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Equation of state of nonadditive d -dimensional hard-sphere mixtures
A. Santos,a) M. López de Haro,b) and S. B. Yustec)
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~Received 17 September 2004; accepted 21 October 2004; published online 23 December 2004!

An equation of state for a multicomponent mixture of nonadditive hard spheres ind dimensions is
proposed. It yields a rather simple density dependence and constitutes a natural extension of the
equation of state foradditivehard spheres proposed by us@A. Santos, S. B. Yuste, and M. Lo´pez de
Haro, Mol. Phys.96, 1 ~1999!#. The proposal relies on the known exact second and third virial
coefficients and requires as input the compressibility factor of the one-component system. A
comparison is carried out both with another recent theoretical proposal based on a similar
philosophy and with the available exact results and simulation data ind51, 2, and 3. Good general
agreement with the reported values of the virial coefficients and of the compressibility factor of
binary mixtures is observed, especially for high asymmetries and/or positive nonadditivities.
© 2005 American Institute of Physics.@DOI: 10.1063/1.1832591#
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I. INTRODUCTION AND A BRIEF REVIEW
OF THE LITERATURE

The structure of a dense fluid is known to be large
determined by the repulsive intermolecular forces, so it is
surprising that hard-core potentials have been extensi
employed to model simple fluids and fluid mixtures. A no
worthy aspect of these models is the fact that in some
stances both exact and approximate analytical results ma
derived for the structural and thermodynamic properti
which in turn serve as a starting point for the treatment
more sophisticated or complex models.

Certainly a vast majority of the published work on har
core ~rods, disks, spheres, and hyperspheres! fluid mixtures
pertains to binary systems and to the so-called additive h
core interaction, namely, the one in which the distance
closest approach~denoted bys i j ) between the centers of tw
interacting particles, one of speciesi and the other of specie
j , is the arithmetic mean of the diameters of both particless i

ands j , respectively. Apart from the initial impetus that too
place in the 1960s, recently, interest in this kind of syste
~in particular, mixtures of hard spheres! has experienced a
increasing growth in connection with entropy driven pha
transitions and the demixing problem. On the other ha
nonadditive hard-core mixtures, where the distance of clo
approach between particles of different species is no lon
the arithmetic mean referred to above, have received
attention, in spite of their in principle more versatility to de
with interesting aspects occurring in real systems~such as
liquid-vapor equilibrium or fluid-fluid phase separation! and
of their potential use as reference systems in perturba
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calculations on the thermodynamic and structural proper
of, say, Lennard-Jones mixtures. Nevertheless, the stud
nonadditive systems goes back 50 years1–3 and is still a rap-
idly developing and challenging problem.

As mentioned in the paper by Balloneet al.,4 where the
relevant references may be found, experimental work on
loys, aqueous electrolyte solutions, and molten salts sugg
that heterocoordination and homocoordination may be in
preted in terms of excluded volume effects due to nonad
tivity of the repulsive part of the intermolecular potential.
particular, positive nonadditivity leads naturally to demixin
in hard-sphere mixtures, so that some of the experime
findings of phase separation in the above mentioned~real!
systems may be accounted for by using a model of a bin
mixture of ~positive! nonadditive hard spheres. On the oth
hand, negative nonadditivity seems to account well
chemical short-range order in amorphous and liquid bin
mixtures with preferred hetero-coordination.5

On the theoretical side, the first exact result on the eq
tion of state~EOS! for a nonadditive mixture is that of a
binary mixture of hard rods (d51) restricted to nearest
neighbor interactions. Although it is usually attributed
Lebowitz and Zomick,6 it was already implicit in earlier
work by Prigogine and Lafleur1 and by Kikuchi,3 and even
Lebowitz and Zomick point out that the thermodynam
functions of this system appear in the thesis presented
1966 by C. C. Carter~cf. Ref. 9 in Ref. 6!. Very recently,
Corti and Bowles have rederived this result in an appendix
a paper,7 where they also provide exact geometrical relatio
ships for nonadditive mixtures~see also an alternative red
erivation in Prof. Penrose’s webpage8!. It is also worth men-
tioning that in the paper by Kikuchi,3 a proof is given that no
phase transition may occur in a one-dimensional binary m
ture irrespective of the form of the interaction potential, pr
vided it is unbounded. The opposite limit of high spat
dimension has been considered by Carmesinet al.,9 who
showed that at sufficiently high density and with positi
nonadditivity, a binary mixture of nonadditive hard hype
spheres decomposes into two coexisting phases.
514-1 © 2005 American Institute of Physics
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A very popular model of a nonadditive binary mixtu
with positive nonadditivity was introduced by Widom an
Rowlinson in 1970.10 This model is equivalent to a one
component penetrable sphere model. In the symmetric
sion of the model, referred to as the Widom–Rowlins
~WR! model, one hass15s250 ands12.0. With this sim-
plification Widom and Rowlinson derived exactly the EOS
the one-dimensional case, where it predicts no phase tra
tion. For d53 the model was solved in the mean-field a
proximation. In the same paper, but for the case of h
asymmetry~i.e., whens1Þ0, s250, andd53), Widom and
Rowlinson also determined an approximate condition for
spinodal curve. It is interesting to point out that this case
high asymmetry corresponds with the Asakura–Oosa
model,2 often used to discuss polymer colloid mixtures a
where the notion of a depletion potential was introduc
This model and refinements of the same have received
of attention~including fairly recent work! in connection with
the demixing problem and the question of effecti
potentials.11

The impact of the WR model cannot be overemphasi
as it has motivated a great amount of later work. A rigoro
proof that a phase transition may exist in the WR mode
d52 was provided by Ruelle,12 who also indicated that a
similar procedure may be followed to prove the existence
a phase transition in the WR model ind53 and higher di-
mensions. Frisch and Carlier13 performed molecular dynam
ics simulation for a hard-square mixture in the WR limit a
concluded that it presented a first-order phase transit
Melnyck et al.14 obtained the first ten virial coefficients o
the WR hard-sphere mixture in the Percus–Yevick~PY! ap-
proximation~the first five of which are exact!, while Straley
et al.15 computed the virial coefficients of the WR model f
oriented hard squares and hard cubes. Widom
Stillinger16 generalized the scaled particle theory~SPT! for a
pure fluid17 to the case of the WR model in an arbitra
dimensionality and Guerreroet al.18 exploited the equiva-
lence of the penetrable sphere model and the WR mode
obtain the direct and total correlation functions for the mo
where the Mayer function is a Gaussian and for the ha
sphere interaction in the mean field, PY, and hyperne
chain approximations. In the cases ofd51 and d53, the
WR model was solved in the PY approximation by Ahn a
Lebowitz,19 while the SPT was considered by Bergmann20

The latter theory for the WR model in two dimensions w
addressed in an appendix of the paper by Tenne
Bergmann,21 in which they examined the SPT for a nona
ditive hard-disk binary mixture. Transport properties for t
WR hard-sphere binary mixture were computed by Karkh
and Stell.22 Later, Borgeltet al.23 and Luoet al.24 performed
simulations on the hard-sphere WR mixture and found be
agreement with mean-field results than with PY results. M
recently, the same model has been the subject of inves
tions related to its universality class,25 to the location of the
critical point and the computation of the coexistence curv26

to the development of an integral equation theory that
cludes the first few terms in the density expansion of
direct correlation function into the closure approximation27

to the~partial! total and direct correlation functions28 through
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accurate Monte Carlo simulations, and to the static and
namic behavior near the consolute critical point obtain
from molecular dynamics simulations.29

A theoretical approach that has been extensively use
connection with nonadditive hard-core mixtures is the S
Apart from the papers quoted above, Bergmann30 has con-
sidered the SPT in one dimension and compared it with
exact solution. Tenne and Bergmann examined the SPT
d53 both for positive nonadditivity31 ~where they computed
the critical density and the critical nonadditivity! and nega-
tive nonadditivity.32 Bearman and Mazo also considered t
SPT for a symmetric binary mixture of nonadditive ha
disks33 and pointed out that the phase transition predicted
Tenne and Bergmann in Ref. 21 for negative nonadditiv
was spurious. The same authors34 introduced a simpler ver-
sion of the SPT ford52 andd53 which is consistent with
the SPT of additive mixtures in the appropriate limit but s
presents some other difficulties. Some of these difficult
were addressed by Schaink,35 who introduced an EOS for a
binary mixture valid for small values of the nonadditivity.
comparison of SPT predictions and simulation data may
found in Ehrenberget al.36

The use of computer simulation, both molecular dyna
ics ~MD! and Monte Carlo~MC!, as well as of the usua
integral equation approach of liquid state theory or the p
turbation theory~taking either a one-component system o
binary additive hard-core mixture as the reference syst!
has also contributed to the investigation of the properties
nonadditive hard-core mixtures. In the same paper wh
they presented the exact solution for the one-dimensio
mixture, Lebowitz and Zomick6 also gave the exact solutio
to the PY equation ind51 and a partial solution to the PY
equation in the three-dimensional case. A mathemat
analysis of these two solutions was later given by Penr
and Lebowitz.37 Perry and Silbert38 also gave an approximat
solution to the PY equation ind53 which confirmed the
earlier results of Lebowitz and Zomick. For equimolar a
symmetric hard-sphere mixtures with negative nonadditiv
Nixon and Silbert39 solved the PY equation, which the
found to improve its agreement with simulation data as
negative nonadditivity increased. Equimolar symmetric
nary mixtures have been studied by Gazzillo.40–42 He has
considered the PY approximation40 and also other clos-
ures ~the Martynov–Sarkisov,43 the Ballone–Pastore–Galli
Gazzillo,4 and the modified Verlet41,42 closures!. In Ref. 42
he also addressed a ternary mixture with negative nona
tivity that had been studied earlier through MD simulation
Schaink,44 while he and his collaborators4 were apparently
the first to obtain simulation~MC! data for an asymmetric
hard-sphere binary system. In studying binary nonaddit
Lennard-Jones mixtures using the reference hyperne
chain~RHNC! approximation, Anta and Kahl45 obtained the
nonadditive hard-sphere bridge functions by solving the c
responding PY equation. Lombaet al.46 used a generalized
modified Verlet closure to study fluid-fluid phase separat
in symmetric nonadditive hard-sphere mixtures, obtain
good agreement with their own MC simulation data for t
phase diagram. Kahlet al.47 studied a variety of symmetric
binary mixtures of nonadditive hard spheres~both with posi-
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tive and negative nonadditivity! by solving the Ornstein-
Zernike equation with a modified hypernetted-chain-ty
closure. Recently, Sierra and Duda48 considered the PY and
Martynov-Sarkisov closures to study symmetric mixtures
nonadditive hard spheres adsorbed on a disordered h
sphere matrix, while Dudaet al.49 used MC simulations to
study fluid-fluid phase equilibria and interfacial properties
nonadditive binary hard-sphere mixtures adsorbed in a
pore. The structure and the thermodynamics of nonaddi
hard-sphere mixtures under confinement have also been
subject of a recent study by Pellicaneet al.,50 who used both
integral equations and computer simulations.

Melnyck and Sawford51 reported MD simulation data on
a symmetric binary nonadditive hard-sphere mixture w
positive nonadditivity and using perturbation theory deriv
an EOS for this kind of systems which they named MIX
Such EOS was later extended to cope with asymmetric m
tures by Schaink and Hoheisel.52 At about the same time a
the Melnyck and Sawford calculations, Adams a
McDonald53 performed MC simulations on binary symmetr
hard-sphere mixtures with negative nonadditivity. Later
Dickinson54 performed MD simulations on two equimola
nonadditive binary hard-disk mixtures. In 1989, Ama55

computed the coexistence curve for the system studie
Ref. 51 using MC simulation. Hoheisel56 studied a symmet-
ric equimolar binary mixture of nonadditive soft spher
with ~high! positive nonadditivity through MD and dete
mined the critical density. Mountain and Harvey57 conducted
both MD and MC simulations on binary mixtures of nona
ditive soft disks to study fluid-fluid coexistence. Rovere a
Pastore58 extended the work of Ref. 53 and obtained t
coexistence curve of an asymmetric binary nonadditive ha
sphere mixture through MC simulation. Extensive MC co
putations on symmetric nonadditive hard-sphere binary m
tures have been provided by Junget al.,59–61 who have
derived from them reasonably accurate~semiempirical!
equations of state for these systems. Density functio
theory has also been applied62 to the computation of the ex
cess free energy of an equimolar mixture of nonadditive h
disks. Finally, recently, Hamad has reported MD calculatio
for asymmetric nonadditive binary hard-sphere mixture63

and, together with some co-workers, also for binary ha
disk mixtures.64 Fluid-fluid phase separation in a symmetr
mixture of nonadditive hard spheres with positive nonad
tivity and the phase behavior of nonadditive hard-core m
tures in two dimensions have been recently the subjec
MC simulations by Saija et al.65 and by Saija and
Giaquinta,66 respectively, while Go´źdź67 performed MC
simulations to derive accurate results for the critical pack
fraction at a few values of the nonadditivity parameter in
case of hard spheres. Castan˜eda-Priegoet al.68 studied deple-
tion interactions in mixtures of nonadditive hard disk
Schmidt69 generalized the fundamental measure den
functional theory of hard spheres to binary mixtures of ar
trary positive and moderate negative nonadditivity, and F
toni and Pastore70 performed accurate MC simulations
check the local dependency assumption of the bridge fu
tions of an equimolar nonadditive binary hard-sphere m
ture. Fairly recently, Buhot71 used a cluster algorithm to
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simulate and study phase separation in symmetric bin
mixtures of nonadditive hard disks and hard spheres for v
ous ~large! nonadditivities including the limiting case of th
WR model.

An alternative route to the derivation of the EOS of no
additive hard-sphere mixtures that does not require the S
perturbation theory, the solution of integral equations,
simulation results relies on the knowledge of virial coef
cients and on the use of exact statistical mechanical relat
ships. The so-calledy expansion for hard particle fluids in
troduced by Barboy and Gelbart72 is a prominent example o
this approach. In the case of nonadditive hard-sphere m
tures, the Barboy–Gelbart EOS involves up to the exact th
virial coefficients, whose analytical expressions are known73

On a different path, Hamad74 has provided a theory for ob
taining mixture properties from pure species equations
state. In the case of nonadditive hard-sphere mixtures
invokes exact results pertaining to the contact values of
radial distribution functions,75–77as well as the knowledge o
the exact second and third virial coefficients. He has a
presented a similar approach for hard-disk mixtures in R
64 and 78. A noteworthy aspect of Hamad’s proposal is th
due to his use of the one-component radial distribution fu
tion as a starting point, it is geared essentially towards m
tures not very asymmetric in size. This proposal has b
very recently used in connection with the development o
perturbation theory for fused sphere hard-chain fluids.79

Recently,80,81we have proposed an EOS for a multicom
ponent mixture of additive hard-core particles ind dimen-
sions. This proposal shares with Hamad’s approach64,74,78

two aspects. On the one hand, it is expressed in terms o
pure species EOS and on the other it starts with a sens
ansatz on the functional form of the contact values of
radial distribution functions. The aim of this paper is
complement Hamad’s approach in two different veins. T
first one concerns dimensionality. Here we want to derive
EOS for a nonadditive hard-core mixture of an arbitra
number of components and for any value ofd. The second
one has to do with the fact that when the nonadditivity p
rameter vanishes we also want to recover our form
proposal80 for additive multicomponent hard-core mixture
Our main concern is to try to keep a reasonable comprom
between the simplicity of the proposal and its ability to de
also with highly asymmetric mixtures.

The paper is organized as follows. In Sec. II we provi
general expressions for a multicomponent mixture of non
ditive hard spheres ind dimensions and some key bac
ground material~third virial coefficients, for which a simple
expression for arbitrary dimensionality is proposed! for the
later development. The exact solution in the case of a o
dimensional binary mixture as well as other interesting f
tures of this system are presented in Appendix A. Section
contains a brief account of Hamad’s proposal64,76,77 for the
contact values of the radial distribution functions and for t
compressibility factor of the mixture. This is followed i
Sec. IV by our own proposal, which shares with Hamad’
few features: the construction of the EOS via the cont
values of the radial distribution functions, the dependence
the latter on the EOS of the one-component fluid, and the
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of the third virial coefficients. The results pertaining to sp
cial limiting cases are given in Appendix B. The analysis
the fourth, fifth, and sixth virial coefficients and of the com
pressibility factors in one, two, and three dimensions is c
ried out in Sec. V. The paper is closed in Sec. VI with furth
discussion and some concluding remarks.

II. THIRD VIRIAL COEFFICIENTS

A. General equations

Let us consider anN-component mixture of hard sphere
in d dimensions. The hard core of the interaction betwee
sphere of speciesi and a sphere of speciesj is s i j . The
diameter of a sphere of speciesi is s i i 5s i . In general,s i j

5 1
2(s i1s j )(11D i j ), whereD i j >21 is a symmetric matrix

with zero diagonal elements (D i i 50) that characterizes th
degree of nonadditivity of the interactions. In the case o
binary mixture (N52), the only nonadditivity parameter i
D5D125D21. The compressibility factor of the mixtureZ
[p/rkBT, where r is the total number density,p is the
pressure,T is the temperature, andkB is the Boltzmann con-
stant, can be exactly expressed in terms of the radial di
bution functions at contactgi j as

Z~r,$xk%,$sk,%!5112d21vdr (
i , j 51

N

xixjs i j
d

3gi j ~r,$xk%,$sk,%!, ~1!

wherexi5r i /r is the mole fraction of speciesi , r i is the
partial number density of particles of speciesi , and vd

5(p/4)d/2/G(11d/2) is the volume of ad-dimensional
sphere of unit diameter. Although no general expressio
known for gi j (r,$xk%,$sk,%)[gi j (r), it can be expanded in
a power series in density as

gi j ~r!511vdr(
k51

N

xkck; i j

1~vdr!2 (
k,,51

N

xkx,ck,; i j 1O~r3!. ~2!

The coefficientsck; i j , ck,; i j ,... areindependent of the com
position of the mixture, but they are in general complica
nonlinear functions of the diameterss i j , s ik , s jk , sk, ,... .
Insertion of the expansion~2! into Eq. ~1! yields the virial
expansion ofZ, namely,

Z~r!511 (
n51

`

~vdr!nB̄n11

511vdr (
i , j 51

N

B̄i j xixj1~vdr!2 (
i , j ,k51

N

B̄i jkxixjxk

1~vdr!3 (
i , j ,k,,51

N

B̄i jk ,xixjxkx,1O~r4!. ~3!

Note that, for further convenience, we have introduced
coefficientsB̄n[vd

2(n21)Bn where Bn are the usual virial
coefficients. The composition-independent second, third,
fourth ~barred! virial coefficients are given by
-
f

r-
r

a

a

ri-

is

d

e

d

B̄i j 52d21s i j
d , ~4!

B̄i jk5
2d21

3
~ck; i j s i j

d 1cj ; iks ik
d 1ci ; jks jk

d !, ~5!

B̄i jk ,5
2d21

6
~ck,; i j s i j

d 1cj ,; iks ik
d 1ci ,; jks jk

d 1cjk,i ,s i ,
d

1cik, j ,s j ,
d 1ci j ;k,sk,

d !. ~6!

This connection between the virial coefficients of t
mixture andc’s of the density expansion of the contact va
ues of the radial distribution functions may be profitab
used to devise sensible approximations.

For subsequent use in Secs. III and IV, it is convenien
consider the special case of a one-component fluid (s i j

5s) of packing fractiony5vdrsd. In such a case, Eqs.~1!
and ~3! become

Zpure~y!5112d21ygpure~y!511 (
n51

`

bn11yn, ~7!

where bn5B̄n /s (n21)d are the~reduced! virial coefficients
of the one-component hard-sphere fluid. In particular,b2

52d21.

B. The one-dimensional case

It is worth recalling that, as mentioned in Sec. I, in th
case of abinary (N52) one-dimensional (d51) mixture
with nearest-neighbor interactions only@which implies that
2s12>max(s1,s2)], the exact compressibility factor is
known.1,3,6–8 In Appendix A we provide a summary of th
exact solution as well as some interesting properties of
same. In particular, the coefficientsck; i j for d51 are

c1;115s1 , c2;1152s122s1 , c1;125s1 . ~8!

The remaining coefficients are obtained from Eq.~8! by the
exchange 1↔2.

C. The three-dimensional case

In three dimensions, the first two terms of the exact d
sity expansion ofgi j are known.76 After a few simple ma-
nipulations one may derive from them the result

ck; i j 5sk; i j
3 1

3

2

sk; i j
2

s i j
s i ; jks j ; ik , ~9!

where

sk; i j [s ik1s jk2s i j ~10!

and it is understood thatsk; i j >0 for all setsi jk . Clearly,
s i ; i j 5s i , s j ; i j 5s j , and, in case of additive hard sphere
sk; i j 5sk . Note also that the quantitiessk; i j may be given a
simple geometrical interpretation. Assume that we have th
spheres of speciesi , j , andk aligned in the sequenceik j . In
such a case, the distance of closest approach between
centers of spheresi and j is s ik1s jk . If the sphere of spe-
ciesk were not there, that distance would of course bes i j .
Therefore,sk; i j as given by Eq.~10! represents a kind o
effective diameter of spherek, as seen from the point o
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view of the interaction between spheresi and j . A schematic
representation of this interpretation is provided in Fig. 1.

D. A generalization to d dimensions

It is tempting to extend Eqs.~8! and~9! to d dimensions
as

ck; i j 5sk; i j
d 1S b3

b2
21D sk; i j

d21

s i j
s i ; jks j ; ik . ~11!

More specifically, for a binary mixture Eq.~11! yields

c1;115
b3

b2
s1

d ,

c2;115~2s122s1!d1S b3

b2
21Ds1~2s122s1!d21, ~12!

c1;125s1
d1S b3

b2
21D ~2s122s1!s1

d/s12.

Obviously, Eq.~12! reduces to Eq.~8! for d51 (b25b3

51), while Eq. ~11! reduces to Eq.~9! for d53 (b254,
b3510).

All of the above results are restricted to the situati
sk; i j >0 for any choice of i , j , and k, i.e., 2s12

>max(s1,s2) in the binary case. This excludes the possib
ity of dealing with mixtures with extremely high negativ
nonadditivity in which one sphere of speciesk might ‘‘fit in’’
between two spheres of speciesi and j in contact. Since for
d53 andN52 the coefficientsck; i j are also known for such
mixtures,74 we may extend our proposal to deal with the
cases. IfN52, one has specifically

c1;115
b3

b2
s1

d , c2;115ŝ2
d1S b3

b2
21Ds1ŝ2

d21 ,

~13!

c1;125~2s122ŝ2!d1S b3

b2
21D ŝ2s1

d/s12,

where we have defined

FIG. 1. ~a! Three spheres of speciesi , j , andk in an aligned configuration.
The smallest possible separation between spheresi and j is s ik1s jk . ~b!
When spherek is removed, the smallest distance betweeni and j is s i j .
Thus sk; i j 5s ik1s jk2s i j represents an effective diameter of spherek as
seen from the point of view of the pairi j . In the sketch we have assume
for simplicity that the nonadditivities are positive.
-

ŝ25max~2s122s1,0!. ~14!

With such an extension, we recover the exact values ofck; i j

for a binary mixture of hard spheres (d53), even if s1

.2s12 or s2.2s12. We emphasize that Eqs.~11!–~14! for
dÞ1 anddÞ3 are new.

E. The two-dimensional case

While Eq. ~13! is exact ford51 and d53, it is only
approximate ford52. For that dimensionality, the exact re
sult has been derived by Al-Naafaet al.64 After some algebra
~and the correction of some typos!, the coefficientsck; i j can
be written as

c1;115
b3

2
s1

2 , c2;115
b3

2
s1

2F~s12/s1!,

~15!

c1;125
b3

2
s1

2G~s12/s1!,

whereb3516/32 (4)/p) .3.1280 and the functionsF(s)
andG(s) are given by

F~s!5H 4

pb3
S 4s2 cos21

1

2s
2A4s221D , s>

1

2

0, 0<s< 1
2 ,

~16!

G~s!55
4

pb3
[2ps222~2s221!cos21

1

2s

2A4s221], s> 1
2

8

b3
s2, 0<s<

1

2
.

~17!

Some special values ofF(s) andG(s) are

F~1!5G~1!51, ~18!

F~1/2!50, G~1/2!5
2

b3
, ~19!

lim
s→`

s22F~s!5
8

b3
, lim

s→`

G~s!5
4

b3
. ~20!

For a symmetric mixture (s15s2), the values5s12/s1

51 corresponds to the one-component case,s5s12/s15 1
2

corresponds to the threshold value of negative nonadditi
~i.e., 2s125s15s2 or D52 1

2), and the limit s5s12/s1

→` represents an infinitely large positive nonadditivi
~WR model!.

Equation ~13! with d52 can be recast into the form
~15!, except that the functionsF(s) and G(s) are approxi-
mated by

Fapp~s!5H 1

b3
~2s21!~4s1b324!, s>

1

2

0, 0<s< 1
2 ,

~21!
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Gapp~s!5H 2

b3
S b3212

b322

2s D , s>
1

2

8

b3
s2, 0<s<

1

2
.

~22!

This approximation verifies the properties~19! and~20!, ex-
cept that now lims→` Gapp(s)52(b321)/b3 , which is about
6% higher than the exact value. Figure 2 shows that E
~21! and ~22! constitute an excellent approximation to th
exact expressions~16! and~17!, especially for small or mod-
erate values ofs.

The third virial coefficientsB̄i jk for a two-dimensional
binary mixture as given by Eq.~5! may be cast into the form

B̄11152c1;11s1
25b3s1

4 , ~23!

B̄1125
2
3 ~c2;11s1

212c1;12s12
2 !5b3s1

4B~s12/s1!, ~24!

and similar expressions forB̄222 andB̄221, obtained from the
former by the exchange of indices 1 and 2. Here,

B~s![ 1
3 F~s!1 2

3 s2G~s!

55
4

3pb3
[4ps428s2~s221!cos21

1

2s

2~2s211!A4s221], s>
1

2

16

3b3
s4, 0<s<

1

2
.

~25!

Using Eqs. ~21! and ~22! our approximation yields for
Bapp(s) the polynomial

Bapp~s!5H 1

3b3
@4~s21!21b3~4s221!#, s>

1

2

16

3b3
s4, 0<s<

1

2
.

~26!

As also seen in Fig. 2, Eq.~26! is practically indistinguish-
able from the exactB(s), so that the~small! discrepancies in
Fapp(s) andGapp(s) with respect to the actualF(s) andG(s)

FIG. 2. Plot of the functionsF(s), G(s), andB(s). The solid lines are the
exact functions~16!, ~17!, and~25!, while the dashed lines are our approx
mations ~21!, ~22!, and ~26!. Note thatB(s) and Bapp(s) are practically
indistinguishable.
s.

almost entirely compensate. Therefore, it seems that it is
unreasonable to use Eqs.~11!–~14! for all d.

III. HAMAD’S PROPOSAL
FOR THE EQUATION OF STATE

Our goal is to derive an~approximate! EOS for a multi-
component mixture ofd-dimensional nonadditive hard
spheres. Clearly, this may be achieved if values for thegi j

are provided. But before we engage in this task, let us re
in this section a previous simple proposal by Hamad.

Hamad64,76,77 has proposed a simple and accurate
proximation for the contact values of the radial distributi
functions which takes the same form in bothd52 and d
53. Generalized to arbitrary dimensionalityd and in the
notation of this paper it reads

gi j
H~r!5gpure~hXi j !, Xi j 5

b2

b3

(kxkck; i j

^sd&
. ~27!

Here, h[vdr^sd& is the packing fraction of the mixture
with ^sm&5( i 51

N xis i
m .

By construction, the approximation~27! is correct to first
order in the density~third virial coefficient!. Inserting the
approximation~27! into Eq. ~1!, we obtain the~generalized!
d-dimensional Hamad EOS,

ZH~r!511
2d21h

^sd& (
i , j

xixjs i j
d gpure~hXi j !

511(
i , j

xixjs i j
d

^sd& FZpure~hXi j !21

Xi j
G . ~28!

So far, the one-component functionZpure(y) remains
free. It should be emphasized that, except ford52 and d
53, the EOS given by Eq.~28! has been neither introduce
nor used before.

The Helmholtz free energy per particle of a mixtur
a(r), is given by

a~r!

kBT
5211(

i 51

N

xi ln~r il i
d!1E

0

r dr8

r8
@Z~r8!21#,

~29!

wherel i is the thermal de Broglie wavelength of speciesi .
According to Hamad’s approximation~28!,

aH~r!

kBT
5211(

i
xi ln~r il i

d!

1(
i , j

xixjs i j
d

^sd&Xi j

apure
ex ~hXi j !

kBT
, ~30!

whereapure
ex (y) is the excess Helmholtz free energy per p

ticle of the pure fluid.

IV. OUR PROPOSAL

In 1999 we proposed an EOS for a multicomponent m
ture of additive hard spheres ind dimensions80 which was
based on an ansatz related to the contact values of the r
distribution functions. One may express this ansatz as
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gi j
SYH~r!5

1

12h
1Fgpure~h!2

1

12h Gzi j , ~31!

where

zi j 5
^sd21&s is j

^sd&s i j
~additive spheres! ~32!

is a parameter that is independent of density but depend
the composition and diameters of the mixture.

The idea is now to generalize the ansatz given by
~31! to the nonadditive case. As the simplest possible ex
sion, we keep the structure of Eq.~31! but determine the
parameterszi j as to reproduce Eq.~2! to first order in the
density. The result is readily found to be

zi j 5S b3

b2
21D 21S (kxkck; i j

^sd&
21D . ~33!

The following relationship betweenzi j andXi j exists:

zi j 5
b3Xi j 2b2

b32b2
, Xi j 5zi j 1

b2

b3
~12zi j !. ~34!

The ansatz~31! supplemented by Eq.~33! is, by con-
struction, accurate for densities low enough as to justify
linear approximationgi j '11vdr(kxkck; i j . On the other
hand, the limitations of this truncated expansion for mod
ate and large densities are compensated by the use ofgpure.
Of course,gi j 5gpure in the special case where all the diam
eters are identical (sk,5s), since thenck; i j 5(b3 /b2)sd

and zi j 51. All these comments apply to Hamad’s prescr
tion ~27! as well. On the other hand, Eq.~31! is consistent,
but Eq. ~27! is not, with the case of an additive mixture
which one of the species, sayi 51, is made of point particles
so thatg115(12h)21.

When Eqs.~31! and ~33! are inserted into Eq.~1! one
gets

ZSYH~r!511
h

12h

b3^s
d&B̄22b2B̄3

~b32b2!^sd&2

1@Zpure~h!21#
B̄32^sd&B̄2

~b32b2!^sd&2 . ~35!

Equation~35! is the main result of this paper. As in Eq
~28!, the EOS of the mixture is expressed in terms of tha
the one-component system. On the other hand, the de
dependence in the EOS~35! is simpler: Z(r)21 is ex-
pressed as a linear combination ofh/(12h) and Zpure(h)
21, with coefficients such that the second and third vir
coefficients are reproduced. Again, Eq.~35! is accurate for
sufficiently low densities, while the limitations of the trun
cated expansion for moderate and large densities are c
pensated by the use of the EOS of the pure fluid.

In the approximation~35!, the Helmholtz free energy pe
particle is
on

.
n-

e

r-

-

f
ity

l

m-

aSYH~r!

kBT
5211(

i
xi ln~r il i

d!2 ln~12h!

3
b3^s

d&B̄22b2B̄3

~b32b2!^sd&2 1
apure

ex ~h!

kBT

B̄32^sd&B̄2

~b32b2!^sd&2 .

~36!

In principle, to computeB̄3 , one should use the exac
coefficientsck; i j . However, since to the best of our know
edge they are only known ford<3 and we want our pro-
posal to be explicit for anyd, we can make use of our ap
proximation for them, Eq.~11!. Therefore, with this proviso
we get

zi j 5S b3

b2
21D 21S (kxksk; i j

d

^sd&
21D 1

(kxksk; i j
d21s i ; jks j ; ik

^sd&s i j
.

~37!

In the additive case (sk; i j →sk), Eq. ~37! reduces to Eq.
~32!. Note that both ford51 andd53 there is no difference
in the resulting compressibility factor because Eq.~11! yields
the exact result. On the other hand, for otherd, use of Eq.
~37! also leads to Eq.~35!, but with an approximate rathe
than the exact value for the third virial coefficient.

V. RESULTS

Once we have derived our approximation for the EOS
the mixture, Eq.~35!, it is interesting to examine its perfor
mance. And since Hamad has carried out a comparison
tween his proposal, Eq.~28!, and previous ones,64,74,76,77

finding in general that it performs better, we will concentra
here on comparing the results obtained either through
mad’s prescription or through ours~in this regard see also
Appendix B!. Such comparison seems in order in view of t
fact that both proposals share many aspects such as the
struction of the EOS via the contact values of the rad
distribution functions, its dependence on the EOS of the o
component fluid~more specifically onZpure, which remains
to be chosen freely!, and the use of the third virial coeffi
cients. Also, although Hamad’s proposal is specific ford
52 andd53 and we have extended it to arbitraryd, they
maintain the same form in every dimensionality. Specifica
we will focus on the fourth and higher virial coefficients an
on the compressibility factor. To our knowledge, and with t
exception of the one-dimensional case, in which they
known exactly, values of the former are rather scarce82,83and
refer exclusively to nonadditive hard spheres (d53).

A. Fourth and higher virial coefficients

From Eq.~35! it is easy to get an approximate expre
sion for thenth virial coefficient:

B̄n
SYH5

bn2b2

b32b2
^sd&n23B̄32

bn2b3

b32b2
^sd&n22B̄2 . ~38!

In particular, the composition independent fourth virial coe
ficients are given by
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B̄i jk ,
SYH5

b42b2

4~b32b2!
~s i

dB̄jk,1s j
dB̄ik,1sk

dB̄i j ,1s,
dB̄i jk !

2
b42b3

6~b32b2!
~s i

ds j
dB̄k,1s i

dsk
dB̄j ,1s i

ds,
dB̄jk

1s j
dsk

dB̄i ,1s j
ds,

dB̄ik1sk
ds,

dB̄i j !. ~39!

In the case of Hamad’s approximation, Eq.~28!, one has

B̄n
H5bn^s

d&n22(
i , j

xixjs i j
d Xi j

n22 , ~40!

B̄i jk ,
H 5

b4b2
2

6b3
2 ~s i j

d ck; i j c,; i j 1s ik
d cj ; ikc,; ik1s i ,

d cj ; i ,ck; i ,

1s jk
d ci ; jkc,; jk1s j ,

d ci ; j ,ck; j ,1sk,
d ci ;k,cj ;k,!.

~41!

In the special case of binary and symmetric@s15s2

5s,s125s(11D)# three-dimensional mixtures, Eqs.~39!
and ~41! yield

B̄1112
SYH/s95b4~114D1 11

2 D21 7
3 D3!

2D~10116D1 22
3 D2!, ~42!

B̄1122
SYH/s95b4~11 48

9 D1 22
3 D21 28

9 D3!

2 8
9 D~15124D111D2!, ~43!

B̄1112
H /s95b4~11 9

2 D1 162
25 D21 144

50 D3!, ~44!

B̄1122
H /s95b4~116D1 408

25 D21 672
25 D31 688

25 D4

1 384
25 D51 256

75 D6!, ~45!

where b4518.364 77 and we have assumed thatD>2 1
2.

The two coefficientsB̄1112 and B̄1122 have been evaluate
numerically by Saijaet al.82 Figure 3 compares the numer
cal data forB̄1112 and B̄1122 with the approximations~42!–
~45!. We observe that Hamad’s approximation forB̄1112gives
an excellent agreement, while ours is only qualitatively c
rect. On the other hand, forB̄1122 both approximations are
inaccurate for large positive nonadditivities. In any ca
B̄1122

SYH is slightly better thanB̄1122
H for 0,D&0.3.

Figure 4 shows, also for a symmetric binary mixture
nonadditive hard spheres,B4 /B2

3 as a function of the mole
fraction x1 for D520.3 andD50.3, and the correspondin
simulation results. We observe that Hamad’s approxima
is better forD520.3, while ours is better forD50.3.

As far as we know, the only report of virial coefficien
beyond the third for the case of an asymmetric nonaddi
hard-sphere mixture is due to Vlasov and Masters.83 They
have computed up to the sixth virial coefficient for a bina
mixture of nonadditive hard spheres of size ratio 0.1 an
positive nonadditivityD50.1, and up to the seventh viria
coefficient for a binary~additive! hard-sphere mixture of the
same size ratio. In Fig. 5 we present a comparison of
results for the composition dependence of the ratio of vi
coefficientsBn /B2

n21 (n54,5,6) in the case of a binary mix
-

,

f

n

e

a

e
l

ture of size ratios2 /s150.1 and two nonadditivities (D
50, 0.1) given by Vlasov and Masters83 with the results that
follow from Hamad’s prescription and from our proposa
The overall superiority of our proposal in this case is app
ent and more noticeable for the positive nonadditivity a

FIG. 3. Plots of B1112/s95(p/6)3B̄1112/s9 and B1122/s9

5(p/6)3B̄1122/s9 vs D for a symmetric three-dimensional binary mixtur
Circles, exact values~Ref. 82!; solid lines, Eqs.~42! and ~43! ~present ap-
proach!; dashed lines, Eqs.~44! and ~45! ~Hamad’s result!.

FIG. 4. Plot of B4 /B2
3 vs x1 for a symmetric three-dimensional binar

mixture with D520.3 andD50.3. Solid lines, exact values~Ref. 82!;
dashed line, Eq.~38! ~present approach!; dotted line, Eq.~40! ~Hamad’s
result!.
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when n increases. Nevertheless, the negative values of
sixth virial coefficient for the small region aroundx50 that
are obtained with the simulation, not shown in the figure,
not captured by either proposal.

B. Compressibility factor

Apart from the virial coefficients, the most importa
tests concern the compressibility factor itself. In view of t
big number of parameters in these systems, one has to m
a judicious choice such that the main features of the res
may be illustrated. In this section we provide a representa
set of data for different dimensionalities that will hopeful
cater for the above requirement.

1. Rods (d Ä1)

In the cased51, one hasZpure(y)51/(12y) and bn

51 for all n, so that our proposal~35! is ill defined. To save
that singularity and with the aim of preserving the scali
property of the exact solution~see Appendix A!, let us write

Zpure~y!5
1

12y
1eS y

12yD 2

, b3511e, ~46!

FIG. 5. Plot of Bn /B2
n21 vs x1 (n54,5,6) for an asymmetric three

dimensional binary mixture withs2 /s150.1 andD50 ~thin lines! andD
50.1 ~thick lines!. Solid lines, exact values~Ref. 83!; dashed lines, Eq.~38!
~present approach!; dotted lines, Eq.~40! ~Hamad’s result!.
e

e

ke
lts
e

and sete→0 at the end of the calculations. In that cas
replacement into Eq.~35! gives

ZSYH~r!511
h

12h

1

^s&2 F ^s&B̄21
h

12h
~B̄32^s&B̄2!G ,

~47!

which, for a binary mixture, becomes

ZSYH~r!5
1

12h S 11x1x2

s11s2

^s&

h

12h
D D . ~48!

Note that Eq.~48! is equivalent to a series expansion of t
exact solution in powers ofD truncated in the linear term. In
fact, in view of Eqs.~A5!–~A7!, it is exact up to order
O(D2). Also, it is important to point out that Eqs.~47! and
~48! hold regardless of the value ofe, so the limite→0 is
not needed.

As for Hamad’s approximation, we would have

X11511
s11s2

^s&
x2D, X1251, ~49!

and the similar result forX22 obtained fromX11 in Eq. ~49!
with the usual replacement 1↔2. After some algebra, one
finds

ZH5
1

12h H 11x1x2

s11s2

^s&

3hF 11hS x1s1 /^s&

12hS 11
s11s2

^s&
x2D D

1
x2s2 /^s&

12hS 11
s11s2

^s&
x1D D D GDJ . ~50!

We remark that Eq.~50! is exact to first order inD.
A comparison of the exact compressibility factor wi

our approximation~48! and Hamad’s approximation~50! in-
dicates that Eq.~48!, being far simpler than Eq.~50!, is better
than the latter forD.0, both approaches being comparab
good forD,0. This is illustrated in Fig. 6, where we displa
the exactZ as a function of the nonadditivity parameter for
symmetric (s2 /s151) and an asymmetric (s2 /s152) bi-
nary mixture of the same packing fractionh50.5, and mole
fraction x150.25, together with the two theoretical approx
mations.

2. Disks (d Ä2)

It seems natural to begin with the case of symme
binary mixtures, i.e., mixtures wheres15s2 , and to inves-
tigate the effect of nonadditivity. Representative results
this respect for an equimolar symmetric binary mixture
nonadditive hard disks are displayed in the upper pane
Fig. 7, where we have plottedZ as a function of the nonad
ditivity parameterD at a packing fractionh50.4. A similar
plot of Z versusD is presented in the lower panel of Fig.
but in this case for an equimolar asymmetric mixtu
(s2 /s153) at the same packing fractionh50.4.
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The size ratio dependence of the compressibility facto
displayed in Figs. 8 and 9 for various combinations of m
fraction x1 , nonadditivity parameterD, and packing fraction
h.

Although in the paper by Al-Naafaet al.64 they evalu-
atedZH by taking forZpure the one that follows from our own
simple EOS for the hard-disk fluid,84 in Figs. 7–9 we have
considered for both proposals perhaps the most accu
EOS available nowadays, namely, the one due to Luding85

Zpure
Luding~y!5

11y2/8

~12y!2 2
y4

64~12y!4 . ~51!

Once again we find that the trend observed ind51 is
also present in the cased52, namely, that in general ou
proposal performs better than Hamad’s, except for nega
D. It is worth recalling here that Hamad’s EOS includes t
exact third virial coefficient, Eqs.~23!–~25!, while ours
makes use of the approximation embodied by Eq.~26!.

3. Spheres (d Ä3)

We proceed here as in the case ofd52. Figure 10 shows
Z as a function ofD for a symmetric binary mixture of non
additive hard spheres at the packing fractionh5p/30
.0.105 and forx150.1 andx150.5. Here, as in all the res
of the calculations for hard spheres,Zpure is the one corre-
sponding to the Carnahan–Starling–Kolafa~CSK! EOS,86

Zpure
CSK~y!5

11y1y222y3~11y!/3

~12y!3 . ~52!

FIG. 6. Compressibility factorZ as a function ofD for a symmetric mixture
of nonadditive hard rods withx150.25 at a packing fractionh50.5 ~upper
panel! and for an asymmetric mixture withx150.25 ands2 /s152 at h
50.5 ~lower panel!. Solid lines, exact; dashed lines, Eq.~48! ~present ap-
proach!; dotted lines, Eq.~50! ~Hamad’s result!.
is
e

te

e
e

In Fig. 11 we present a plot ofZ versusD, but in this
case for an equimolar asymmetric nonadditive hard-sph
mixture with s2 /s153 at the packing fractionh50.5. Fi-
nally, Fig. 12 is a plot ofZ as a function of the size ratio fo
different values ofx1 , D, and density. Once more these fi
ures indicate that our proposal in the case ofd53 is superior
to Hamad’s, save for negative nonadditivity.

VI. CONCLUDING REMARKS

In this paper we have introduced a new proposal for
EOS of a multicomponent mixture ofd-dimensional nonad-
ditive hard spheres. This proposal is an immediate gene
zation of the one~rather accurate! we developed for additive
hard spheres to which it immediately reduces if the non
ditivity parameters are set equal to zero. A general presc
tion for the d-dimensional composition-independent thi
virial coefficients of nonadditive hard-sphere mixtures h
also been introduced. It is exact ford51 andd53 and does
a very good job also ford52. In the absence of exact resul
or simulation data for other dimensionalities, its merits
this respect remain to be evaluated.

Our proposal for the EOS involves providing~sensible!
approximations for the contact values of the radial distrib
tion functions that fulfill a few simple requirements. On th
one hand, they reduce to the pure component valuegpure in
the appropriate limit and also comply with the limit in whic
one of the species is made of point particles that do
occupy volume. On the other hand, they yield the exactgi j to

FIG. 7. Plot of the compressibility factor vs the nonadditivity parameteD
for an equimolar symmetric binary mixture of nonadditive hard disks a
packing fractionh50.4 ~upper panel! and for an equimolar asymmetric
mixture with s2 /s153 at h50.4 ~lower panel!. The solid lines are our
proposal, Eq.~35!, and the dashed lines are Hamad’s proposal, Eq.~28!. The
circles are results from molecular dynamics simulations~Ref. 64!.
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first order in the density. Operationally, our proposed E
for the nonadditive mixture@cf. Eq. ~35!# is given explicitly
in terms of the pure component EOS, and the second
third virial coefficients of the mixture. The former feature
shared with other proposals in the literature.63,74,76,78In any
case, we find that the present EOS does a good job als
the nonadditive situation and represents a reasonable c
promise between simplicity and accuracy. In comparis
with Hamad’s approach, which is also simple and reasona
accurate and which we have generalized here to arbit
dimensionality, it has the advantage of being able to d
with asymmetric mixtures where the former faces grea
difficulties.

Because the full assessment of our proposal involve
many facets, there are of course many issues that we
not addressed. We have only attempted to illustrate som
the consequences of employing our approximate EOS.
results in the preceding section illustrate a trend that we h
observed with other values of the parameters, namely, th
general Hamad’s proposal does a better job for negative n
additivities~especially as the density is increased! while ours
should be preferred in the case of positive nonadditivities
least for d51, d52, andd53. Nevertheless, one can se
that the performance of our EOS is reasonably good
highly asymmetric mixtures, even for negativeD. So in
some sense, rather than strictly competing, our approach
Hamad’s are complementary. It is also worth noting that h
we have chosen to take our original recipe of the addit

FIG. 8. Plot of the compressibility factor vs the size ratios2 /s1 for an
equimolar binary mixture of nonadditive hard disks withD520.2 at h
50.6 ~upper panel! and for two binary additive hard-disk mixtures (D
50) ath50.6 ~lower panel!. The solid lines are our proposal, Eq.~35!, and
the dashed lines are Hamad’s proposal, Eq.~28!. The symbols are results
from molecular dynamics simulations~Ref. 64!.
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FIG. 9. Plot of the compressibility factor vs the size ratios2 /s1 for three
binary mixtures of nonadditive hard disks withD50.2 at h50.4 andx1

50.25 ~upper panel!, x150.5 ~middle panel!, andx150.75 ~lower panel!.
The solid lines are our proposal, Eq.~35!, and the dashed lines are Hamad
proposal, Eq.~28!. The circles are results from molecular dynamics simu
tions ~Ref. 64!.

FIG. 10. Plot of the compressibility factor vs the nonadditivity parameteD
for a symmetric binary mixture of nonadditive hard spheres ath5p/30 and
two different compositions. The solid lines are our proposal, Eq.~35!, and
the dashed lines are Hamad’s proposal, Eq.~28!. The symbols are results
from Monte Carlo simulations~Refs. 59 and 60!.
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FIG. 11. Plot of the compressibility factor vs the nonadditivity parameteD
for an equimolar asymmetric binary mixture of nonadditive hard sphe
with size ratios2 /s153 ath50.5. The solid line is our proposal, Eq.~35!,
and the dashed line is Hamad’s proposal, Eq.~28!. The circles are results
from Monte Carlo simulations~Ref. 63!.

FIG. 12. Plot of the compressibility factor vs the size ratios2 /s1 for binary
mixtures of nonadditive hard spheres withx150.5, D520.05, h50.5 ~up-
per panel!, x150.25,0.5, D50.2, h50.2 ~middle panel!, and x1

50.25,0.5,D50.5, h50.075 ~lower panel!. The solid lines are our pro-
posal, Eq.~35!, and the dashed lines are Hamad’s proposal, Eq.~28!. The
symbols are results from Monte Carlo simulations~Ref. 63!.
case80 for simplicity, but we could have as well considere
the more refined ones that we introduced later,81 at the ex-
pense of more complicated final expressions. Also,
choice ofZpure is free and the results of course depend
that choice. Nevertheless, providedZpure is reasonably accu
rate, the qualitative trends should not be altered by differ
choices and this is actually the case. For instance, in
analysis of nonadditive hard disks we took forZpure the one
corresponding to Luding’s EOS.85 With minor numerical dif-
ferences, very similar results are obtained if Henderso
equation87 or our EOS,84 which are both accurate, are use
instead. Analogously, in the three-dimensional case the
sults are practically the same if the Carnahan-Starling EO88

is used instead of Eq.~52!.
We are fully aware that interesting features such as

demixing transition in the case of positive nonadditivi
~both for symmetric and asymmetric mixtures! remain to be
dealt with. We expect to examine some of these in the futu
In any event, irrespective of the illustrative calculations th
we have presented in this paper, we have attempted to
clude a rather comprehensive account of previous work
the subject which will hopefully serve to provide some pe
spective and be useful to other researchers.
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APPENDIX A: EXACT SOLUTION
IN THE ONE-DIMENSIONAL BINARY MIXTURE CASE

In the one-dimensional case (d51) with nearest-
neighbor interactions @which implies that 2s12

>max(s1,s2)], the thermodynamic and structural properti
of the binary mixture are exactly known.1,3,6–8The EOS re-
lating the densityr to the pressurep ~in units ofkBT) and to
the diameterss1 , s2 , ands125

1
2(s11s2)(11D) is given

by

1

r
5

1

p
1a

A114x1x2~e2ap21!21

e2ap21
1^s&, ~A1!

where a[s122(s11s2)/25(s11s2)D/2>2min(s1/2,
s2/2).Note that if p→` then h→1 for a.0, while h
→@122(uau/^s&)min(x1,x2)#

21 for a,0.
Equation~A1! can alternatively be written as

p5
r

12h
FS x1 ,

ra

12h D , ~A2!

whereF(x1 ,w) is the solution to

F21511w
12A114x1x2~e2wF21!

e2wF21
~A3!
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or, equivalently,

e2wF2152w
2x1x2w2~12F21!

~12F21!2 . ~A4!

In principle, the compressibility factor is a function o
four parameters: the number densityr, the mole fractionx1 ,
the size ratios2 /s1 , and the nonadditivity parametera.
However, the scaling relation~A2! shows that there are onl
two independent parameters: the mole fractionx1 and the
scaled parameterw[ra/(12h). More specifically@cf. Eq.
~A2!#,

Z~r!5
1

12h
FS x1 ,

ra

12h D . ~A5!

Thus, F(x1 ,w) measures the compressibility factor of th
nonadditive mixture, relative to that of an additive mixtu
with the same packing fraction.

The expansion of the scaling functionF(x1 ,w) in pow-
ers ofw is

F~x1 ,w!5 (
n50

`

Fn~x1!wn, ~A6!

where the first few terms are

F051, F152x1x2 ,

F250, F3524x1
2x2

2 , ~A7!

F452 8
3 x1

2x2
2 , F552 4

3 x1
2x2

2~128x1x2!.

In the limit of very small nonadditivity, we can make th
linear approximationF(x1 ,w)'112x1x2w. This is a good
approximation in the range20.4<w<0.4. The asymptotic
behaviors ofF(x1 ,w) are easily derived from Eqs.~A3! and
~A4!. In the limit w→` ~with a.0), we simply have
F(x1 ,w)→1, while in the limit w→2`, the result is
F(x1 ,w)→2K(x1)w21, whereK(x1) is the solution to

4x1x2K511A124x1x2~12e22K!. ~A8!

Note also thatF(x1 ,w) is a nonmonotonic function ofw
which presents a maximum for a certain valuew0(x1).0.

From Eqs.~A5!–~A7! it follows that the~exact! second
and third virial coefficients can be written as

B̄25^s&12x1x2a, B̄35^s&~^s&14x1x2a!. ~A9!

Further, the fugacityz1[em1 ~wherem1 is the chemical po-
tential of species 1, again in units ofkBT) is given by the
following expression:

z15l1pes1pS 12
F21

2x1wF D , ~A10!

and a similar expression forz2 .

1. Absence of phase separation

Given the values ofs1 , s2 , ands12 ~or a!, the thermo-
dynamic state of the mixture is characterized by the p
(r1 ,r2) or, equivalently, by@x1 ,w[ra/(12h)#. Here we
will adopt the latter viewpoint. If there would exist phas
ir

separation into two distinct phases A and B, the pressure
the chemical potentials should be equal in both phases.
pressure condition is equivalent to

wAF~x1
A ,wA!5wBF~x1

B,wB!. ~A11!

The conditions on the chemical potentials yield

x1
A

F~x1
A ,wA!21

5
x1

B

F~x1
B,wB!21

, ~A12!

12x1
A

F~x1
A ,wA!21

5
12x1

B

F~x1
B,wB!21

. ~A13!

These two equations imply

x1
A5x1

B, ~A14!

F~x1
A ,wA!5F~x1

A ,wB!. ~A15!

Given the nonmonotonic behavior ofF as a function ofw,
Eq. ~A15! has solutions withwAÞwB. However, the combi-
nation of Eqs.~A11! and ~A15! means that

wA5wB, ~A16!

and so the only solution is the trivial one.

2. Distribution functions at contact

From Lebowitz and Zomick’s paper6 ~and after some
algebra!, one can get the contact values

g115
1

12h

2x1wF2~F21!

2x1
2w

, ~A17!

g225
1

12h

2x2wF2~F21!

2x2
2w

, ~A18!

g125Ag11g22e
2wF. ~A19!

Using the expansion~A6!, one has

g115
1

12h
@112x2w12x2

2w21O~w3!#, ~A20!

g225
1

12h
@112x1w12x1

2w21O~w3!#, ~A21!

g125
1

12h
@122x1x2w21O~w3!#. ~A22!

APPENDIX B: SOME SPECIAL LIMITS

It is interesting to examine the performance of Hama
approximation, Eqs.~27! and~28!, and of our proposal, Eqs
~31! and ~35!, in the following special limits.
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1. s12Ä0

In the limit of extreme negative nonadditivity (s1250 or
D521), one hasŝ15ŝ250, so that Eq.~13! yields

c1;115
b3

b2
s1

d , c2;225
b3

b2
s2

d ,

~B1!
c1;125c1;225c2;115c2;1250.

The above expressions are exact in that limit. Hamad’s p
posal~27! becomes then

X115
x1s1

d

^sd&
, X225

x2s2
d

^sd&
, X1250, ~B2!

g11
H ~r!5gpure~h1!, g22

H ~r!5gpure~h2!, g12
H ~r!51,

~B3!

whereh i5vdrxis i
d is the partial packing fraction of specie

i . Equation~B3! is the exact result, reflecting the fact that
the limit s1250 the mixture is actually made of two mutu
ally independent one-component fluids. On the other hand
our proposal we have

z115
b3x1s1

d2b2^s
d&

~b32b2!^sd&
, z1252

b2

b32b2
, ~B4!

g11
SYH~r!5

1

12h

b3x2s2
d

~b32b2!^sd&

1gpure~h!
b3x1s1

d2b2^s
d&

~b32b2!^sd&
, ~B5!

g12
SYH~r!5

1

12h

b3

b32b2
2gpure~h!

b2

b32b2
, ~B6!

plus the equivalent expressions obtained by the excha
1↔2. Equations~B5! and~B6! are only exact to first order in
the density.

2. Widom-Rowlinson limit

The WR limit (s15s2→0) represents an extreme ca
of positive nonadditivity (D→`). The coefficientsck; i j are

c1;115c1;125c2;125c2;2250, c1;225c2;115~2s12!
d.

~B7!

In this WR limit the packing fraction vanishes, so that t
relevant density parameter ish85vdrs12

d . In Hamad’s ap-
proximation,

^sd&X115
b2

2

2b3
x2s12

d , ^sd&X1250, ~B8!

g11
H ~r!5gpureS b2

2

2b3
x2h8D , g12

H ~r!51. ~B9!

Our approximation yields

^sd&z115
b2

2x2s12
d

2~b32b2!
, ^sd&z1250, ~B10!

g11
SYH~r!511

b2

2
x2h8, g12

SYH~r!51. ~B11!
o-

in

ge

Both approximations differ ing11(r) and g22(r), but these
contact values do not contribute toZ(r) in the WR limit.
The result is in the two cases

Z~r!5112dx1x2h8, ~B12!

which is the mean-field result.
We note that in the one-dimensional case the exact re

that follows when settings15s250, h85ra in Eq. ~A5! is

Z~r!5F~x1 ,h8! ~d51!. ~B13!

3. Asakura-Oosawa limit

The Asakura-Oosawa limit consists of settings250 and
s125s1/21R, whereR represents the radius of gyration. I
that case,ŝ15s112R and ŝ252R, so that Eq.~13! gives

c1;115
b3

b2
s1

d , c2;115~2R!d1S b3

b2
21Ds1~2R!d21,

c1;225~s112R!d, c2;2250, ~B14!

c1;125s1
d1S b3

b2
21D 4Rs1

d

s112R
, c2;1250.

From Eq.~B14!, it follows that

z11511
x2

x1

b2

b32b2
S 2R

s1
D d21S 2R

s1
1

b3

b2
21D , ~B15!

z225
b2

b32b2
F S 11

2R

s1
D d

21G , ~B16!

z125
4R/s1

112R/s1
. ~B17!

Further, in this limit ^sd&5x1s1
d , B̄252d21x1@x1s1

d12(1
2x1)(s1/21R)d# and B̄3 may be computed from theck; i j

given in Eq. ~B14!. Therefore, upon substitution into Eq
~35!, one would get the EOS for the Asakura-Oosawa lim
Since the resulting expression is not very illuminating, it w
be omitted. Similarly, with the substitution of Eqs.~B15!–
~B17! into Eq. ~31! the contact values of the radial distribu
tion functions~which will be also omitted! follow. The cor-
responding results for this limit in Hamad’s proposal a
readily derived from Eqs.~34! and~B15!–~B17!, and subse-
quent substitution into Eqs.~27! and ~28!.

In d51, taking the Asakura-Oosawa limit (s250,a
5R) in Eq. ~A5! we have the exact result

Z~r!5
1

12h
FS x1 ,

rR

12h D ~d51!. ~B18!
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