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Depletion potential in the infinite dilution limit
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The depletion force and depletion potential between two in principle unequal “big” hard spheres
embedded in a multicomponent mixture of “small” hard spheres are computed using the rational
function approximation method for the structural properties of hard-sphere mixtures [S. B. Yuste, A.
Santos, and M. Lopez de Haro, J. Chem. Phys. 108, 3683 (1998)]. The cases of equal solute
particles and of one big particle and a hard planar wall in a background monodisperse hard-sphere
fluid are explicitly analyzed. An improvement over the performance of the Percus—Yevick theory
and good agreement with available simulation results are found. © 2008 American Institute of

Physics. [DOI: 10.1063/1.2841172]

I. INTRODUCTION

Excluded volume interactions in hard-sphere mixtures
are interesting for a number of reasons. For one thing, col-
loidal systems are often modeled as mixtures of dissimilar
hard spheres and, experimentally, it is known that this inter-
action plays an important role in the observed behavior.
Moreover, due only to the existence of a disparate size ratio
between solute and solvent, the (purely entropic) effect on
the solvent mediated interaction forces between solute par-
ticles in a hard-sphere suspension may be quite dramatic.
Take for instance the case of two (not necessarily equal) big
hard spheres immersed in a fluid of small hard spheres.
When the distance between the two big spheres is less than
the diameter of the small spheres, the latter may not get into
the gap. This depletion effect induces an imbalance in the
local pressure leading ultimately to an effective attraction
between the big spheres. A rather similar phenomenon occurs
when, in the presence of say a hard planar wall, one has a
single big hard sphere (solute) in a sea of small hard spheres
(solvent).

The concept of depletion force was first introduced by
Asakura and Oosawa' over 50 years ago in the context of
colloid-polymer mixtures. Ever since, a great number of pa-
pers devoted to depletion interactions involving hard-sphere
mixtures have appeared in the literature. The approaches
have also been varied ranging from experimf:nt,2 density
functional theory,3710 computer simulations,lk17 virial
expansions,18 the Derjaguin approximation,lg’22 or the inte-
gral equation formulation of liquid state theory.7’23_34

Very recently we have addressed the problem of deriving
the density profiles of multicomponent hard-sphere mixtures
near a planar hard wall® using an alternative approach to the
integral equation theory for the structural properties of the
syst<3m.36’37 The main aim of this paper is to complement our
former results with the study of the depletion potential for
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various systems involving hard-sphere mixtures. Specifically
we will deal with the depletion interaction between two dif-
ferent (big) hard spheres immersed in a multicomponent
mixture of (small) hard spheres. A limiting case of this situ-
ation is when the diameter of one of the big spheres becomes
infinite and so this sphere is seen as a hard planar wall both
by the other big sphere and by the multicomponent mixture
of small spheres. It should be emphasized that our approach
represents an improvement over the Percus—Yevick (PY)
theory. In fact, it retains the major asset of the latter, namely
it also yields analytical results in Laplace space. Further, our
approach is technically simple too, so that the improvement
over the PY theory is not achieved at the expense of adding
difficulty to the theoretical development.

The paper is organized as follows. In the next section we
provide a relatively simple derivation of the Asakura—
Oosawa depletion potential by looking at the exact results for
the radial distribution functions of a multicomponent hard-
sphere mixture to first order in density. This is followed in
Sec. III by a summary of the results for the structural prop-
erties of a multicomponent hard-sphere mixture obtained by
using the rational function approximation (RFA) method.**’
This section also includes the limit where two of the species
in the mixture (the solute) are present in vanishing concen-
tration and the special cases where the solute particles have
equal diameters or one is seen as a wall both by the other
solute particle and by the solvent. Section IV presents the
results both of the depletion potential and the depletion
forces for some illustrative cases and compares them with
available computer simulation data.”'>"*'7 We close the pa-
per in Sec. V with a discussion of the results and some con-
cluding remarks.

Il. RADIAL DISTRIBUTION FUNCTIONS TO FIRST
ORDER IN DENSITY: THE ASAKURA-OOSAWA
RESULT

In this section we present a simple derivation of the
Asakura—Oosawa depletion potential] that follows from ex-
act results of the structural properties of multicomponent

© 2008 American Institute of Physics
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hard-sphere mixtures rather than the original geometrical ar-
guments. Let us consider an (N+2)-component hard-sphere
mixture in which the closest distance between a sphere of
species i and a sphere of species j is 0;;. Thus, 0= 0;; can be
considered as the “diameter” of a sphere of species i. The
mixture can be either additive, i.e., 0;;=(0;+0;)/2, or non-
additive, i.e., 0;;# (0;+0;)/2. The number density of the
mixture and the mole fraction of species i will be denoted by
p and x;, respectively. To first order in p, the radial distribu-
tion functions g;;(r) are exactly given by

gi(r) =g0(r) + gl (r) + O(p?), (1)
where
g =0(r-0,), )
Ne2
g(r) = g X8 x(r), (3)

T
gl(jl)k(r) = E[rz +2(0y + oy)r = 3(oy - O'kj)z]

X(O'lk+0'kj—r2®(r 0)O(oy + oy —1). (4)

In Egs. (2) and (4) ®(x) is the Heaviside step function. A
derivation of Eq. (4) can be found in Appendix A.

Now we assume that the mole fractions of species i=N
+1 and i=N+2 (here labeled as i=a and i=b, respectively)
vanish, so that the other species (i=1,2,...,N) constitute the
solvent. In that case, the depletion potential u,,(r) for the
effective interaction between the solute spheres a and b is
given by

Buab(r) =-In gab(r) B (5)

where B=1/kgT, kg being the Boltzmann constant and 7
being the absolute temperature. According to Egs. (1) and
(2), to first order in p (and for r>o,,), one has

Butay(r) = — pgly) (), (6)

so that, taking Egs. (3) and (4) into account,

N
Buta(r) == p=o= D 50+ 7= 1)
Plar =1
X[ +2(04+ 0p)r = 3(0: = 03,:)°]
XO(oyi+ pi—1). ()
If both solute spheres are identical (o,;=0y;, o,,=0,), Eq.
(7) becomes
N
Buaa(d) == E — 0, d)2
X(d +0,+ 40—(11')@(20-(41' — 04— d)v (8)

where we have defined the distance d=r-o,. If, furthermore,
the ai interaction is additive, namely 20,,=0,+0;, then
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N
Bitge(d) =~ 2 (o= d)*(d+30,+20,)0(0;-d).

9)

This result coincides with the Asakura—Oosawa
expression.l’12

We now go back to the case a # b, define z=r-o,, and
assume that the ab and bi interactions are additive. In the

limit o3, — % the sphere b becomes a wall and Eq. (7) reduces

to
-0, )2
-z
2

Bit,,(2) = p—EX<<Tm+

g, — 0o,
><(2z+0u+40'a,-—0',-)(0'm+ 5 —z).
(10)
Again, if, furthermore, the ai interaction is also additive,
N
T
Bita(2) == p—~ 2 xi(0; = 2)*(22+ 30, + 7)O(0; - 2).

61
(11)

This result also coincides with the corresponding Asakura—
Oosawa e:xpression.l’12

Note that the validity of Eq. (7) to first order in p actu-
ally extends to any interaction among the solvent particles,
including the so-called Asakura—Oosawa model (0;=0, o,
>0,/2, 0> 0,/2), i.e., only the solute-solvent (ai and bi)
and solute-solute (ab) interactions need to be those of hard
spheres. We must also point out that Eq. (7), while applying
to first order in density only, is quite general in the following
sense: (i) The solvent may be in general polydisperse, (ii) the
solute-solvent and solute-solute hard-sphere interactions are
not necessarily additive, and (iii) the two solute spheres may
have arbitrary sizes. We remark that, in general, the depletion
potential u,,(r) is not a polynomial function of distance but a
polynomial of degree four divided by the distance between
the centers of spheres a and b. Only in the cases a=b [see
Eq. (8)] and b— wall [see Eq. (10)] does the potential be-
come a polynomial (of degree three).

The results of this section are exact but restricted to a
low-density solvent. In particular, the Asakura—Oosawa po-
tentials turn out to be purely attractive (with a range corre-
sponding to the diameter of the solvent particles) and scale
with the solvent density. Neither of these features remains as
the density is increased. While it would be nice to have some
measure of the error made in using Eq. (9) or Eq. (11) in
actual situations, there is unfortunately no clear-cut way to
estimate such an error. Instead, we note that, according to the
qualitative discussion performed in Ref. 12, the entropic
force grows faster than the bulk density and becomes repul-
sive for distances on the order of half the diameter of the
solvent particles. Hence, in order to account for these and
other finite-density effects on the depletion interaction one
must adopt a different strategy and resort to approximations.
In the next section we present our analytical approach, which
includes the PY approximation as a particular case.
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lll. THE RATIONAL FUNCTION APPROXIMATION
METHOD

In this section we start by recalling the main aspects of
the RFA method for multicomponent hard-sphere mixtures®®
and refer the interested reader to our recent review paper37
and references therein for details.

As in the preceding section, let us consider an
(N+2)-component fluid of hard spheres of diameters o; and
mole fractions x; (i=1, ..., N+2). Now we restrict ourselves
to the additive case, but otherwise the density p is arbitrary.
The packing fraction of the mixture is %= (7/6)p{c>), where

N+2

(0"y= > x;0" (12)
i=1

denotes the nth moment of the size distribution. According to
the RFA,*7 the Laplace transform G;;(s) of rg;(r) is given
by

—O'S

Gils) = Z[L(S) B~ (s)];, (13)

where 0;;=(0;+0;)/2 and L(s) and B(s) are (N+2)X(N
+2) matrices given by

— 700 (1) (2) 2
Ll-j(s)—L,-j +Li’s + Lii's™, (14)
Bij(s)=(1 +as)5ij_Aij(S)9 (15)

Ais) = prlex(09) LY + ¢y (a,5) L)

+ ‘PO(UiS)O'iLij ] (16)
In Eq. (16),
o) = -W(E SA ) (17
m=0

By construction, Eq. (13) complies with the requirement
lim,_..se”*G;;(s) =finite. Further, the coefficients of 5" and s
in the power series expansion of s°G; ;(s) must be 1 and 0,
respectively. This allows us to express L @ and L™ in terms
of L?® and a,

N+2

LE?)=)\+)\’0'j+2)\’a—)\p2 xkO'kL,(j), (18)
k=1
N+2

LEJD =\oy;+ %)"(’i‘rj +(\+ N g)a—3hpo; 2 ka'kL;g),
k=1

(19)
where
2
A=—"1)
-7
(20)
, 61y @
(1-n)*(c)

In principle, L® and « can be chosen arbitrarily without
violating any basic physical condition. In particular, the
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choice L(z)—a 0 gives the PY solution. 839 Since we want
to go beyond this approximation, we will determine the co-
efficients L® and a by taking prescribed values for g, (o)
and the associated thermodynamically consistent (reduced)
isothermal compressibility y. Hence, in our case,

2) =27ao;8,(0y;) (21)

and « is found to be the smallest real root of an algebraic
equation.

Here we will take for g;(o;;) the accurate extended
Carnahan-Starling—Kolafa (eCSK3) appr0x1mat1on35 40

1 L 3n 37 <0’2)00
—7 2(1-9*) o
.\ 772(5 -2+ 2%)(@%)2
200-7° (o) o
LT ﬂ>(@m)3
6(1 - 7])2 <03> O-] '
which is thermodynamically consistent with the (reduced)

isothermal compressibility y derived from Boublik’s equa-
tion of state,41 namely

1 67 (o)(0?)
-7 (1-79)° (o)
. 77227— 8n- 87724+ 4773<aj>z_

3(1-7) ()

In the case where one of the species (say j=N+2) becomes a
wall (i.e., xy,0—0, oy — %), Eq. (22) reduces to

1 35 <ol>

TR
. 772 5- 27l+2772)(<0'2> )2
3(1-7)° (o)

(1+77)(<02> )3
3= 72 (D

gl]( 1])

(22)

1/)(=(

(23)

gH/l(O-Wl)

(24)

A. Infinite dilution of species a and b

Now we assume that the mole fractions of species i=N
+1 and i=N+2 (labeled again as i=a and i=b, respectively)
vanish, i.e., x,—0, x,— 0. In that case, those species do not
contribute to the total packing fraction or to other average
values

(oY — D X0, n=3. (25)
i=1

We assume that this is the case, even if the diameters of the
spheres of species a and b are infinitely larger than those of
the solvent species.

The limits x,— 0, x, — 0 imply that the last two rows of
the (N+2) X (N+2) matrix A defined by Eq. (16) vanish, so
that the (N+2) X (N+2) matrix B defined by Eq. (15) has the
following block structure:
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By By —Ai, —Ay
By, By —Ay —Ay
B= ' ) ) (26)
By, By —Ana —Awp
0 0 l1+as 0
o - 0 0 1+as
Analogously,
B B Cu Cip
(B, B oy Ca Cyp
B By B v Ca Cwp
1 b
0 0
1+ as
1
0 0 0
1+ as
(27)
where
N
Ci= > B A, i=1,....N, (28)
1+ as;5

with a similar expression for Cj,.

Insertion of Eq. (27) into Eq. (13) gives G,,(s), G(s),
Gp(s), Gy(s), and Gp(s) for i=1,...,N, and G;(s) for i, j
=1,...,N. The latter quantities refer to the N-component
mixture solvent and, as expected, are not affected by the
presence of the solute particles a and b. The solute-solvent
correlation functions G(s) are

—0,

N

e ai’

Gu(s)=—=2 LB, i=1,....N. (29)
2ms™ 5

These quantities have been considered elsewhere® in the
wall limit o, — 0. Here we want to focus on the solute-solute
correlations G, (s) in the presence of the N-component bath.
The result can be written as

e—O'abS

N
1 1
Gah(s) = 2 Lab(s) + 2 ez(gi_gh)xGai(s)Aib(s) s
1+ as| 2ms

i=1

(30)

where Egs. (28) and (29) have been used. Equation (30) is
the main result of this section and readily allows us to get
both the depletion potential u,,(r) and the depletion force
F,,(r). They are given by

L7 [Gus)]

Butap(r) = =1n g(r) ==1In (31
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_ duah(r)
BFab(r) - 18 dr
) LIGus) ~ g gusl)] 1
- gab(r) - ‘C_][Gab(s)] V’
(32)

where £7! denotes the inverse Laplace transform operator. In
Egs. (31) and (32) it is understood that r> o, since both the
potential and the force are of course singular in the region
0=r=o0,, We recall that the PY results are recovered by
setting a=0.

When the N-component mixture solvent becomes a pure
fluid (i.e., o;=0y for i=1,...,N), one has L;=L;; and A
=x;A, for i, j=1,...,N, and A;,=x;A, and A;,=xA, for i
=1,...,N, where

A,(5) = plea(on) oL + @y (501 LY)

Im

+ go(ays) o L2,

m=1,a,b. (33)
In that case, Egs. (29) and (30) become
et Ly (s)
G,i(s) = - , 34
a(s) 27s? 1+ as — A (s) (34)
e Loy (s)[1 + as = Ay (s)] + Ly (5)Ap(s)
Gab(s) =

275> (I+as)[1+as—A(s)]
(35)

In what follows we will consider the particular cases in
which the sizes of the two solute spheres are the same or
when one of the solute spheres has an infinite size so that it
is seen as a hard planar wall both by the other solute sphere
and by the solvent species.

1. Case o,=0y

Let us suppose now that the two solute particles are
identical and, for the sake of simplicity, that the solvent is
monodisperse. In that case, Eq. (35) reduces to

™70 Loo()[1 + as — Ay ()] + Ly (5)A,(s)

Gaa(s)= 27752 (1 +as)[1 +as—A1(S)]

. (36)

The second virial coefficient B, and the “stickiness” param-
eter 7! associated with the depletion potential u,,(r) are
evaluated in Appendix B. It is shown there that the depletion
potential predicted by the RFA in the colloidal limit o,/ 0
— is narrower and much deeper than that predicted by the
PY approximation. In fact, the combination of depth and
width represented by the stickiness parameter 7' is diver-
gent in the RFA and finite in the PY.

2. Case opl o,— »

In the limit oj,— ¢ the solute particle b is felt as a wall
by both a solvent particle and by the solute particle a. Before
taking the limit o;,— o, let us introduce the shifted radial
distribution function
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Yab(z) = guh(z + Uah)a = 0. (37)
In Laplace space,
Gup(s) = e 7o, y(s) =T ()], (38)
where
IOE f dze ™y, (2) (39)
0

is the Laplace transform of y,,(z) and I'),(s)=dl,,(s)/ds. In
the wall limit o, — o0, Eq. (38) yields

2
Fwa(s) = lim _egabSGab(s)

op—® O'b

N
2 1
—HﬂJQSLW®+§¢W@hmwﬂ

(40)

where in the last step we have made use of Eq. (30) and have
defined

_ L
L ()= lim 22
op—%® gy
(41)
Ko(o) = tim 2280
op—® O'b
From Egs. (14), (16), (18), (19), and (21) we get
Low(s) = L0+ LW 4 12 & (42)
A (5) = px [ oy(o; s)a’?Lfg) + ¢,(0o; s)o‘szi)
+ golais) il ], (43)
N
Zgg) N - Wa)\pz O-ng](o-wj) (44)
N
_ AN A
Lz('»lv) =5+ 50 7TCV—PO'I'ED X018 (0,7) s (45)
272 i
l_‘fwzz) = Tra’gwi(a-wi)7 (46)

where i=a, 1,...,N in Egs. (44)—(46). The corresponding
expressions for the depletion potential and force are

Buwa(z) =-In 7wa(z) =-1In 'C_l[rwa(s)]’ (47)
o din (D) Y@ L7ET () = Ya(0)]
BF,(2)=- 8 A @) LT 0]

(48)

In the case of a monocomponent solvent (i.e., o;=0,
i=1), one has A;,(s)=x;A,(s) and Eq. (40) becomes
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2 ; ] i ] . ] . | . E
2.0 2.5 3.0 35 4.0 4.5

r/o-1

FIG. 1. (Color online) Depletion force and depletion potential between two
identical (big) hard spheres embedded into a solvent bath of (small) hard
spheres as functions of distance. In this case, =1, R=2, and 7=0.3. Solid
lines: RFA approach; dashed lines: PY result; circles: Simulation data from
Ref. 14.

r ( )_ - aw(s)[l +as—A (S)] +La1(S)A (S)
wald 7Ts2 (I+as)[1+as—A(s)]

(49)
Of course, the same result can be obtained from Eq. (35).

IV. RESULTS

In this section we illustrate the results that one obtains
using our approach by considering some representative

[ . . . .

5.0 5:5 6.0 6.5 7.0 7.5

¥/ o,

FIG. 2. (Color online) Depletion force between two identical (big) hard
spheres embedded into a solvent bath of (small) hard spheres as a function
of distance. In this case, %=1, R=5, and 7=0.116. Solid line: RFA ap-
proach; dashed line: PY result; circles: Simulation data from Ref. 12.
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! s 1 s 1

50 55 6.0 65 7.0

7/ o,

FIG. 3. (Color online) Depletion potential between two identical (big) hard
spheres embedded into a solvent bath of (small) hard spheres as a function
of distance. In this case, X =1, R=5, and results are displayed for three
values of 7. Solid lines: RFA approach; dashed lines: PY results; squares:
Simulation data for 7=0.1 from Refs. 17 (open symbols) and 9 (filled sym-
bols); circles: simulation data for 7=0.2 from Refs. 17 (open symbols) and
9 (filled symbols); triangles: Simulation data for 7=0.3 from Ref. 9.

cases. For simplicity, we will restrict ourselves to a mono-
component solvent so that o;=o0,(i=N). Without loss of
generality we will measure distances in units of o and so the
important parameters will be the solvent packing fraction 7
and the size ratios X = 0,/ o, and R= 0,/ 0. In Figs. 1-5 we
present the curves obtained using both the PY theory and the
RFA approach as well as the corresponding simulation
data >1214.17

As can be seen from the figures, the RFA results cer-
tainly represent an improvement over the PY theory in all
cases for both the depletion force and the depletion potential,
yielding in particular much better values for the well depth in
the depletion potential. Our analysis will begin with the
cases where both solute particles have the same size (2=1),
namely those in Figs. 1-3. The RFA results are clearly supe-
rior to the PY ones in the region o,=r=<o,+ %0'1. For larger
distances, however, the RFA and PY predictions are hardly
distinguishable. When R=2 (see Fig. 1) the oscillations of

[IJ 1 1 1 1

0.0 0.5 1.0 1.5 2.0 2.5

z/ o,

FIG. 4. (Color online) Depletion force between a hard planar wall and a
(big) sphere in a background fluid of (small) hard spheres. In this case, 2
— o, R=5, and results are displayed for two values of 7. Solid lines: RFA
approach; dashed lines: PY result; circles: Simulation data for 7=0.1 from
Ref. 12; squares: Simulation data for 7=0.2 from Ref. 12.
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0.0 0.5 1.0 1.5 2.0 2.5

z/ o,

FIG. 5. (Color online) Depletion force between a hard planar wall and a
(big) sphere in a background fluid of (small) hard spheres. In this case, >
—, R=10, and 7=0.1. Solid line: RFA approach; dashed line: PY result;
circles: Simulation data from Ref. 12.

both the RFA and the PY curves are slightly dephased with
respect to the simulation data. A similar behavior is exhibited
by the density functional theory shown in Fig. 2(a) of Ref.
14. Figure 1 also shows that the depletion force is a much
more stringent quantity than the depletion potential. In par-
ticular, the PY theory predicts a local minimum of F,, (as-
sociated with an inflection point of u,,) at r=0o,+0.20,
while both the RFA and the simulation data present a mono-
tonic increase of F,, in the region o,=r=o0,+0;. If R=5
(Figs. 2 and 3), the performance of the RFA with respect to
the depletion force becomes poorer as illustrated in Fig. 2 for
7=0.116, but the theory is still able to capture even quanti-
tatively all the features of the depletion potential for 7=0.1
and 7=0.2. For »=0.3, paradoxically in contrast to the case
R=2 of Fig. 1, it follows correctly the trend of the oscilla-
tions but otherwise overestimates the barrier height. Al-
though not shown here and most likely related with the pre-
vious deficiency, also for 7=0.3 the force starts to present
features that seem not to occur in the simulations. We will
come back to this point later on in connection with the hard
planar wall limit 3 — oo,

Now we turn to a more stringent situation, namely the
case where the depletion effect takes place between a hard
planar wall and a solute sphere, i.e., 2 —cc. In this instance,
as shown in Figs. 4 and 5, the agreement between the RFA
results and the simulation data is also reasonably good. Par-
ticularly rewarding is the fact that, at least for »=0.1, one
gets a good performance even when R=10 (Fig. 5). Analo-
gously to the cases with X =1, the RFA strongly improves
over the PY results for distances z=< 4310'1 from the wall but
both theories practically coincide for larger distances. Also,
the PY theory predicts a spurious local minimum of the
depletion force near z=%o-1. It should be pointed out that in
the planar wall limit one also starts to get a peculiar behav-
ior, not shown in the figures, for relatively low densities (7
=0.2 if R=10). This behavior, also shared by the PY theory,
has similar features to the ones mentioned in connection with
the poorer performance for some systems having 2=1, that
is, the appearance of spurious local minima in the depletion
forces and of inflection points in the depletion potentials.
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While in the case =1 within the RFA approach they may
have their origin on the decreasing reliability of the contact
values of the radial distribution functions with increasing
size disparity R, when 2, — o the features have to do with the
fact that in the hard planar wall limit the radial distribution
functions both for the PY theory and in the RFA may become
negative around the first minimum,”  which is clearly
unphysical.

V. DISCUSSION

In this paper we have derived the depletion force and
potential between two (in principle different in size) large
spheres whose interaction is mediated by the presence of a
multicomponent hard-sphere mixture (the solvent) composed
of smaller particles. This has been done by using the RFA
approach and the end results turn out to be completely ana-
lytical in Laplace space. One may say that the RFA approach
not only retains the analytical character of the PY theory and
the good performance of this latter at long distances, but it
has some further assets as well. Hence, apart from the elimi-
nation of the thermodynamic consistency problem, it is also
able to correct the main drawbacks in the PY formulation in
connection with the present problem, namely the poor pre-
diction of the short distance behavior and of the well depth in
the depletion potential and the nondivergent character of the
stickiness parameter in the colloidal limit. Since it seems
natural that the most relevant part of the depletion potential
be the one corresponding to short distances, the improvement
over the PY result in this particular region may be considered
as a success of the RFA approach. But the fact that after such
an improvement one can also cater for the (correct) long and
intermediate distance behaviors represents another nice fea-
ture of the approach. It should be clear that, while for sim-
plicity in the illustrative examples we have considered that
the solvent is a monocomponent fluid, our development is far
more general allowing us in principle to examine the same
problem but with the solvent being a polydisperse hard-
sphere mixture.’® As far as we know, no simulation data for
such a system are available and so a comparison in this in-
stance is not possible yet. In general, our expectation that the
RFA produces reasonably accurate results both for the deple-
tion forces and the depletion potential for low and moderate
densities, provided the solute-solvent size ratio R is not too
big, is fulfilled.

We have already pointed out one of the limitations of the
RFA approach (also present in the PY theory), namely the
fact that in extreme conditions it may lead to unphysical
(negative) values for the distribution function v,,(z), which
in turn yield spurious features in the depletion interaction
u,,,(z). One technical point must be mentioned at this stage.
It concerns the choice of contact values for the radial distri-
bution functions of the mixture and the isothermal compress-
ibility. While here we have considered the eCSK3 contact
values [see Eq. (22)] and an isothermal compressibility y
that is thermodynamically consistent [see Eq. (23)], the RFA
approach does not forbid the possibility of other choices. For
instance, for high values of R one could instead take the
simulation results or the ad hoc proposal of Henderson and

J. Chem. Phys. 128, 134507 (2008)

Chan® for the contact value 7,,(0). However, we have
checked that, when using the empirical v,,(0), the region
where v,,,(z) takes negative values does not disappear, al-
though those values become less negative. We would expect,
of course, that the more accurate the contact values of the
radial distribution functions and the isothermal compressibil-
ity we use as an input, the better the performance of our
development. This, however, remains to be assessed.

Finally, we want to point out that in this paper we have
restricted ourselves to the infinite dilution limit of the two
solute particles. This has allowed us to equate the depletion
potential with the potential of mean force. If the concentra-
tion of the solute is increased, this approximation will cease
to be valid. An important asset of the RFA is that it also
yields analytical expressions for the direct correlation func-
tions and the bridge functions of the mixture. These expres-
sions could in principle be used for finite concentrations of
the solute, for instance following the formulation of the
depletion potential made by Castafieda-Priego et al** This
we plan to do in future work.

ACKNOWLEDGMENTS

We want to thank J. G. Malherbe, W. Krauth, E. Allah-
yarov, and H. Lowen for kindly providing us with their simu-
lation data. M. Lépez de Haro acknowledges the partial fi-
nancial support of DGAPA-UNAM under Project No. IN-
110406. This work has been supported by the Ministerio de
Educacién y Ciencia (Spain) through Grant No. FIS2007-
60977 (partially financed by FEDER funds) and by the Junta
de Extremadura through Grant No. GRU07046.

APPENDIX A: DERIVATION OF THE EXACT LOW
DENSITY BEHAVIOR OF g;(r)

In a general mixture, the cavity function corresponding
to the pair ij is defined as y;;(r) = eﬁ"’ij(’)gij(r), where ¢;;(r) is
the interaction potential. To first order in density

Yi(r) =1+ py{(r) + O(p?),

(A1)
SAGEDERTAGE
k
where
k() = f dr’ £y (e = '), (A2)

fij(r)=e7P%i"~1 being the Mayer function. In the case of
hard spheres, f;;(r)=-0(r—0;;), so that

Vi) = V(eg.oy:7). (A3)

gz('};)k(") = V(o 01O (r = 0y). (A4)

where V(R|,R,;r) denotes the intersection volume of two
spheres of radii R; and R, whose centers are a distance r
=R|+R, apart. If r<R,—R, (where, without loss of gener-
ality, we have assumed that R, =R,) the small sphere is en-
tirely contained inside the large one, so that the intersection
volume is just the volume of the small sphere, i.e.,
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V(R,,R,;r)=(4m/3)R;. On the other hand, if >R, —R,, the
intersection volume is the sum of the volumes of two spheri-
cal caps of heights &, and h,, respectively, i.e., V(R,R,;r)
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It remains to obtain i; and A, in terms of Ry, R,, and r. A
simple geometrical construction shows that

h1+h2:Rl+R2—r,

=v(R;;h;)+v(R,;h,), where we have denoted by v(R;h) the (A6)
volume of a spherical cap of height 4 in a sphere of radius R. R% — (R, - h1)2 = R% — (R, - hz)z,
Its expression is L
whose solution is
(Ri+R,—r)(Ry—R, +7)
hl = N
. 2r
v(R:h) = §h2(3R —h). (A5) (A7)
(Ri+R,—r)(R{ =R, +7)
2= .
2r
The final result is then
p
4 4
?RZ’ r< R] - Rz,
V(R|,Ry;1) = § A8
(Ry,Ra31) %(R1 +Ry— [P +2(R, + R)r—3(R, —Ry)*], Ry—Ry<r<R,+R,, (A8)
,
\0, r> Rl + Rz.
Equation (4) follows from Eqs. (A4) and (A8), where it is assumed that o;;= o+ 0y; for all sets {i,/,k}.
[
APPENDIX B: EFFECTIVE STICKINESS OF THE 7
DEPLETION POTENTIAL = ————[12(1 +27) +3(5 + 4n)oy/a,
2(1+2m)
The second virial coefficient associated with the deple- +6(1 = p)(oy/o)? + (1 = p)Xoy/o,) ] (B3)

tion potential u,,(r) is

By,=- Zﬂf drr[e Ptad — 1]
0

= 2?170'2{1 - %J”’ drr’[g..(r) - l]} (B1)

av o,

- 43
From here one can define the stickiness parameter

. 6B, 12 9 o
T =4 - 3=__3_ Gaa(s)_e “ 2 .
o, o, ds s =0

(B2)

Making use of Eq. (36) one gets an explicit expression
of 7! in terms of the packing fraction 7, the size ratio
o,/ oy, the RFA parameter «, and the imposed contact values
84 04), gu1(0,1), and g,;(oy). In the special case of the PY
approximation (a=0), the result is

In this approximation, the stickiness parameter 7! is lower
bounded by

] 67

Tooll = [+27 (B4)

In fact, this lower bound is the value in the colloidal limit
o,/ 01— . Moreover, the PY contact values in the colloidal
limit are

( ) O-(Z 37]
gtlﬂ O-a = b
g 2(1—77)2
1+27n
=—Q7, B5
gal(a-al) (1 _ 77)2 ( )
(o)) = 14+ 92
g1\oy) = (1- 77)2~

In contrast to Eq. (B4), the stickiness parameter pre-
dicted by the RFA (a#0) in the colloidal limit becomes

T;(}H = lz(gl/o-a)a*gau(a-aa) +6 n

1+3a™[1-2g,/(0,)+27ng,(0))] - 6a*28a1(%1)[1 - (1-7gulo,)]
1+29+6a* 71 -2(1-n)gy(oy)] ’

(B6)
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where a*=a/0o;. Equation (B6) implies that, unless
8aaloy) ~ (0,1 0y), the stickiness parameter diverges in the
colloidal limit, i.e.,

Tooti = 12(01/0,) a*g0(0,). (B7)

The behavior g,,(o,) ~ (0,/0;) appears in the PY theory.
However, other theories (like the SPT, the BGHLL, and the
one proposed by us in Ref. 44) assume that g,(c,)
~(o,/0y)% while g, (0,)~(c,/0))® in our recent
proposal® and In g,,(0,) ~ (0,/ ) according to Henderson
and Chan.”> A simple geometrical argument shows that the
divergence of 7! in the colloidal limit is not an artifact of the
RFA. The parameter 7' essentially measures the area (in
units of a'i) below the curve r*[g,,(r)—1] between r=0c, and
r— . For large o,/ 0 the range of g,,(r)—1 is expected to
be of the order of o;. Therefore, the area can be estimated as

_ 1 g
TC(iH ~ _30-2[gaa(0-a) - 1]0'1 -~ _gaa(o-a)s (BS)
o, o,
in agreement with the leading term in Eq. (B6). To refine that
argument, let us define the range & of r[g,,(r)—1] as

fal0) 2 g

r=o’a g[l(l(o-a) O-a

£'== Linlrg,, ()]
r

Taking into account the definition of G,,(s) as the Laplace
transform of rg,,(r), we have

1 9SG
§"1=———lims[w—l] (B10)
Oy s—= O-agaa(o-a)
In the PY approximation, the result is
-7
=g —— B11
&eoll 0'12(1+277) ( )

in the colloidal limit. On the other hand, the RFA yields in
that limit

gal(o-al) ﬁ 3 7

Eeoll = 0
gaa(o-a) o] I- Y
1 3 -!
+—| 1= Ja__ 0 (B12)
a o] 2(1 - ﬂ)gaa(o-a)
If g,, diverges more rapidly than o,/ 0|, we get
éon=a*o=a, (B13)

which is generally much shorter than the PY result. In gen-
eral, we have

—1 gaa(o-a)

Teoll = 121“’ gcoll’ (B 14)

0.0
where u is of the order of 1. In the PY approximation we get
u=1/3(1-7), while u=1 in the RFA.
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