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An improved version of a Krylov-Bogoliubov method that gives the approximate 
solution of the non-linear cubic oscillator i + crx + c3x3 + sf(x, i) = 0 in terms of Jacobi 
elliptic functions is described. Compact general expressions are given for the time deriva- 
tives of the amplitude and phase similar to those obtained by the usual Krylov-Bogoliubov 
method (which gives the approximate solution in terms of circular functions). These 
expressions are especially simple for quasilinear ( cj = 0) and quasi-pure-cubic (c, = 0) 
oscillators. Two types of cubic oscillators have been used as examples: the linear damped 
oscillator f(x, ~2) = i, and the van der Pol oscillator f(x, i) = (a - /Ix’)k The approximate 
solutions of these quasilinear and quasi-pure-cubic oscillators are simple and accurate. 
The influence of the non-linearity on the rate of variation of the amplitude of these two 
types of cubic oscillators was also studied. 

1. INTRODUCTION 

The usual Krylov-Bogoliubov (K-B) method (dating from 1937) is widely used for 
determining approximate solutions to quasi-linear differential equations of the form I 

1+c,x+&f(X,i)=o, (1.1) 

where E: is a small constant coefficient. It is able to give the steady state periodic solution 
and the transient solution of equation (1 .l). As the (generating) solution of equation (1.1) 
with E = 0 (generating equation) is x(t) = A cos (wt - 4) with A and 4 constant, the K-B 
approximate solution is the same but with A and 4 time dependent: x(r) = 
A(t) cos (wt - d(t)) = A cos +. The approximate expressions for the amplitude A(t) and 
phase 4(t) are obtained by solving 

I 
297 

f(A cos JI, -Aa sin 4) sin + d+, 
0 

I 

02=j-(A cos +, -A w sin +) cos 4 d+. (1.2) 

Unfortunately, the basic method is applicable only to weakly non-linear oscillators. 
So, for non-linear oscillators of the form 

1+bi+c,x+Ef(x,k)=O, O<E<< 1, (1.3) 

several extensions of the K-B method have been constructed (see references [l-4]). Many 
other oscillators have the form 

i+F(x)+&f(X,i)=o, O<E<< 1, (1.4) 
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where F(x) is an odd non-quasi-linear force. If F(x) = c,x + c3x3 + O(P) then equation 
(1.4) becomes 

jl+c,xfc,x’+&f(x,1)=0, O<&<< 1. (1.5) 

The generating equation, equation (1.5) with E =O, has solutions (generating solutions) 
in terms of Jacobi elliptic functions. To our knowedge the first papers devoted to solving 
the oscillator class (1.5) with c, > 0 and cj > 0 by methods of Krylov-Bogoliubov type to 
provide approximate solutions in terms of Jacobi elliptic functions were those of Barham 
and Soudack [5-81. Christopher [9] developed a more accurate version, but only for 
oscillators with ~f(x, _+) = .si and c, - (e/2)* > 0 and c3 > 0. Christopher and Brocklehurst 
[lo] then extended this version to equation (1.4) with c, > 0 and cj > 0. Yuste and Bejarano 
in reference [ 1 l] have shown that the Christopher method of reference [9] can be extended 
to oscillators with c, > 0, C~ < 0 and c, < 0, cj > 0, and in reference [12] improved the 
Christopher-Brocklehurst method of reference [lo] and showed that it is also valid for 
c, > 0, cj <O and c, ~0, cj> 0. This last version of the method is precise and not too 
complicated. However, simple expressions for the time derivatives of the variable para- 
meters similar to those obtained by the usual K-B method as in equation (1.2) have not 
yet been obtained. That will be done in the present communication. We will show in 
section 3 that the expressions of the usual K-B method are simply particular cases of 
the method of K-B type presented here (which will be called the EKB method). The 
EKB method is especially simple when cj = 0 (quasilinear oscillators) and when cl = 0 
(quasi-pure-cubic oscillator). For c,=O the present method coincides with the normal 
K-B method that uses circular functions. Simple and accurate solutions are obtained for 
the case c, = 0 in two examples: a cubic oscillator with linear damping f(x, a) = i and a 
van der Pol cubic oscillator f(x, i_) = ((Y - px’)i. 

2. CUBIC OSCILLATOR SOLUTIONS 

In this section we study some properties of the solution of equation (1.4) with E = 0 
(generating equation): that is, of the equation 

jl+c,x+c,x3=o. (2.1) 

Its solution is 

x(t)=Acn(wt-_,m), (2.2) 

with 

wz = c, + c,A* = c,( 1-c v), m = c,A’/[2(c, + c,A*)] = v/[2( 1+ v)], (2.3,2.4) 

where A and 4 are constants determined by the initial conditions, and Y is the nonlinear 
factor v = qA*/c, . We define the oscillator energy by En = i’+ V(x), where the potential 
is V(x) = c,x*+ c,x4/2. The maximum (or minimum) potential is given by V,,, = -c:/2c,. 
It is useful to distinguish four cases: (i) cubic hard oscillator, c, 2 0, c3 2 0 or 0~ m s l/2 
or 0 G Y G ~0; (ii) cubic soft oscillator, c, 30, ~~40, Ens V,,, or m6Oor -1~vsO; (iii) 
cubic soft-hard oscillator with En s 0, c, 6 0, c3 aO,En<OorlGmor-26vs--l;(iv) 
cubic soft-hard oscillator with En 2 0, c ,~O,En~Oor1/2<m~lor~~-2.Thesecases 
are illustrated in Figure 1. 

The period of the solution of equation (2.2) is T = 4K/w with 

K = K(m) for cases (i) and (iv), 

K = (1 - m))“‘K(-m/(1 -m)) for case (ii), 

K = ~m~“‘K(l/m) for case (iii), 

where K(z) is the complete elliptic integral of the first kind. 

(2.7) 
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Figure 1. (a) Hard cubic potential (b) soft cubic potential and (c) soft-hard cubic potential. 

3. THE K-B METHOD USING JACOBI ELLIPTIC FUNCTIONS 

We follow here the presentation of reference [ 121. As usual in the methods of K-B 
type, the form of the trial solution of the equation (1.5) is the same as the form of its 
generating solution. Then the trial solution is given by equation (2.2) but with A, 4, w 
and m now time dependent: 

t 
x(t) = A(t) cn 

(I 
w(s) ds - 4(t), m(t) 

0 > 
= A(r) cn ($(r), m(t)). (3.1) 

Then the task of finding the solution x(r) is transformed into finding four functions 
A(t), w(t), 4(t) and m(t) so that expression (3.1) satisfies equation (1.5). That is, although 
one is free to choose these four functions, one must impose a first obvious constraint: 
constraint 1; equation (3.1) must be a solution of equation (1.5). Three additional 
constraints can be imposed to further restrict the arbitrariness. The following one is usual 
in the K-B method: constraint 2; the time derivative of the trial solution must have the 
same form as the time derivative of the generating solution, 

x = Au cnti = -Ao sn dn. (3.2) 

The notation is fp( (Y, p) = aflap. The other two constraints are similar to the second: the 
relationships between frequency, parameter and amplitude must be the same for the trial 
solution as for the generating solution-see equations (2.3) and (2.4). Therefore 

constraint 3; w’ = c, + c,A’: (3.3) 

constraint 4; m = c,A’/[2( c, + c,A’)]. (3.4) 

Differentiating equation (3.1) with respect to t and using constraint 2 one finds 

A cn-A$ cn,+Ati cn,, =O. (3.5) 

Differentiating expression (3.2), substituting the result into equation (1.5) and using 
constraint 3 and constraint 4 gives 

Aw cn, + A6 cn, - A& cn,, + Awti cn,, + Ef (A cn, Aw cno) = 0. (3.6) 

Taking & from equation (3.5) and putting it into equation (3.6), one finds 

Aw[(cn,)‘-cn cn,,]+cjA(cn,)‘+tiAw[cn, cn,,-cn, cn,,,,]+ef cn,, =O. 

As cn, = -sn dn, cn,, = cn (1 - 2dn2), cn,,, cn,, - cn, cngJ, = -sn4/2 and, from equations 
(3.3) and (3.4), k/w = ti/(l-2m), then equation (3.7) becomes 

(1-2msn2+msn4)(~/A)+(sn2-sn4/2)(3/~)=(~/A~)Jsndn. (3.8) 
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At this point the procedure of the present paper diverges from that of previous papers 
[9-121. We do not apply the averaging principle yet. Instead, from equations (3.3) and 
(3.4) we obtain 

h/w = 2mA/ A, (3.9) 

substitute it into equation (3.8), and find 

A = ( E/w)~( A cn, Aw cnti) sn dn. (3.10a) 

But from equation (3.5) $ = (A cn+ Am cn,)/A cn,, and from equations (3.3) and (3.4) 
rit = 2m(l-2m)&A. Using these relations and the equation (3.10a), one finds 

4 = -(&/Aw)f(Acn, Aw cn,)[cn+2m(l-2m) cn,]. (3.10b) 

So the task of obtaining the solution x(t) of equation (1.5) has been transformed into 
the equivalent one of obtaining the two solutions A(t) and C#J( t) of the system of equations 
(3.10) (the expressions for w and m are obtained by substituting this solution A(r) into 
relations (3.3) and (3.4) of constraints 3 and 4). These equations are usually quite 
complicated. But a comparison of the expressions (3.10) with their counterparts in the 
normal K-B method [13,14] shows them to have the same form. It is at this point that 
we return to the usual procedure in the methods of slowly varying parameters and apply 
the averaging principle. This is, we transform (3.10) to the averaged system (key system): 

where 

A= (.s/~)(f(Acn, Aw cnlL) sn dn), (3.11a) 

&=-(~/Aw)(f(Acn,Awcn,)[cn+2m(l-2m)cn,]), (3.1 lb) 

(. . .&-[“” . . . d$ 

0 

is the operation of averaging over a period. As is well known, the solutions for this 
averaged system are closer to those of the exact system when A and r$ change little in a 
period: i.e., when A and 4 are small (notice that A and C$ are of order E) and the effective 
frequency rj = w - 4 is large. 

When the oscillator is quasilinear, i.e., when c3 = 0 and therefore m = 0 (and 0’ = c,), 
the system (3.11) becomes especially simple, 

I 
2rr 

f( A cos, - Aw sin) sin d$,, 
0 

I 
ozrf(A cos, -Au sin) cos d$, 

(3.12) 

since cn (4, 0) = cos $, sn ($, 0) = sin $, dn ($, 0) = 1 and K(0) = 7r/2. These are the well 
known relations (1.2) of the normal K-B method [13,14] but have been obtained here 
as a particular case of the general expressions (3.11) of the present elliptic method. 

When the equation is quasi-pure-cubic, i.e., when c, =0 and therefore m = l/2 (and 
w2 = c,A2), the system is also simple, 

J 4K 

f( A cn, -Au sn dn) sn dn d$, 
0 

(3.13) 

f(A cn, -Au sn dn) cn d$, 
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with cn=cn (+,1/2), sn=sn($, l/2), dn=dn (4, l/2) and K =K(1/2)= 1.85407.. . . In 
reference [15] we gave a method of slowly varying amplitude and phase for this class of 
quasi-pure-cubic oscillators. But it has the defect that the frequency o was considered 
constant and it was not clear how to determine it. The present method must be considered 
the correct version of the method expounded in [15]. 

In the next two sections we give two illustrative examples. 

4. LINEAR DAMPED CUBIC OSCILLATOR 

The equation is 

Equation (3.11a) is then 

I 
4K 

Ao sn* dn* d+ = -eA(sn* dn2) = -;A, 
0 

(4.1) 

(4.2a) 

where E’= EA( m) and [ 161 

with K 
E=:(l - 

for case 

given by equation (2.7) and E given by E = E(m) for cases (i) and (iv), 
m)“‘E(-m/(l- m)) for case (ii), and E = $r~“~[E(l/m)-((m - l)/m)K(l/m)] 
(iii), where E(z) is the complete elliptic integral of the second kind. In Figure 

2 the function Q(V) = Q(m) is plotted versus the non-linearity factor. Equation (3.11b) 
becomes 

4 = e2m( l -2m)(sn dn cm,). (4.2b) 

In obtaining expression (4.2b) the relation (sn cn dn) = 0 has been used. 
We will now look at the simplest cases: equation (4.1) for c, = 0 and equation (4.1) for 

c3 = 0. These two cases are the simplest because the elliptic parameter does not depend 
on the amplitude. 

4.1. QUASILINEAR OSCILLATOR 

In this oscillator c3 =0 and so m =0 and w*= c, for all amplitudes. Equations (4.2) 
are now &A=- sQ( m = 0) = -6 As Q( m = 0) = l/2, integrating these expressions 
gives the well known result [13] of the normal K-B method: x(t) = 
A0 exp (--d/2) cos (w,t - 40), where A,= A(O), wo= w(O) and do= 4(O). This notation 
will be used in the following. 

Non-linearity factor 

Figure 2. The 0 = (sn’ dn’) function versus the non-linearity factor. 
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4.2. QUASI-PURE-CUBIC OSCILLATOR 

For this oscillator c, = 0 and then m = l/2 and 6~’ = c,A’ for all amplitudes. Equations 
(4.2) are now A/A = -&Q(m = l/2) = -.6 and 4 = 0. Integrating these expressions gives 
$(t) = 9(O) = & and A(t) = A0 exp (---Et). The constants A,, and &, are obtained from 
the initial conditions. As 4(t) = 1; w(s) ds - c$( t), on integrating one finds that the approxi- 
mate solution (3.1) is given by 

x(t)=AOexp(-it)cn[(w,/i)(l-exp(-Et))-&,1/2], 

where E’= s/3 because Q(m = l/2) = l/3. 

(4.3) 

In Figures 3-5 are plotted the approximate solution given by equation (4.3) and the 
numerical solution obtained by using a fourth order Rung-Kutta method. The results are 
very good and, as expected, better for smaller values of E and larger values of the frequency. 

It is not surprising that expression (4.3) is a good approximation, because it is an exact 
solution [ 17,181 of the equation 

~+(2e2/9)x+c3x’+~x=0. (4.4) 

References [17] and [18] give only the case c3 = -2 and in the non-standard form 
-iaK, e-” sn,=_,(K, eea’ + K,), where a = e/3. Observe that if c3 and E are arbitrarily 
large the solution is exact if c, = 2.s2/9, or alternatively c, , c3 arbitrary and E = (9c,/2)“‘. 

1. 

0. 

* 0.’ 

-0.1 

- ,., I 

10 
I , I 

20 30 40 

Time 

1 
1 

Figure 3. Approximate (solid line) and numerical (0) solution of the linear damped cubic oscillator 
f+ 10x3+0.21 = 0 with initial conditions x(O) = 1 and 1(O) = 0. The approximate solution is obtained by using 
formula (4.3). The numerical solution is obtained using a Runge-Kutta method of fourth order. 

- 1.01 I 1 I 1 I 
2.5 5.0 7.5 10.0 

Tim 

Figure 4. Approximate (solid line) and numerical (0) solution of the linear damped pure cubic oscillator 
f + 10x3 +0.51= 0 with x(O) = 1 and x(O) = 0. These solutions are obtained as indicated in the caption to Figure 3. 
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Time 

Figure 5. Approximate (solid line) and numerical (0) solution of the linear damped pure cubic oscillator 
i +x3 + 0.51= 0 with x(0) = 1 and 1(O) = 0. These solutions are obtained as indicated in the caption to Figure 
3. 

Specifically, if E = 0.2 as in Figure 3, the solution is exact for c, = O-08/9 and, as shown, 
it is a very good approximation for c, = 0. Notice that c, is of order e2 in equation (4.4). 

Finally, it is of interest to note that the Emden equation d2y/dt2 + (2/ 5) dy/d& + c,y ” = 0 
for n = 3, with the changes x = e-‘y(e = e-‘), gives d*x/dt’+dx/dt + c3x3 = 0: i.e., our 
methods can also be used to find approximate solutions of the Emden equation for n = 3. 
Of course, these solutions will be better for larger c3. 

4.3. OSCILLATOR (4.1) WITH NON-ZERO C, AND C3. 

For the two cases of sections 4.1 and 4.2 we have obtained simple accurate expressions 
for x(t) because Q(m) did not depend on the amplitude and the integrations were easy. 
But when c, and c3 are non-zero, the integrations are more difficult because Q(m) depends 
on the amplitude in a non-trivial way. However, one can obtain useful information from 
equation (4.2) directly. From equation (4.2a) one sees that the relative amplitude variation 
&A is proportional to Q(V). Then from Figure 1 one can make some deductions about 
this amplitude variation rate: (i) it is smaller for cubic hard oscillators and cubic soft-hard 
oscillators than for linear (V = 0, Q = l/2) oscillators; (ii) only for cubic soft oscillators 
is it larger than for linear oscillators; (iii) for oscillations with Y G -1, i.e., oscillations 
near the bottom of the well of Figure l(c), and for oscillations with V= -2, i.e., for 
oscillations with En = 0 in the well of Figure l(c), it is close to zero; (iv) for oscillations 
with v 3 -1, i.e., for oscillations with an energy near the top of the well of Figure l(b), 
it is very large. These qualitative affirmations can be checked by numerically integrating 
equation (4.1) for the different cases. However a simple quantitative check is also possible 
if Q(m) is quasi-constant in the integration interval [0, r], say Q(m) = (Q), where (Q) is 
a constant. Then an approximate integration of equation (4.2) gives 

A(?) = A,, exp (--2(Q)te/2): (4.5) 

i.e., the amplitude decay has an exponential form with the exponent equal to that 
corresponding to a linear oscillator, e/2, modified by a factor 2(Q) that depends on the 
non-linearity of the oscillations. In Tables l-3 the amplitudes of three example oscillators 
evaluated numerically by means of a fourth order Runge-Kutta method are given. The 
exponential fit to the data of Table 1 gives a curve A(t) = a exp (br) with a = 1.360, 
b = -0.986 x 10e3, and with standard errors in a and b given by a,, = l-7 x 10e4, a,, = 
6.6 x 10e6. The approximate curve given by expression (4.5) is in excellent agreement 
with the above results because Ao= l-360 and --E(Q) = -l-Ox 10P3, where the value 
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TABLE 1 

Oscillation amplitude A(t) of the soft-hard cubic oscillator (En s O)? -x+x3 + 0.01% = 0, 
with initial conditions x(0) = 1.360 and a(O) = 0 

t o*ooo 5.510 10.923 16.252 21.510 26.706 31.845 36.935 41.981 

A(t) 1.360 1.352 1.345 1.338 1.331 1.324 1.317 1.311 I.305 

TABLE 2 

Oscillation amplitude A(t) of the soft-hard cubic oscillator (En 3 O)zZ - x + x’ - 0*0053i- = 0 
with initial conditions x(0) = l-580 and a(O) = 0 

t 0.000 3.809 7.576 11.302 14.988 18.636 22.248 25.823 29.362 32.868 36.340 

A(t) l-580 1.586 1.592 1,598 1.604 1.610 1.616 1.622 l-628 1.634 1.641 

TABLE 3 

Oscillation amplitude A(t) of the soft cubic oscillator 2 +x-x3 +0*001x = 0 with initial 
conditions x(0) = 0.900 and 1(O) = 0 

t 0.000 5.277 10.493 15.652 20.759 25.819 30.835 35.809 40.744 

A(t) 0.900 0.895 0.890 0.885 0.881 0.877 0.872 0.868 0.864 

(0) = 0.10 used was obtained as follows. We evaluate the intermediate non-linearity factor 
V* = [ v(0) + V( 7)]/2, and simply set Q( v*) = (0); as v(t=O)=-l-85, v(t=41*981)= 
-1.70, then Y* = -1.78 and (Q) = Q(-1.78) = O-10. Despite the simplicity of the calcula- 
tion, the results are good. For the data of Table 2 the exponential fit gave a = l-580, 
b = l-033 x 10-3, a, = l-5 x 10e4 and ub = 6.8 x 10P6. As v( t = 0) = -2.50, v( t = 36.34) = 
-2.69, then V* = -2.60, and as (0) = Q( v*) = O-21, one finds for the approximate ampli- 
tude A, = l-580 with -E(Q) = l-05 x 10P3, in good agreement with the exponential fit. For 
the data of Table 3, the exponential fit gave a = 0.900, b = -0.999 x lo-‘, a, = 2.5 x 10m4, 
ob = l-OX 10m5 and the coefficients of expression (4.5) are A0=0*900 and --E(Q) = 
-l-Ox 10e3 because v( t = 0) = -0.81, v( t = 40.799) = -0.75, giving Y* = -0.78 and then 
(0) = Q( v*) = 1.0. The agreement with the numerical fit is again good. 

5. THE VAN DER POL CUBIC OSCILLATOR 

The oscillator is 

jl + c,x + c3x3 = E (Ly - px*)x. (5.1) 

By using equations (3.11) one obtains 

A/A = e[a(sn* dn*)-p(sn’ cn2 dn*)A*] = ~(a” -fiA2) = &(l -A*/Af), (5.2a) 

4 = -( e/Aw)2m( 1 - 2m)[ a(sn dn cn,) - p(cn’ sn dn cn,)A”], (5.2b) 

with [16] 

(sn2cn2dn2)= R=(1/15m*)[m,(m-2)K+2(m2+m,)E]/K, 
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(sn’ dn2) = Q, m, = 1 - m, CG = CYQ, p’ = PR and A:(m) = G/b. The function R(v) is plotted 
in Figure 6. 

Notice that as A = 0 when A2 = A:(A), then for these amplitudes the oscillator (5.1) 
has a limit cycle. 

5.1. QUASILINEAR OSCILLATOR 

In this simple case cX = 0, and then m = 0 a_“d 0’ = c, for all amplitudes. As Q( m = 0) = 
l/2 and R(m = 0) = l/8, one has 6 = a/2, p = p/S and Af =4a/p. Integrating equation 
(5.2b), one finds b(t) = b(O) = &,. Integrating equation (5.2a) one obtains 

A(t) = A,A,, exp (.&t)/{Af + Ai[exp (2&t) - l]}“‘. (5.3) 

The solution (3.1) is then given by x(t) = A(t) cos (coot - &J, where ws = c, and A, and 
C#J~ are obtained from the initial conditions. This is the well known solution given by the 
normal Krylov-Bogoliubov method [ 13,141. 

5.2. QUASI-PURE-CUBIC OSCILLATOR 

In this oscillator c, = 0, and therefore m = l/2 and W’ = c-,A* for all amplitudes. Integrat- 
ing equation (5.2b) one has c$( t) = 4(O) = &. Integrating equation (5.2a), one finds again 
the expression (5.3) for the amplitude but not with G = aQ(m = l/2) = (~/3 and @ = 
/3R(m = l/2) = j3[2(E/K) - 1]/5 = 0*091389@ Then Af = a/j3 = 3*6474a/P. The argu- 
ment of the elliptic function of equation (3.1) is obtained by integrating o(t): 

O(t)= w(s) ds =1 (c,/c$)“* In 
A,, exp (&r)[ 1 + A,/A( r)] 

A,+A, (5.4) 
& 

The approximate solution is given by 

x(r) = A(t) cn W(t) - c%, l/2), (5.5) 
where A(r) is given by equation (5.3) and O(r) by equation (5.4) with & = a/3 and 
A, = 1~9098m. Notice that, from equations (5.3) and (5.4), if E > 0 and r --* 00 one has 

x(r) + A, cn (&Act - &, l/2): (5.6) 
i.e., the motion tends to a limit cycle given by expression (5.6) with amplitude A,, period 
T = 4K( 1/2)/GA,) = 3*8833/G and 4, a constant given by 

9,=(1/~)(c~/~~)“*1n[2A~/(A,+A,)]-~,. 

In Figures 7-9 are plotted the approximate solution given by (5.5) and the fourth order 
Runge-Kutta numerical solution. The results are excellent even for large E. The approxi- 
mate solution is, of course, better for smaller E and larger frequency. 

Non-linearity factor 

Figure 6. The R = (sd cd dn2) function versus the non-linearity factor. 
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Figure 7. Approximate (solid line) and numerical (0) solution of the van der Pol pure cubic oscillator 
I + x3 = 0.3( 1 -x2)$ with initial conditions x(0) = 0.2 and x(O) = 0. The approximate solution is obtained by 
using the formula (5.5). The numerical solution is obtained by using a Runge-Kutta method of fourth order. 
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Figure 8. Approximate (solid line) and numerical (0) solution of the van der Pal pure cubic oscillator 
f + x3 = O.l( 1 -x2)x with x(O) = 4 and 1(O) = 0. These solutions are obtained as indicated in the caption to 
Figure 7. 
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Time 

Figure 9. Approximate (solid line) and numerical (m) solution of the van der Pol pure cubic oscillator 
$+x3 = 0.3(1 -x2)i with x(0) = 4 and 1(O) = 0. These solutions are obtained as indicated in the caption to 
Figure 7. 
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TABLE 4 

Oscillation amplitude for the soft-hard cubic oscillator (En > 0)i -x +x3 = 0+03( 1 -- x2)1 
with x(0) = 1.58 and k(O) =O, A,(t) evaluated by numerical integration, and A,(t) by 

using the approximate formula (5.5) 

f 0.000 3.804 7.558 11.262 14.923 18.541 22.118 25.658 29.162 32.631 36.068 39.475 

,4,,(r) I.580 1.587 1.595 1.602 1.609 1.615 1.622 1.629 1.635 1.641 1.647 1.653 
,4,(t) 1.580 1.588 1.596 1.603 1.611 1.617 1.624 I.630 1.636 1.642 I.648 1.653 

5.3. OSCILLATOR (5.1) WITH NON-ZERO C, AND C3. 

Now integration of the system of equations (5.2) is not easy because a7,/?, (sn dn cn,) 
and (cn’sn dn cn,) are complicated functions of the amplitude. However, valuable 
information about the behaviour of the oscillations can be obtained without carrying out 
these integrations. For example, equation (5.2a) serves (i) to determine whether there 
exist limit cycles or limit points, (ii) to evaluate the amplitude of these limit cycles and 
(iii) to determine the stability of these limit cycles and/or limit point. This task will not 
be carried out in this paper (however, it is of interest to note that the results for the limit 
cycles agree with those obtained in reference [ 191 by using a method of harmonic balance ). 
Instead we will now discuss the goodness of expression (5.3) for evaluating the amplitude 
for cubic oscillators with c, and c3 non-zero. If in the interval of integration [0, T], Q(V) 
and R(V) are quasi-constant, say Q(V) = (0) and R(Y) = (R) with (0) and (R) constants, 
then the integration of equation (5.2a) can be approximated by equation (5.3), where 
a’ = n(Q) and fi = P(R). We have checked this expression by comparing the values of 
the amplitude that it gives with the amplitudes obtained by numerical integration (with 
a fourth order Runge-Kutta method). The constants (Q) and (R) are obtained as in 
section 4: (Q) = Q( v*) and (R) = R( v*). F or obtaining A,(t) in Table 4 we took u* = - 2.62 
and thus used (0) = Q(-2.62) = 0.21 and (R) = R(-2.62) = 0.065 in the approximate 
formula (5.6). In Table, V* = -1.78 and thus (Q)- 0.10 and (R)==0*051. In Table 6, 
V* = -0.78 and thus (0) = 1.0 and (R) = 0.22. As was expected the results are better for 
small c. 

5. CONCLUSIONS 

In this paper we have described an improved version of a Krylov-Bogoliubov elliptic 
method (given in reference [12]) designed to solve non-linear oscillator equations of the 
class given by equation (1.1). We have obtained compact general expressions, equations 
(3.11), for the time derivatives of the amplitude and phase similar to those equations 
(1.2), obtained in the usual Krylov-Bogoliubov method. These expressions are especially 
simple when the oscillator is quasilinear or quasi-pure-cubic since the elliptic parameter 
is not time dependent and the expressions are simpler than for the general cubic oscillator. 
For quasilinear oscillators the elliptic parameter is constant (equal to zero) and the 
expressions become the usual ones of the usual Krylov-Bogoliubov method. Finally, we 
have obtained simple accurate approximate solutions for two examples of quasi-pure-cubic 
oscillators: a linear damped oscillator and a van der Pol oscillator. Also we have shown 
by means of these examples that very useful information (the influence of the non-linearity 
of the oscillations on the amplitude variation rate, existence and stability of the limit 
cycles and/or limit points) can be obtained from the key relationships (3.1 I), specifically 
from (3.11a). 
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