n2

α
2(k+1)
n2

[
cos

(
αn2 x2

) − cos
(
αn2 x1

)]
.

(B1)

We use the summation identities [92]
∞∑

n=1

cos(αnx)

s + α2
n

= cosh(
√

s(1 − x))

2
√

s sinh(
√

s)
− 1

2s
, (B2a)

∞∑
n=1

cos(αnx)(−1)n

s + α2
n

= cosh(
√

sx)

2
√

s sinh(
√

s)
− 1

2s
, (B2b)

to compute

F (s, x) =
∞∑

n=1

(1 − (−1)n) cos(αnx)

s + α2
n

= cosh(
√

s(1 − x)) − cosh(
√

sx)

2
√

s sinh(
√

s)
. (B3)

Evaluating the kth derivative of this identity at s = 0, one gets

S(0)
k = Ck (−1)k

2(k!)
lim
s→0

∂k[F (s, x2) − F (s, x1)]

∂sk
. (B4)

Now we switch to the evaluation of the double sum with
n1 > 0 and n2 > n1:

S(1)
k = Ck

2

∞∑
n1=1

∑
n2 �=n1

1 − (−1)n1+n2

α2
n2

− α2
n1

1

(α2
n1

+ α2
n2

)k

× [
cos

(
αn1 x1

)
cos

(
αn2 x2

) − cos
(
αn1 x2

)
cos

(
αn2 x1

)]
,

where we have employed the symmetry of the summand ex-
pression with respect to the exchange n1 ↔ n2 to symmetrize
the second sum. Our goal is to evaluate exactly the second
sum over n2:

Wk,n1 =
∑

n2 �=n1

1 − (−1)n1+n2

α2
n2

− α2
n1

1

(α2
n1

+ α2
n2

)k

× [
cos

(
αn1 x1

)
cos

(
αn2 x2

) − cos
(
αn1 x2

)
cos

(
αn2 x1

)]
,

so that

S(1)
k = Ck

2

∞∑
n1=1

Wk,n1 . (B5)

For this purpose, we evaluate the following sum:

Uk (s, x) =
∞∑

n=1

cos
(
αnx

)
(−1)n(

α2
n − s

)(
α2

n + s
)k

.

Using the identity

1(
α2

n − s
)(

α2
n + s

)k
= (2s)−k(

α2
n − s

) −
k∑

j=1

(2s) j−k−1(
α2

n + s
) j , (B6)

we can evaluate this sum with the help of Eq. (B2b):

Uk (s, x) = 1

(2s)k

[
− cos(

√
sx)

2
√

s sin(
√

s)
+ 1

2s

]

−
k−1∑
j=0

(2s) j−k (−1) j

j!

∂ j

∂s j

[
cosh(

√
sx)

2
√

s sinh(
√

s)
− 1

2s

]

= 1

2sk+1
− 1

(2s)k

cos(
√

sx)

2
√

s sin(
√

s)

−
k−1∑
j=0

(2s) j−k (−1) j

j!

∂ j

∂s j

cosh(
√

sx)

2
√

s sinh(
√

s)
.

Now we can come back to the sum Wn1 , which can be split
into four terms:

Wk,n1 = cos
(
αn1 x1

)[
V (1)

k,n1
(x2) − (−1)n1V (2)

k,n1
(x2)

]
− cos

(
αn1 x2

)[
V (1)

k,n1
(x1) − (−1)n1V (2)

k,n1
(x1)

]
,

where

V (1)
k,n1

(x) =
∑

n2 �=n1

cos
(
αn2 x

)
(
α2

n2
− α2

n1

)(
α2

n1
+ α2

n2

)k
, (B7)

V (2)
k,n1

(x) =
∑

n2 �=n1

cos
(
αn2 x

)
(−1)n2(

α2
n2

− α2
n1

)(
α2

n1
+ α2

n2

)k
. (B8)

These sums can be evaluated by using Uk (s). In fact, replacing
α2

n1
with s in the above expressions, one can first evaluate these

sums for s �= α2
n1

by adding and subtracting the term n2 = n1,
and then take the limit s → α2

n1
:

V (1)
k,n1

(x) = lim
s→α2

n1

[
Uk (s, 1 − x) − cos

(
αn1 x

)
(
α2

n1
− s

)(
s + α2

n1

)k

]
,

V (2)
k,n1

(x) = lim
s→α2

n1

[
Uk (s, x) − cos

(
αn1 x

)
(−1)n1(

α2
n1

− s
)(

s + α2
n1

)k

]
.

The subtracted term removes the singularity in Uk (s, 1 − x)
and Uk (s, x) as s → α2

n1
. This completes our formal evaluation

of the moment 〈T k〉, which is just the sum of S(0)
k and S(1)

k
given above.

Let us apply this general evaluation to get the mean FET
〈T 〉. For k = 1, we have C1 = 8L2/D1 and

S(0)
1 = 4

D1

(
x3

2 − x3
1

12L
− x2

2 − x2
1

8

)
. (B9)

To evaluate the contribution S(1)
1 , we first find

U1(s, x) = 1

4s

[
2

s
− cos(

√
sx)√

s sin(
√

s)
− cosh(

√
sx)√

s sinh(
√

s)

]
. (B10)

Then we compute the limit

V (2)
1,n1

(x) = 1

4α4
n1

{
2 − αn1 cosh

(
αn1 x

)
sinh αn1

+ (−1)n1

[
3

2
cos(αn1 x) + xαn1 sin(αn1 x)

]}
,

and V (1)
1,n1

(x) = V (2)
1,n1

(1 − x). Combining these results, we get

W1,n = cos(αnx1)wn(x2) − cos(αnx2)wn(x1)

4α4
n

, (B11)
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where

wn(x) = 2[1 − (−1)n] − αn sin(αnx)

− αn

sinh αn

{
cosh[αn(1 − x)] − (−1)n cosh(αnx)

}
.

As a consequence, the above expression allows one to split
S(1)

1 into three contributions:

S(1)
1 = S(1,1)

1 + S(1,2)
1 + S(1,3)

1 ,

where

S(1,1)
1 = C1

2

∞∑
n=1

(1 − (−1)n)[cos(αnx1) − cos(αnx2)]

2α4
n

,

S(1,2)
1 = C1

2

∞∑
n=1

sin[αn(x1 − x2)]

4α3
n

,

S(1,3)
1 = C1

2

∞∑
n=1

cos(αnx2)vn(x1) − cos(αnx1)vn(x2)

4α3
n

,

with

vn(x) = cosh[αn(1 − x)] − (−1)n cosh(αnx)

sinh αn
. (B12)

Note that S(1,1)
1 = −S(0)

1 /2. The second sum can be easily
computed by taking the derivative of Eq. (B2a) with respect
to x and s and evaluating the limit s → 0:

∞∑
n=1

sin(αnx)

α3
n

= x(1 − x)(2 − x)

12
, (B13)

from which

S(1,2)
1 = (x1 − x2)(L − x1 + x2)(2L − x1 + x2)

12D1L
. (B14)

In summary, we conclude for x1 � x2 that

〈T 〉 = (x1 − x2)[2L2 + 6x2(L − x1) − (x1 − x2)2]

12D1L
+ L2

D1

×
∞∑

n=1

cos(αnx2/L)vn(x1/L) − cos(αnx1/L)vn(x2/L)

α3
n

,

with vn(x) given by Eq. (B12), and αn = πn. For x1 < x2, one
just needs to exchange x1 and x2.
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