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Equation of state of nonadditive  d-dimensional hard-sphere mixtures
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An equation of state for a multicomponent mixture of nonadditive hard spherslimensions is
proposed. It yields a rather simple density dependence and constitutes a natural extension of the
equation of state foadditivehard spheres proposed by[ds Santos, S. B. Yuste, and M. pez de

Haro, Mol. Phys.96, 1 (1999]. The proposal relies on the known exact second and third virial
coefficients and requires as input the compressibility factor of the one-component system. A
comparison is carried out both with another recent theoretical proposal based on a similar
philosophy and with the available exact results and simulation datarih, 2, and 3. Good general
agreement with the reported values of the virial coefficients and of the compressibility factor of
binary mixtures is observed, especially for high asymmetries and/or positive nonadditivities.
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I. INTRODUCTION AND A BRIEF REVIEW calculations on the thermodynamic and structural properties
OF THE LITERATURE of, say, Lennard-Jones mixtures. Nevertheless, the study of

nonadditive systems goes back 50 y&atand is still a rap-
The structure of a dense fluid is known to be largelyidly developing and challenging problem.

determined by the repulsive intermolecular forces, so itisnot  As mentioned in the paper by Ballore al.* where the
surprising that hard-core potentials have been extensivelyelevant references may be found, experimental work on al-
employed to model simple fluids and fluid mixtures. A note-|oys, aqueous electrolyte solutions, and molten salts suggests
worthy aspect of these models is the fact that in some inthat heterocoordination and homocoordination may be inter-
stances both exact and approximate analytical results may Qgteted in terms of excluded volume effects due to nonaddi-
derived for the structural and thermodynamic propertiestivity of the repulsive part of the intermolecular potential. In
which in turn serve as a starting point for the treatment ofparticular, positive nonadditivity leads naturally to demixing
more sophisticated or complex models. in hard-sphere mixtures, so that some of the experimental
Certainly a vast majority of the published work on hard- findings of phase separation in the above mentiofred)
core (rods, disks, spheres, and hyperspheflesd mixtures  systems may be accounted for by using a model of a binary
pertains to binary systems and to the so-called additive hardmixture of (positivel nonadditive hard spheres. On the other
core interaction, namely, the one in which the distance ohand, negative nonadditivity seems to account well for
closest approactdenoted byo;;) between the centers of two chemical short-range order in amorphous and liquid binary
interacting particles, one of specieand the other of species mixtures with preferred hetero-coordination.
j, is the arithmetic mean of the diameters of both partieles On the theoretical side, the first exact result on the equa-
ando;, respectively. Apart from the initial impetus that took tion of state(EOS for a nonadditive mixture is that of a
place in the 1960s, recently, interest in this kind of systemdinary mixture of hard rodsd=1) restricted to nearest-
(in particular, mixtures of hard sphejdsas experienced an neighbor interactions. Although it is usually attributed to
increasing growth in connection with entropy driven phaseLebowitz and ZomicK, it was already implicit in earlier
transitions and the demixing problem. On the other handwork by Prigogine and Lafledrand by Kikuchi® and even
nonadditive hard-core mixtures, where the distance of closestebowitz and Zomick point out that the thermodynamic
approach between particles of different species is no longgunctions of this system appear in the thesis presented in
the arithmetic mean referred to above, have received lesk966 by C. C. Cartefcf. Ref. 9 in Ref. 6. Very recently,
attention, in spite of their in principle more versatility to deal Corti and Bowles have rederived this result in an appendix of
with interesting aspects occurring in real systefmsch as ~ a paper, where they also provide exact geometrical relation-
liquid-vapor equilibrium or fluid-fluid phase separatiand  ships for nonadditive mixturesee also an alternative red-
of their potential use as reference systems in perturbatiofrivation in Prof. Penrose’s webpdyelt is also worth men-
tioning that in the paper by KikucHia proof is given that no
phase transition may occur in a one-dimensional binary mix-
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A very popular model of a nonadditive binary mixture accurate Monte Carlo simulations, and to the static and dy-
with positive nonadditivity was introduced by Widom and namic behavior near the consolute critical point obtained
Rowlinson in 1970° This model is equivalent to a one- from molecular dynamics simulatioRs.
component penetrable sphere model. In the symmetric ver- A theoretical approach that has been extensively used in
sion of the model, referred to as the Widom—Rowlinsonconnection with nonadditive hard-core mixtures is the SPT.
(WR) model, one has;=0,=0 ando;,>0. With this sim-  Apart from the papers quoted above, Bergnidrmas con-
plification Widom and Rowlinson derived exactly the EOS in sidered the SPT in one dimension and compared it with the
the one-dimensional case, where it predicts no phase trangxact solution. Tenne and Bergmann examined the SPT for
tion. Ford=3 the model was solved in the mean-field ap-d= 3 both for positive nonadditivi{f (where they computed
proximation. In the same paper, but for the case of highhe critical density and the critical nonadditivitgnd nega-
asymmetnyi.e., wheno; #0, 0,=0, andd=3), Widom and  tive nonadditivity’> Bearman and Mazo also considered the
Rowlinson also determined an approximate condition for theSPT for a symmetric binary mixture of nonadditive hard
spinodal curve. It is interesting to point out that this case ofdisks™ and pointed out that the phase transition predicted by
high asymmetry corresponds with the Asakura—Oosawdenne and Bergmann in Ref. 21 for negative nonadditivity
model? often used to discuss polymer colloid mixtures andwas spurious. The same authrmtroduced a simpler ver-
where the notion of a depletion potential was introducedsion of the SPT fod=2 andd=3 which is consistent with
This model and refinements of the same have received a ltlhe SPT of additive mixtures in the appropriate limit but still
of attention(including fairly recent workin connection with  presents some other difficulties. Some of these difficulties
the demixing problem and the question of effectivewere addressed by Schaiftkwho introduced an EQOS for a
potentialst! binary mixture valid for small values of the nonadditivity. A

The impact of the WR model cannot be overemphasized¢omparison of SPT predictions and simulation data may be
as it has motivated a great amount of later work. A rigorousfound in Ehrenbergt al3®
proof that a phase transition may exist in the WR model in  The use of computer simulation, both molecular dynam-
d=2 was provided by Ruell® who also indicated that a ics (MD) and Monte Carlo(MC), as well as of the usual
similar procedure may be followed to prove the existence ofntegral equation approach of liquid state theory or the per-
a phase transition in the WR model @+ 3 and higher di- turbation theorytaking either a one-component system or a
mensions. Frisch and Carltéperformed molecular dynam- binary additive hard-core mixture as the reference system
ics simulation for a hard-square mixture in the WR limit and has also contributed to the investigation of the properties of
concluded that it presented a first-order phase transitiomonadditive hard-core mixtures. In the same paper where
Melnyck et all* obtained the first ten virial coefficients of they presented the exact solution for the one-dimensional
the WR hard-sphere mixture in the Percus—Yeviek) ap-  mixture, Lebowitz and Zomickalso gave the exact solution
proximation(the first five of which are exagtwhile Straley to the PY equation il=1 and a partial solution to the PY
et al!® computed the virial coefficients of the WR model for equation in the three-dimensional case. A mathematical
oriented hard squares and hard cubes. Widom andnalysis of these two solutions was later given by Penrose
Stillinger'® generalized the scaled particle the¢8PT) fora  and LebowitZ>’ Perry and Silbeff also gave an approximate
pure fluid’ to the case of the WR model in an arbitrary solution to the PY equation inl=3 which confirmed the
dimensionality and Guerreret al!® exploited the equiva- earlier results of Lebowitz and Zomick. For equimolar and
lence of the penetrable sphere model and the WR model tesymmetric hard-sphere mixtures with negative nonadditivity,
obtain the direct and total correlation functions for the modelNixon and Silbert® solved the PY equation, which they
where the Mayer function is a Gaussian and for the hardfound to improve its agreement with simulation data as the
sphere interaction in the mean field, PY, and hypernettediegative nonadditivity increased. Equimolar symmetric bi-
chain approximations. In the cases @1 andd=3, the nary mixtures have been studied by Gazflo* He has
WR model was solved in the PY approximation by Ahn andconsidered the PY approximatihand also other clos-
Lebowitz® while the SPT was considered by Bergm&fn. ures(the Martynov—Sarkisof? the Ballone—Pastore—Galli-
The latter theory for the WR model in two dimensions wasGazzillo? and the modified Verlét“? closure$. In Ref. 42
addressed in an appendix of the paper by Tenne ande also addressed a ternary mixture with negative nonaddi-
Bergmanrf! in which they examined the SPT for a nonad- tivity that had been studied earlier through MD simulation by
ditive hard-disk binary mixture. Transport properties for theSchaink** while he and his collaboratdtsvere apparently
WR hard-sphere binary mixture were computed by Karkheckhe first to obtain simulatiofMC) data for an asymmetric
and StelP? Later, Borgeltet al?® and Luoet al?* performed  hard-sphere binary system. In studying binary nonadditive
simulations on the hard-sphere WR mixture and found bettekennard-Jones mixtures using the reference hypernetted
agreement with mean-field results than with PY results. Morehain (RHNC) approximation, Anta and Katl obtained the
recently, the same model has been the subject of investigamonadditive hard-sphere bridge functions by solving the cor-
tions related to its universality cladsto the location of the responding PY equation. Lomtet al*® used a generalized
critical point and the computation of the coexistence céfve, modified Verlet closure to study fluid-fluid phase separation
to the development of an integral equation theory that inin symmetric nonadditive hard-sphere mixtures, obtaining
cludes the first few terms in the density expansion of thegood agreement with their own MC simulation data for the
direct correlation function into the closure approximattén, phase diagram. Katet al*” studied a variety of symmetric
to the(partia) total and direct correlation functioffthrough  binary mixtures of nonadditive hard sphetesth with posi-
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tive and negative nonadditivityby solving the Ornstein- simulate and study phase separation in symmetric binary
Zernike equation with a modified hypernetted-chain-typemixtures of nonadditive hard disks and hard spheres for vari-
closure. Recently, Sierra and Ddfl@onsidered the PY and ous(large) nonadditivities including the limiting case of the
Martynov-Sarkisov closures to study symmetric mixtures ofWR model.
nonadditive hard spheres adsorbed on a disordered hard- An alternative route to the derivation of the EOS of non-
sphere matrix, while Dudat al*® used MC simulations to additive hard-sphere mixtures that does not require the SPT,
study fluid-fluid phase equilibria and interfacial properties ofperturbation theory, the solution of integral equations, or
nonadditive binary hard-sphere mixtures adsorbed in a slisimulation results relies on the knowledge of virial coeffi-
pore. The structure and the thermodynamics of nonadditiveients and on the use of exact statistical mechanical relation-
hard-sphere mixtures under confinement have also been tlships. The so-callegt expansion for hard particle fluids in-
subject of a recent study by Pellicaeeal.,’® who used both  troduced by Barboy and Gelb&tis a prominent example of
integral equations and computer simulations. this approach. In the case of nonadditive hard-sphere mix-
Melnyck and Sawfortf reported MD simulation data on tures, the Barboy—Gelbart EOS involves up to the exact third
a symmetric binary nonadditive hard-sphere mixture withvirial coefficients, whose analytical expressions are knéivn.
positive nonadditivity and using perturbation theory derivedOn a different path, Hamé&tihas provided a theory for ob-
an EOS for this kind of systems which they named MIX1.taining mixture properties from pure species equations of
Such EOS was later extended to cope with asymmetric mixstate. In the case of nonadditive hard-sphere mixtures, he
tures by Schaink and Hoheis®lAt about the same time as invokes exact results pertaining to the contact values of the
the Melnyck and Sawford calculations, Adams andradial distribution functiong>~""as well as the knowledge of
McDonald® performed MC simulations on binary symmetric the exact second and third virial coefficients. He has also
hard-sphere mixtures with negative nonadditivity. Later on,presented a similar approach for hard-disk mixtures in Refs.
Dickinsor?* performed MD simulations on two equimolar 64 and 78. A noteworthy aspect of Hamad's proposal is that,
nonadditive binary hard-disk mixtures. In 1989, Amtar due to his use of the one-component radial distribution func-
computed the coexistence curve for the system studied ition as a starting point, it is geared essentially towards mix-
Ref. 51 using MC simulation. Hoheis@lstudied a symmet- tures not very asymmetric in size. This proposal has been
ric equimolar binary mixture of nonadditive soft spheresvery recently used in connection with the development of a
with (high) positive nonadditivity through MD and deter- perturbation theory for fused sphere hard-chain flifds.
mined the critical density. Mountain and Harvégonducted Recently#*8'we have proposed an EOS for a multicom-
both MD and MC simulations on binary mixtures of nonad- ponent mixture of additive hard-core particlesdndimen-
ditive soft disks to study fluid-fluid coexistence. Rovere andsions. This proposal shares with Hamad's appr&ach'®
Pastore® extended the work of Ref. 53 and obtained thetwo aspects. On the one hand, it is expressed in terms of the
coexistence curve of an asymmetric binary nonadditive hardpure species EOS and on the other it starts with a sensible
sphere mixture through MC simulation. Extensive MC com-ansatz on the functional form of the contact values of the
putations on symmetric nonadditive hard-sphere binary mixradial distribution functions. The aim of this paper is to
tures have been provided by Jumgal,>®~®* who have complement Hamad’s approach in two different veins. The
derived from them reasonably accurateemiempiricgl first one concerns dimensionality. Here we want to derive an
equations of state for these systems. Density functiondEOS for a nonadditive hard-core mixture of an arbitrary
theory has also been applfédo the computation of the ex- number of components and for any valuedfThe second
cess free energy of an equimolar mixture of nonadditive har@ne has to do with the fact that when the nonadditivity pa-
disks. Finally, recently, Hamad has reported MD calculationgameter vanishes we also want to recover our former
for asymmetric nonadditive binary hard-sphere mixttites proposdi® for additive multicomponent hard-core mixtures.
and, together with some co-workers, also for binary hardOur main concern is to try to keep a reasonable compromise
disk mixtures®® Fluid-fluid phase separation in a symmetric between the simplicity of the proposal and its ability to deal
mixture of nonadditive hard spheres with positive nonaddi-also with highly asymmetric mixtures.
tivity and the phase behavior of nonadditive hard-core mix-  The paper is organized as follows. In Sec. Il we provide
tures in two dimensions have been recently the subject ofeneral expressions for a multicomponent mixture of nonad-
MC simulations by Saijaetal®® and by Saija and ditive hard spheres iml dimensions and some key back-
Giaquinta®® respectively, while GpdZ®’ performed MC  ground materialthird virial coefficients, for which a simple
simulations to derive accurate results for the critical packingexpression for arbitrary dimensionality is proposéat the
fraction at a few values of the nonadditivity parameter in thelater development. The exact solution in the case of a one-
case of hard spheres. Castdn-Prieget al ® studied deple- dimensional binary mixture as well as other interesting fea-
tion interactions in mixtures of nonadditive hard disks,tures of this system are presented in Appendix A. Section Il
Schmidf® generalized the fundamental measure densitcontains a brief account of Hamad’s prop8%at '’ for the
functional theory of hard spheres to binary mixtures of arbi-contact values of the radial distribution functions and for the
trary positive and moderate negative nonadditivity, and Faneompressibility factor of the mixture. This is followed in
toni and Pastor@ performed accurate MC simulations to Sec. IV by our own proposal, which shares with Hamad's a
check the local dependency assumption of the bridge fundew features: the construction of the EOS via the contact
tions of an equimolar nonadditive binary hard-sphere mix-values of the radial distribution functions, the dependence of
ture. Fairly recently, Buhét used a cluster algorithm to the latter on the EOS of the one-component fluid, and the use
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of the third virial coefficients. The results pertaining to spe-
cial limiting cases are given in Appendix B. The analysis of
the fourth, fifth, and sixth virial coefficients and of the com-

pressibility factors in one, two, and three dimensions is car-
ried out in Sec. V. The paper is closed in Sec. VI with further
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discussion and some concluding remarks.

II. THIRD VIRIAL COEFFICIENTS

A. General equations

B _od-1d
Bij_2 Tij » (4)
2d—l
Biy=——(Cciiod+cii ot +ci o (5)
k=73 (Ck;ljo-ij Cj:ikTik CI;Jko-jk)y
2d—1
B.,,=—— od4c o8 +c, 08 +c, ol
ijke (Cke;ijTij T Cig;ikTik T Cie;jkTjk + Cik,i¢ Tig

6
(6)

This connection between the virial coefficients of the

d d
+Cik,jeTjet CijikeTke) -

in d dimensions. The hard core of the interaction between 4€s of the radial distribution functions may be profitably

sphere of species and a sphere of specigsis o;. The
diameter of a sphere of speciess o;;=o0;. In general,o;;
=3(0i+0;)(1+A4y)), whereA;;= —1 is a symmetric matrix

with zero diagonal elements\(;=0) that characterizes the =¢) Of packing fractiony=vqpo*.

used to devise sensible approximations.
For subsequent use in Secs. Il and IV, it is convenient to
consider the special case of a one-component fluig (
4. In such a case, Eqél)

degree of nonadditivity of the interactions. In the case of zand(3) become

binary mixture N=2), the only nonadditivity parameter is

A=A,,=A,;. The compressibility factor of the mixtur2
=p/pkgT, wherep is the total number densityp is the

zpmgw:1+2d*1ygpure(y>=1+n21bn+1y“, @)

pressureT is the temperature, arlg; is the Boltzmann con-  \,nere bnzgnlo(n—l)d are the(reducedl virial coefficients
stant, can be exactly expressed in terms of the radial distrigs tne one-component hard-sphere fluid. In particulay

bution functions at contad;; as
N

Zp {0k {oe) =142 togp 3 xix;r]

X Qij (P Xt A Tke}) s (1)

wherex;=p;/p is the mole fraction of species p; is the
partial number density of particles of speciesand vqy
=(m/4)3T(1+d/2) is the volume of ad-dimensional

=201

B. The one-dimensional case

It is worth recalling that, as mentioned in Sec. |, in the
case of abinary (N=2) one-dimensionald=1) mixture
with nearest-neighbor interactions orflwhich implies that
20,=max(o,05)], the exact compressibility factor is
known!2~8|n Appendix A we provide a summary of the

sphere of unit diameter. Although no general expression igxact solution as well as some interesting properties of the

known for gi; (p.{X} {o«¢}) =0ij(p), it can be expanded in
a power series in density as
N

gij(P):lJFUdPIZl XkCr;ij

N

+<vdp>2k;:1 XX Cresij + O(p%). 2

The coefficientyj; , Cyyij ... areindependent of the com-

position of the mixture, but they are in general complicate

nonlinear functions of the diametews; , oy, Tjk, o, -
Insertion of the expansiof®) into Eqg. (1) yields the virial
expansion oZ, namely,

Z(p>=1+n§l (vgP) "B+ 1

N N

:1+Udpij§=:l Binin+(Udp)2i jzk:=1 BiijinXk

N

+(Udp)3ijkE€:1 BijieXiXjXiXe + O(p%). 3)

same. In particular, the coefficientg; for d=1 are
C1;11=01, Cp11=201,— 074, ()

The remaining coefficients are obtained from E&). by the
exchange & 2.

C1:12=071.

C. The three-dimensional case

In three dimensions, the first two terms of the exact den-
£ty expansion ofy;; are known’® After a few simple ma-
nipulations one may derive from them the result

3ol
3 i
Chiij = Okij T 5~ TisjkTjik» 9
ij TR gy Tk
where
O;ij =0ik T Tjk— Tij (10

and it is understood that,.;;=0 for all setsijk. Clearly,
gi.ij=0, 0j;j=0;j, and, in case of additive hard spheres,
oyij=oy. Note also that the quantities,;; may be given a
simple geometrical interpretation. Assume that we have three
spheres of specias j, andk aligned in the sequendkj. In
such a case, the distance of closest approach between the

Note that, for further convenience, we have introduced theenters of spherdsandj is oy, + ajk - If the sphere of spe-

coefficientsEzv(](”’l)Bn where B, are the usual virial

ciesk were not there, that distance would of courseohe

coefficients. The composition-independent second, third, an@iherefore,oy.;; as given by Eq(10) represents a kind of

fourth (barred virial coefficients are given by

effective diameter of spherk, as seen from the point of
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i S, . ij , (}2: ma)(Z(le_ 0'1,0) . (14)
; . With such an extension, we recover the exact values gf
for a binary mixture of hard spheresl€3), even if oy
; P b ! >201,0r 0,>201,. We emphasize that Eq&l1)—(14) for
T . o e d+#1 andd+3 are new.
(a) i k j
% ] E. The two-dimensional case

' While Eqg. (13) is exact ford=1 andd=3, it is only
! approximate ford=2. For that dimensionality, the exact re-

. sult has been derived by Al-Naaéa al ®* After some algebra
(b) S, o, (and the correction of some typoshe coefficients,.;; can

be written as
FIG. 1. (a) Three spheres of specigsj, andk in an aligned configuration.

The smallest possible separation between sphieeesl j is i+ o . (b) b3 b3

When spherek is removed, the smallest distance betweeand j is oy; . Cl_llz—o'i, C2_1l:—o'i|:(0'12/01),

Thus gyjj = o+ oj— oj; represents an effective diameter of sphleras ' 2 ' 2

seen from the point of view of the paif. In the sketch we have assumed (15

for simplicity that the nonadditivities are positive. b3 )
01;12:7016(012/01%
view of the interaction between spheiesndj. A schematic

representation of this interpretation is provided in Fig. 1. whereb;=16/3- (4v3/m) =3.1280 and the functions(s)

andG(s) are given by

D. A generalization to d dimensions 4 ) 1 , 1
——|4s°cos “-—V4s°—1|, s=5
It is tempting to extend Eq¢$8) and(9) to d dimensions F(s)={ 7bs 2s 2 (1)
as 0, Oss<1,
by | i’
Ck;ij:‘TE;iij(b__l) %Ui;jkoj;ik- (1D 4 ) , !
2 ij W[ZWS —2(2s°—1)cos %
More specifically, for a binary mixture Eq1l) yields 3
b G(s)={ —4s?-1], s=1% (17)
3
Cl;llzb_crcli: 8 1
2 —s?2, 0<s<_-
b by™’ 2
3 _
Co;11= (201~ o) '+ b—2—1)01(2012— o) (12 gome special values &(s) andG(s) are
F(1)=G(1)=1, (18)
3
01;12:()'?4' b—z—l)(20'12—0'1)0(11/0'12.
2
Obviously, Eq.(12) reduces to Eq(8) for d=1 (b,=b; F(1/2)=0, G(1/2)=1-, (19
=1), while Eq. (1) reduces to Eq(9) for d=3 (b,=4, 3
bs;=10). _ o o, 8 , 4
All of the above results are restricted to the situation  lim s™“F(s)=—-, lim G(s)= i~ (20)
0;;=0 for any choice ofi, j, and k, ie., 20y, s 3 sow 3

=max(oy,0,) in the binary case. This excludes the possibil-
ity of dealing with mixtures with extremely high negative
nonadditivity in which one sphere of speclesight “fit in”
between two spheres of specieandj in contact. Since for
d=3 andN=2 the coefficientg,;; are also known for such
mixtures’* we may extend our proposal to deal with these
cases. IN=2, one has specifically

For a symmetric mixture «,=05), the values=o,/0
=1 corresponds to the one-component caseg,/ o= 3
corresponds to the threshold value of negative nonadditivity
(ie., 201,=0,=0, or A=—13), and the limits=o0y,/0,
—oo represents an infinitely large positive nonadditivity
(WR mode).

Equation (13) with d=2 can be recast into the form

bs 4 od 3 o1 (15), except that the functiong(s) and G(s) are approxi-

Cl;ll:b_zo'lv Co,11= 02+ b_2_1)¢710'2 ) mated by

(13) .
_3_1)6'20'd/012 -
b, v FapdS)=1 Pa

where we have defined 0, O<s<3,

N| -

01;12:(20'12_6'2)(1"' (25_ 1)(4S+b3_4), S=

(21)
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F(s), G(s), B(s)

0.0

0.5 2.0

FIG. 2. Plot of the function&(s), G(s), andB(s). The solid lines are the
exact functiong16), (17), and(25), while the dashed lines are our approxi-
mations (21), (22), and (26). Note thatB(s) and B,,{s) are practically
indistinguishable.

b, 2s

Gapp(s): 8 1 (22
2 _
b3s , O=ss=< 5

This approximation verifies the properti€k9) and(20), ex-
cept that now ling_.... Gpfs) =2(b3—1)/bs, which is about

6% higher than the exact value. Figure 2 shows that Egs.
(21) and (22) constitute an excellent approximation to the

exact expressiond 6) and(17), especially for small or mod-
erate values o§.

The third virial coefficientsgi“< for a two-dimensional

binary mixture as given by E@5) may be cast into the form
§111: 201;110%: b30'[11, (23
Bi1o= 3(Cpi1105+2C1.10205) =b3oiB(alay),  (24)

and similar expressions f@;,, andB,,;, obtained from the
former by the exchange of indices 1 and 2. Here,

B(s)= 3F(s)+ 25°G(s)

( i[47rs4—852(32—1)cos‘li
37Tb3 25
1
={ —(2s?+1)/4s?—1], =5 (25)
16 P 1
— <s<~-.
(30,0 2

Using Egs.(21) and (22) our approximation yields for
BapdS) the polynomial

1 1
—[4(s—1)%+by(4s?—1)], s==
3b; 2
Bapd)=1 16 1
e’ -
3b35 , 0Oss=< >
(26)

As also seen in Fig. 2, Eq26) is practically indistinguish-
able from the exadB(s), so that thgsmal) discrepancies in
FapdS) andG,,(s) with respect to the actuél(s) andG(s)
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almost entirely compensate. Therefore, it seems that it is not
unreasonable to use Eq41)—(14) for all d.

lll. HAMAD'S PROPOSAL
FOR THE EQUATION OF STATE

Our goal is to derive afapproximate EOS for a multi-
component mixture ofd-dimensional nonadditive hard
spheres. Clearly, this may be achieved if values forghe
are provided. But before we engage in this task, let us recall
in this section a previous simple proposal by Hamad.

Hamad*"®"" has proposed a simple and accurate ap-
proximation for the contact values of the radial distribution
functions which takes the same form in badk-2 andd
=3. Generalized to arbitrary dimensionality and in the
notation of this paper it reads

b, 2 X Creii

910 = Gpurd 7). Xij=p” =g (27)
Here, n=vq4p(c") is the packing fraction of the mixture,
with (c™) = Z:\L Xio".

By construction, the approximatid@7) is correct to first
order in the densitythird virial coefficien}. Inserting the
approximation(27) into Eq. (1), we obtain the(generalizeyl
d-dimensional Hamad EOS,

y 2d7177 §
Z%(p)=1+ W; XiXjoijGpurd 7Xij)

XiXJ'O'iC}
142 1o
So far, the one-component functiafy,,{y) remains
free. It should be emphasized that, exceptder2 andd
=3, the EOS given by Eq28) has been neither introduced
nor used before.
The Helmholtz free energy per particle of a mixture,
a(p), is given by

X (28)

Zpurd 7Xi5) — 1}

ij

a(p)

_ . d pdp’ '
|(B—-|-——1+i2:1 Xi |n(PiRi)+fOT[Z(p )—1],
(29)

where\; is the thermal de Broglie wavelength of spedies
According to Hamad’s approximatiai28),

a"(p)
- _ N
KT 1+§i: X In(piA})
XinUidj aSEre( 7Xij)
7 (oDX; kT

+ (30
whereagﬁre(y) is the excess Helmholtz free energy per par-
ticle of the pure fluid.

IV. OUR PROPOSAL

In 1999 we proposed an EOS for a multicomponent mix-
ture of additive hard spheres iml dimension&’ which was
based on an ansatz related to the contact values of the radial
distribution functions. One may express this ansatz as
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SYH 1 1 a*"(p) q
9i " (p)= 1= | Gpud M~ | @Y g =1t 2 xiIn(pA) —In(1- )
where ><bs<0d>§2—b2§eur apurd 7) B3—(0%B,
(bz—b,)(a%)? keT  (b3—by)(c?)?
d—1\
zij=<0<71>>g—m (additive spheres (32 (36)
i

In principle, to computeB;, one should use the exact
is a parameter that is independent of density but depends dipefficientscy;; . However, since to the best of our knowl-
the composition and diameters of the mixture. edge they are only known fat<3 and we want our pro-

The idea is now to generalize the ansatz given by EqPosal to be explicit for anyl, we can make use of our ap-
(31) to the nonadditive case. As the simplest possible extenProximation for them, Eq(11). Therefore, with this proviso
sion, we keep the structure of E(B1) but determine the We get
parameters;; as to reproduce Eq2) to first order in the

density. The result is readily found to be z--=(%— ) 1(2kxko'cki;ij B ) 2kaUE;ijl‘Ti;ik‘Tj;ik
'\ by ) (0% '
( b3 1) -t 2kxkckﬂj 1) (33) (37)
il b, (o) In the additive casedy.;j— oy), Eqg. (37) reduces to Eq.
(32). Note that both fod=1 andd=3 there is no difference
The following relationship betweez); andX;; exists: in the resulting compressibility factor because Eq) yields
the exact result. On the other hand, for oteruse of Eq.
bsXi; —b, b, (37) also leads to Eq(35), but with an approximate rather
4= he—b, Xij=z+ b_g(l_zij)- (34 than the exact value for the third virial coefficient,

The ansatZ31) supplemented by Eq33) is, by con-
struction, accurate for densities low enough as to justify the; RESULTS
linear approximationg;;~1+uv4p=XyCxjj - On the other
hand, the limitations of this truncated expansion for moder- ~ Once we have derived our approximation for the EOS of
ate and large densities are compensated by the ugﬁngf the mixture, Eq.(35), it is interesting_to examine its pgrfor-
Of course,gi; = gpure in the special case where all the diam- mance. And since Hamad has carried _out a comparison be-
eters are identical = o), since thenc,,;=(bs/by)c®  tween his proposal, Eq28), and previous one¥; ™"’
andz;=1. All these comments apply to Hamad’s prescrip-finding in general that it performs better, we will concentrate
tion (27) as well. On the other hand, E(B1) is consistent, here on comparing the results obtained either through Ha-
but Eq.(27) is not, with the case of an additive mixture in mad's prescription or through ouf@ this regard see also
which one of the species, say 1, is made of point particles, Appendix B. Such comparison seems in order in view of the

so thatg,;=(1—7) . fact that both proposals share many aspects such as the con-
When Egs.(31) and (33) are inserted into Eq(l) one  struction of the EOS via the contact values of the radial
gets distribution functions, its dependence on the EOS of the one-

component fluidmore specifically orZ,,e, which remains
to be chosen freejy and the use of the third virial coeffi-
cients. Also, although Hamad’s proposal is specific dor
=2 andd=3 and we have extended it to arbitragy they
53_ <ad)§2 maintain the same form in every dimensionality. Specifically,
[ Zpwd 1)~ L7 a2 (350 we will focus on the fourth and higher virial coefficients and
(b3—Db2)(0) on the compressibility factor. To our knowledge, and with the
exception of the one-dimensional case, in which they are
Equation(35) is the main result of this paper. As in EQ. known exactly, values of the former are rather sc¥r&and
(28), the EOS of the mixture is expressed in terms of that Ofefer exclusively to nonadditive hard spherels=3).
the one-component system. On the other hand, the densit&/ _ - o
dependence in the EOS5) is simpler: Z(p)—1 is ex- . Fourth and higher virial coefficients
pressed as a linear combination pf(1—») and Zy,d 7) From Eq.(35) it is easy to get an approximate expres-
—1, with coefficients such that the second and third virialsjon for thenth virial coefficient:
coefficients are reproduced. Again, E85) is accurate for
sufficiently low densities, while the limitations of the trun- —gyy_ Pn— D2
cated expansion for moderate and large densities are com- By :bg_bz
pensated by the use of the EOS of the pure fluid.
In the approximatior§35), the Helmholtz free energy per In particular, the composition independent fourth virial coef-
particle is ficients are given by

n b3<0d>§2_b2§3
1-7 (b3—by)(c%?

ZSYH(p) =1+

b,

(Ud>n_3§3_ b3

—-b o
—, (0" B2 (39
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=} bs—b, d5 d5. dg. dg.
51?24(b3_b2)(0'i Bike+ 0y Bike + oy Bije + 0¢Bijk)
bs—Dbs d_dn d_dn d_dm

—_ d + I .
6(bs—Db,) (o g Bket o O'kij g o-ijk

d d5 , d_dg . .d_dz
+ o0 Bit+ojo B+ oo Bj). (39

In the case of Hamad’s approximation, Eg8), one has

SH_ dyn—2 dyn-2
By =by(c%)" |§1: XiXjoi X °, (40)
b,b3
oH _4¥2. 4 d d
ik = gp2 (7 Ck;ij Ce;ij + TikCi;ikCeiik T T7¢Cii ¢ Crsie
3

d d d
+ 05kCi:jkCoe:jk T 0j¢CisjeChije T OeCirkeCike) -
(41

In the special case of binary and symmetfio;=o0>
=0,01,=c(1+A)] three-dimensional mixtures, Eq&9)
and(41) yield

B o9=b,(1+4A+ LA+ 1A9)
— A(10+16A+ 2A2), w2
B o%=b,(1+ LA+ 2A%+ 28A3)
— SA(15+24A +11A2), w3
Bl /09=hy(1+ SA+ S2A%+ 5HA3), (44)
Bliod 00 =by(1+ 64+ HEA+ SEASH S2A!
PR LD, (45)

where b,=18.364 77 and we have assumed that — 3.

The two coefficientsB;,;, and B1y», have been evaluated
numerically by Saijeet al®? Figure 3 compares the numeri-

cal data forB;415, and B;1,, with the approximationg42)—
(45). We observe that Hamad's approximation By, gives

an excellent agreement, while ours is only qualitatively cor-

rect. On the other hand, f(§1122 both approximations are

inaccurate for large positive nonadditivities. In any case,

§SYH

TIHis slightly better tharBM,,, for 0<A=<0.3.

Figure 4 shows, also for a symmetric binary mixture of

nonadditive hard sphereB, /B3 as a function of the mole
fractionx; for A=—0.3 andA=0.3, and the corresponding

simulation results. We observe that Hamad’s approximation

is better forA=—0.3, while ours is better foA =0.3.
As far as we know, the only report of virial coefficients

beyond the third for the case of an asymmetric nonadditive

hard-sphere mixture is due to Vlasov and Mastérshey

have computed up to the sixth virial coefficient for a binary
mixture of nonadditive hard spheres of size ratio 0.1 and a

positive nonadditivityA=0.1, and up to the seventh virial
coefficient for a binaryadditive hard-sphere mixture of the
same size ratio. In Fig. 5 we present a comparison of th

J. Chem. Phys. 122, 024514 (2005)

9
31122/0

-10 | i
-
_20 1 ! 1 1 ! 1 1
04 -02 00 02 04 06 08 10
A
FIG. 3. Plots of Byj/c%=(/6)Bn/o® and  Bijylo?®

= (7/6)3B1120/0® VS A for a symmetric three-dimensional binary mixture.
Circles, exact valuefRef. 82; solid lines, Eqs(42) and(43) (present ap-
proach; dashed lines, Eq$44) and (45) (Hamad'’s resujt

ture of size ratioo,/0;=0.1 and two nonadditivities
=0, 0.1) given by Vlasov and Masté&fsvith the results that
follow from Hamad'’s prescription and from our proposal.
The overall superiority of our proposal in this case is appar-
ent and more noticeable for the positive nonadditivity and

0.15 . . . .
0.0 0.2

1.0

EIG. 4. Plot of B4/B§ vs x, for a symmetric three-dimensional binary

mixture with A=—0.3 andA=0.3. Solid lines, exact valueRef. 82;

resul_ts_ for the comlposition dep_endence of the rgtio of \_/irialdashed line, Eq(38) (present approaghdotted line, Eq.(40) (Hamad's
coefficientsB,/Bj~ " (n=4,5,6) in the case of a binary mix- resul.
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10— . . . and sete—0 at the end of the calculations. In that case,
replacement into Eq.35) gives
08}
7 1 — 7 — _
. Z5"M(p)=1+ —— +—3|(0)B,+ ——(B3—(0)B }
@. 06 | (p) 1—77(0)2 <0'> 2 1_7]( 3 <0'> 2)
Q’ (47)
041 which, for a binary mixture, becomes
02} - 1 O'l+ (0] n
Z5M(p)= ——| 1+x,x ——A) (48)

Note that Eq.48) is equivalent to a series expansion of the

0s | exact solution in powers af truncated in the linear term. In

: fact, in view of Eqgs.(A5)—(A7), it is exact up to order
w06 | O(A?). Also, it is important to point out that Eqé47) and
g (48) hold regardless of the value ef so the limite—0 is
0.4t not needed.
As for Hamad’s approximation, we would have
02}
Xp=14+ 520 A X=1 (49)
11 <0'> 25 12 '
and the similar result foK,, obtained fromX; in Eq. (49)
08 with the usual replacement<12. After some algebra, one
- Y finds
=" 0.6 F
cha : H 1 0'1+ (0]
/| —_ —+ [ —
04l Z 1= 1+X1X5 o)
02}
. Xio1l{o
0.0 : : : : X 1+7 - (17 <+(>r
00 02 0.4X 06 08 1.0 1—p 1+ 1 ZXZA)
) (o)
FIG. 5. Plot of B,/B)* vs x; (n=4,5,6) for an asymmetric three- Xo0 [{a)
dimensional binary mixture witlr, /0;=0.1 andA=0 (thin lineg and A + n Al. (50)
—0.1(thick lines. Solid lines, exact valueiRef. 83; dashed lines, Eq38) 1 gl 1+ 22725 A
(present approaghdotted lines, Eq(40) (Hamad’s result <0'> 1

We remark that Eq(50) is exact to first order im\.

when n increases. Nevertheless, the negative values of the A comparison of the exact cc’JmpressipiIity' factor with
sixth virial coefficient for the small region around=0 that ~ ©U" @pproximatior(48) and Hamad's approximatiofs0) in-

are obtained with the simulation, not shown in the figure, arélicates that Eq48), being far simpler than E¢50), is better
not captured by either proposal. than the latter forA >0, both approaches being comparably

good forA<O0. This is illustrated in Fig. 6, where we display

the exac as a function of the nonadditivity parameter for a

symmetric @,/o,=1) and an asymmetrico(,/o,=2) bi-
Apart from the virial coefficients, the most important nary mixture of the same packing fractian=0.5, and mole

tests concern the compressibility factor itself. In view of thefractionx;=0.25, together with the two theoretical approxi-

big number of parameters in these systems, one has to makeations.

a judicious choice such that the main features of the results

may be illustrated. In this section we provide a representativey pisis (d=2)

set of data for different dimensionalities that will hopefully

B. Compressibility factor

cater for the above requirement. It seems natural to begin with the case of symmetric
binary mixtures, i.e., mixtures whege,= o, and to inves-
1. Rods (d=1) tigate the effect of nonadditivity. Representative results in

In the cased=1, one hasZ,,{y)=1/(1-y) and b, this respect for an equimolar symmetric binary mixture of
=1 for all n, so that our proposaB5) is ill defined. To save npnadditive hard disks are displayed in.the upper panel of
that singularity and with the aim of preserving the scalingFi9- 7, where we have plotted as a function of the nonad-

property of the exact solutiofsee Appendix A let us write ditivity parameterA_ ata packing fractionj=0.4. A simil_ar
plot of Z versusA is presented in the lower panel of Fig. 7,

but in this case for an equimolar asymmetric mixture

1 y \?
ZpurdY) = * E( ) » be=1te, (46) (0,/0,=3) at the same packing fractiop=0.4.

1-y \1-y
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FIG. 6. Compressibility factor as a function ofA for a symmetric mixture . o
of nonadditive hard rods witk, =0.25 at a packing fractiop=0.5 (upper ~ F!G- 7. Plot of the compressibility factor vs the nonadditivity paraméter
pane} and for an asymmetric mixture with,=0.25 ando,/o,=2 at 7 for an equimolar symmetric binary mixture of nonadditive hard disks at a

=0.5 (lower panel. Solid lines, exact; dashed lines, E48) (present ap-  Packing fraction=0.4 (upper pansland for an equimolar asymmetric

proach: dotted lines, Eq(50) (Hamad’s result mixture with o,/0,=3 at n=0.4 (_Iower panel. The solid lines are our
proposal, Eq(35), and the dashed lines are Hamad'’s proposal(ZR). The
circles are results from molecular dynamics simulatiRef. 64.

The size ratio dependence of the compressibility factor is
displayed in Figs. 8 and 9 for various combinations of mole  In Fig. 11 we present a plot & versusA, but in this
fractionx, , nonadditivity paramete&, and packing fraction case for an equimolar asymmetric nonadditive hard-sphere
7. mixture with o, /0y =3 at the packing fractiom;=0.5. Fi-
Although in the paper by Al-Naafat al® they evalu- nally, Fig. 12 is a plot of as a function of the size ratio for
atedZ" by taking forZ,,the one that follows from our own different values o, A, and density. Once more these fig-
simple EOS for the hard-disk fluftf,in Figs. 7-9 we have ures indicate that our proposal in the case f3 is superior
considered for both proposals perhaps the most accurate Hamad’s, save for negative nonadditivity.
EOS available nowadays, namely, the one due to Lutfing,

1+y2%/8 e VI. CONCLUDING REMARKS

- . 51
(1-y)* 641-y)* ®1) In this paper we have introduced a new proposal for the

EOS of a multicomponent mixture af-dimensional nonad-
ditive hard spheres. This proposal is an immediate generali-

ZLuding(y) _

pure

Once again we find that the trend observeddinl is

also present in the cagik=2, namely, that in general our

proposal performs better than Hamad's, except for negativgation of the onérather accuraewe developed for additive
A. It is worth recalling here that Hamad's EOS includes theN@rd spheres to which it immediately reduces if the nonad-
exact third virial coefficient, Eqs.(23)—(25), while ours ditivity parameters are set equal to zero. A general prescrip-

makes use of the approximation embodied by ©6). ti_o_n for th_e _d-dimensional (_:c_)mposition-indepen_dent third
virial coefficients of nonadditive hard-sphere mixtures has

also been introduced. It is exact for=1 andd=3 and does
3. Spheres (d =3) a very good job also fod= 2. In the absence of exact results

We proceed here as in the casedef2. Figure 10 shows ©F simulation data for other dimensionalities, its merits in
Z as a function of for a symmetric binary mixture of non- thiS respect remain to be evaluated. . _
additive hard spheres at the packing fractiop= /30 Our proposal for the EOS involves providirigensible
~0.105 and fox,=0.1 andx,=0.5. Here, as in all the rest approximations for the contact values of the radial distribu-
of the calculations for hard spherez, i,s the one corre- tion functions that fulfill a few simple requirements. On the

sponding to the Carnahan—Starling—Kolé&sK) EOS8® one hand, they reduce to the pure component vgljg in
the appropriate limit and also comply with the limit in which

one of the species is made of point particles that do not
occupy volume. On the other hand, they yield the exgcto

C ly+y?-2y3(1+y)/3
- (1-y)°

CSK,
Zpure )

(52
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4.4 T T T 4.0 T T T

x1=0.25
3.8} 4

FIG. 8. Plot of the compressibility factor vs the size rattg/o; for an 36l
equimolar binary mixture of nonadditive hard disks with=—0.2 at » ' .
=0.6 (upper pangl and for two binary additive hard-disk mixtures\ (

=0) at=0.6 (lower panel. The solid lines are our proposal, E§5), and N 3.4 )
the dashed lines are Hamad'’s proposal, @8). The symbols are results .
from molecular dynamics simulatioriRef. 64. 32+ .
L]
3.0F e
first order in the density. Operationally, our proposed EOS 1 2 3 4
for the nonadditive mixturé¢cf. Eq. (35)] is given explicitly /o,

in terms of the pure component EOS, and the second and o ) _
third virial coefficients of the mixture. The former feature is F'G: 9- Plot of the compressibility factor vs the size ratip/c, for three

. . . 47678 binary mixtures of nonadditive hard disks with=0.2 at =0.4 andx,
shared with other proposals in the literatfité®"*"®In any  Z "5 (uper panal x,—0.5 (middle panel, andx, 0.75 (lower panel.
case, we find that the present EOS does a good job also irhe solid lines are our proposal, E§5), and the dashed lines are Hamad's
the nonadditive situation and represents a reasonable corproposal, Eq(28). The circles are results from molecular dynamics simula-
promise between simplicity and accuracy. In comparisorfons (Ref. 64.
with Hamad'’s approach, which is also simple and reasonably
accurate and which we have generalized here to arbitrary
dimensionality, it has the advantage of being able to deal
with asymmetric mixtures where the former faces greater
difficulties.

Because the full assessment of our proposal involves so
many facets, there are of course many issues that we have
not addressed. We have only attempted to illustrate some of
the consequences of employing our approximate EOS. The
results in the preceding section illustrate a trend that we have
observed with other values of the parameters, namely, that in
general Hamad's proposal does a better job for negative non-
additivities(especially as the density is increasadhile ours
should be preferred in the case of positive nonadditivities, at 1.2 . L . . .
least ford=1, d=2, andd=3. Nevertheless, one can see 06 04 02 0;) 02 04 06
that the performance of our EOS is reasonably good in
highly asymmetric mixtures, even for negative So in FIG. 10. Plot pf the compressibilily factor_\_/s the nonadditivity paramater
some sense, rather than strictly competing, our approach arg] @ Symmetric binary mixture of nonadditive hard spheregatr/30 and

. ) two different compositions. The solid lines are our proposal, (B6), and
Hamad'’s are complementary. It is also worth noting that hergne gashed lines are Hamad's proposal, @§). The symbols are results
we have chosen to take our original recipe of the additiverom Monte Carlo simulationgRefs. 59 and 60
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FIG. 11. Plot of the compressibility factor vs the nonadditivity paramater
for an equimolar asymmetric binary mixture of nonadditive hard sphere

with size ratioo, /o1=3 at 7=0.5. The solid line is our proposal, E®5),
and the dashed line is Hamad's proposal, &8). The circles are results
from Monte Carlo simulation$Ref. 63.

FIG. 12. Plot of the compressibility factor vs the size ratig/ o4 for binary
mixtures of nonadditive hard spheres with=0.5, A= —0.05, »=0.5 (up-
per panel, x;=0.25,0.5, A=0.2, »=0.2 (middle panel, and x;
=0.25,0.5,A=0.5, =0.075 (lower pane). The solid lines are our pro-
posal, Eq.(35), and the dashed lines are Hamad’s proposal,(EZ§. The
symbols are results from Monte Carlo simulatigiRef. 63.

J. Chem. Phys. 122, 024514 (2005)

casé& for simplicity, but we could have as well considered
the more refined ones that we introduced I&teat the ex-
pense of more complicated final expressions. Also, the
choice ofZ, is free and the results of course depend on
that choice. Nevertheless, provid&g,. is reasonably accu-
rate, the qualitative trends should not be altered by different
choices and this is actually the case. For instance, in the
analysis of nonadditive hard disks we took 4y, the one
corresponding to Luding’s EO8.With minor numerical dif-
ferences, very similar results are obtained if Henderson’s
equatiofi’ or our EOS* which are both accurate, are used
instead. Analogously, in the three-dimensional case the re-
sults are practically the same if the Carnahan-Starling$0S

ds used instead of Eq52).

We are fully aware that interesting features such as the
demixing transition in the case of positive nonadditivity
(both for symmetric and asymmetric mixtuygemain to be
dealt with. We expect to examine some of these in the future.
In any event, irrespective of the illustrative calculations that
we have presented in this paper, we have attempted to in-
clude a rather comprehensive account of previous work on
the subject which will hopefully serve to provide some per-
spective and be useful to other researchers.
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APPENDIX A: EXACT SOLUTION
IN THE ONE-DIMENSIONAL BINARY MIXTURE CASE

In the one-dimensional cased€1) with nearest-
neighbor interactions [which implies that 2,
=max(oq,05)], the thermodynamic and structural properties
of the binary mixture are exactly knowr:°-8The EOS re-
lating the density to the pressure (in units ofkgT) and to
the diametersr;, o,, ando,=3(o,+ 0,)(1+A) is given
by

1 1 J1+4xx(e?*P-1)—1
;—B-i-a ezap_l +<0’>, (Al)
where a=0,— (011 0)2= (01t 0,)AI2=—min(o4/2,

o,/2).Note that if p—o then »—1 for >0, while »
—[1-2(lal/{a))min(x,,%)] ! for a<O0.
Equation(Al) can alternatively be written as

P pa
where®(x,,w) is the solution to
1—V1+4xx(e?"?—1
dl=1+w YL+ Axaxol ) (A3)

eZW(D -1
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or, equivalently, separation into two distinct phases A and B, the pressure and
1 the chemical potentials should be equal in both phases. The
2XXoW—(1—=d ) N .
(A4) pressure condition is equivalent to
(1-®~1)?

e —1=2w
A A LAY B B B

In principle, the compressibility factor is a function of WEP (X3, W) =WER (X, WE). (ALD)

four parameters: the number densitythe mole fractiork,,

. . . The conditions on the chemical potentials yield
the size ratioo,/0¢, and the nonadditivity parameter. P y

However, the scaling relatiofA2) shows that there are only A xB
two independent parameters: the mole fractignand the R 1A = o 1B , (A12)
scaled parametav=pa/(1— 7). More specifically{cf. Eq. POG,wH -1 D(xg,we)—1
(A2)], . .
1-xj 1-x; (A13)
1 pa A A = B ., B :
= LA O(x7,WwH—=1 PD(x;,w°)—1
Z(p) 1_77<D(x1,1_77). (A5) 1 (x1
Thus, ®(x4,w) measures the compressibility factor of the These two equations imply
nonadditive mixture, relative to that of an additive mixture A B (A14)
with the same packing fraction. X=X
The expansion of the scaling functidn(x,,w) in pow-
ors ofw is ' D (x) Wh) =D (x7,WB). (A15)

o0

Given the nonmonotonic behavior @f as a function ofw,
D (xq,W)= ZO Dp(x)w", (AB)  Eq.(A15) has solutions wittw”#w®. However, the combi-
"= nation of Eqs(A11) and(A15) means that

where the first few terms are
wA=w8, (A16)
(Dozl, CI)]_:ZXle,

and so the only solution is the trivial one.

(1)2:0, @3: _4X§X§, (A7)
by=- %Xixé bs=— %Xixg(l—lexz).

2. Distribution functions at contact
In the limit of very small nonadditivity, we can make the

linear approximationb (x; ,w)~1+ 2x;x,w. This is a good
approximation in the range 0.4<w=0.4. The asymptotic
behaviors ofP (x;,w) are easily derived from Eq§A3) and

From Lebowitz and Zomick’s paperand after some
algebra, one can get the contact values

1 2xywd—(Pd-1)

(A4). In the limit w—o (with «>0), we simply have O11= . , (A17)
®(x;,w)—1, while in the limit w— —o, the result is 1-7 2x5W
®(x,,W)— —K(x;)w™ 1, whereK(x,) is the solution to
1 2x,wdh—(d—-1)
4x,%K =1+ J1—4x;%x,(1— e~ %K), (A8) 920= 7 . 22w : (A18)
Note also that®(x;,w) is a nonmonotonic function ofv
which presents a maximum for a certain valug(x;)>0. 012= V09110, . (A19)
From Eqgs.(A5)—(A7) it follows that the(exac) second _ _
and third virial coefficients can be written as Using the expansiofA6), one has
B,=(0)+2XXoa, Bz=(o)({a)+4X Xo0). A9
2=(0) 1X2 3=(0)({0) 1%2) (A9) gll:l_ [1+2X2W+2X§W2+O(W3)], (A20)
Further, the fugacity,=e*1 (whereu is the chemical po- Y
tential of species 1, again in units &ET) is given by the
following expression: 922:1_ n[1+2xlw+2xfwz+0(w3)], (A21)
—nyperip[ 1— 2 A10
Z1=Mipe - 2w )’ (AL0) 1
O1o=——[1—2XX,W?+ O(W?)]. (A22)
and a similar expression fa. 1-7

1. Absence of phase separation
) APPENDIX B: SOME SPECIAL LIMITS
Given the values ofr1, o,, ando, (or ), the thermo-

dynamic state of the mixture is characterized by the pair It is interesting to examine the performance of Hamad's
(p1,p2) or, equivalently, by x; ,w=pa/(1—75)]. Here we approximation, Eqs(27) and(28), and of our proposal, Egs.
will adopt the latter viewpoint. If there would exist phase (31) and(35), in the following special limits.
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1. 01,=0 Both approximations differ irg;4(p) andg,,(p), but these
contact values do not contribute #(p) in the WR limit.

In the limit of extreme negative nonadditivityr{,=0 or o
g v, The result is in the two cases

A=-1), one hasr,=0,=0, so that Eq(13) yields

Z(p)=1+2%x,7', B12
_% § _% ’ (p) 1%27 ( )
C1;11= b, 71’ C2;22= b, 72’ which is the mean-field result.
(B1) We note that in the one-dimensional case the exact result
C1;12= C1;20= C2;11= C2;15= 0. that follows when setting;=0,=0, ' =pa in Eq. (A5) is
The above expressions are exact in that limit. Hamad’s pro- Z(p)=®(xy,7') (d=1). (B13)
posal(27) becomes then
X 09 X,09 3. Asakura-Oosawa limit

Xq11= , Xoo= . X1o=0, B2 L. . .
1= (o9 227 (g9 12 B2) The Asakura-Oosawa limit consists of setting=0 and

H, o\ H, o\ Ho o\ o1,=01/2+R, whereR represents the radius of gyration. In
gll(P)_gpur(-.( 71), gzz(P)_gpure( 72), glz(P)_g-BaS) that casef,= o, + 2R and 5,= 2R, so that Eq(13) gives
-1

- d; ; ; ; ; b b
wheren;=vypX;o; is the partial packing fraction of species Cl;n:b_zacli’ Cz;n:(ZR)dJr 8 o1 (2R)9 L,

i. Equation(B3) is the exact result, reflecting the fact that in b,
the limit o1,=0 the mixture is actually made of two mutu- d

. . . Cq.00= +2R)", Cy.9=0, B14
ally independent one-component fluids. On the other hand, in 122 (01+2R) 2;22 (B14)

our proposal we have 4 (bs 4Ra‘l’
d d Cl;12:0-1+ b—_l ﬁ, 02;1220.
_ b3X101— b2<0’ > _ b2 B4 2 0-1+
= (bs—by) (%) 21277 T, B4 From Eq.(B14), it follows that
1 b3x,09 X, b, (ZR)“‘1<2R by )
SYH, \_ Z=1+—= —— —+——1], B15
911 (P) 1_77 (b3—b2)<0'd> 1 X1 bg—bz g1 (o] b2 ( )
ngla'?__ b2<0'd> b2 ZR)d }
Zyp= 1+ —| -1}, B16
+gpure(77 (b3_b2)<0' > ] (BS) 22 b3_b2 o ( )
1 b b 4R/ oy
SYH, \_ 3 2 e
ng (p)_ 1— 7 b3_b2 gpure( 77) b3_b21 (BG) Z12 1+ 2R/0.1 (817)

plus the equivalent expressions obtained by the exchandeurther, in this Iimit(ad)=xla‘1’, §2=2d‘1x1[xla(1’+2(1
12, Eq_uations{BS) and(B6) are only exact to first order in —x1)(o1/2+R)9] and B; may be computed from they;
the density. given in Eq.(B14). Therefore, upon substitution into Eq.
(35), one would get the EOS for the Asakura-Oosawa limit.
] ) o Since the resulting expression is not very illuminating, it will
2. Widom-Rowlinson limit be omitted. Similarly, with the substitution of Eqd315)—
The WR limit (o;=0,—0) represents an extreme case (B17) into Eq. (31) the contact values of the radial distribu-
of positive nonadditivity A —). The coefficients,.;; are tion functions(which will be also omitted follow. The cor-
_ _ B B B _ d responding results for this limit in Hamad’s proposal are
€111~ C1112= €215~ C2122= 0, Cui20= Co;11=(20719) . readily derived from Eqs(34) and(B15)—(B17), and subse-
) quent substitution into Eq$27) and(28).
In this WR limit the packing fraction vanishes, so that the In d=1, taking the Asakura-Oosawa limitog=0,a

relevant density parameter g =vdpa‘iz. In Hamad'’s ap- =R) in Eq. (A5) we have the exact result
roximation,
P 1 PR
. bg § § Z(p):mq) Xl,lT (d:l) (518)
(o >X11:2_b3X2fflzv (0)X1=0, (BY)
2 11. Prigogine and S. Lafleur, Bull. Cl. Sci., Acad. R. Beltf), 484 (1954,
H(p)= 2 He oy 40, 497 (1954).
911(p) 9pure( 2b, %27 | 9p)=1. (B9 25 Asakura and F. Oosawa, J. Chem. PBgs1255(1954: J. Polym. Sci.
. . . 33, 183(1958.
Our approximation yields 3R. Kikuchi, J. Chem. Phy23, 2327(1955.
2 d 4P. Ballone, G. Pastore, G. Galli, and D. Gazzillo, Mol. Ph§8, 275
b5X,07, (1986.
d _ d _
(o >le_ 2(bs—by)’ <0' >212—0' (B10) 5D. Gazzillo, G. Pastore, and S. Enzo, J. Phys.: Condens. Mgt@469
3 2 (1989; D. Gazzillo, G. Pastore, and R. Frattiithjd. 2, 3469(1990.
b2 6J. Lebowitz and D. Zomick, J. Chem. Physl, 3335(1971).

SYH, '\ ’ SYH |\ _ ’D. S. Corti and R. K. Bowles, Mol. Phy86, 1623(1999.
=1+ X7, =1 B11 : Y30,
91 (p) 2 2% 912 (p) ( ) 80. Penrose, http://www.ma.hw.ac.ttdliver/hardrods/notes.tex.
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