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A harmonic balance method is presented in which Jacobi elliptic functions are used in 
the trial solution instead of circular functions to obtain approximate periodic solutions 
of the oscillator 5~+F(x, ~c)=0. Conditions for the method to work well are the usual 
ones of the current method of harmonic balance, and that x(t) must pass through zero. 
The procedure for obtaining a higher order approximation is described, and in particular 
two criteria for chosing the elliptic function parameter m are discussed. Illustrative 
examples are presented with F being diverse polynomials of x. 

1. INTRODUCTION 

The current method of harmonic balance [1-3] is a very simple method for obtaining 
approximate  periodic analytical solutions of  non-linear oscillators and, unlike perturba- 
tion methods, can give good results even for strongly non-linear oscillators. I f  one uses 
this method in its first approximation,  these good results appear  "as long as the behaviour 
of  the motion is close to harmonic"  [4]. The reason is because in the first approximation 
of this method the unknown exact solution x( t )  is approximated (as in every method of 
linearization) by a cosenoidal trial solution ~ ( t ) =  A cos(tot). The fitting coefficients A 
and to are chosen by a different criterion according to each linearization method. In the 
method of  harmonic balance the criterion is based on the principle of  harmonic balance: 
that the approximate  solution ~ must satisfy the equation of the non-linear oscillator 

x+ F(x, .~) = 0 (1.1) 

in its first harmonics: that is, to assume that the largest harmonic of  ~ must be equal to 
the largest harmonic of  - F ( ~ ,  ~). Then, in the first approximation,  the method consists 
of  seeking a constant, A, and a function, q~(t) = wt, that make ~ = A cos ~ satisfy equation 
(1.1) in the first, largest harmonic. But if x( t )  is not close to a cosenoidal function there 
is no choice of  A and to that fits ~(t)  to x(t) :  in other words, ~(t)  = A cos (tot) is a bad 
trial solution. 

It is clear that the fit will probably be better if one uses a trial solution of a more 
general class of  oscillating functions that include circular functions as a particular case. 
The author and collaborators have applied this idea in a series of  papers [5-10] in which 
A cn (wt, m) = A cos (~0), with ~ = am (tot, m) = am (¢J, m) is the "more  general class of  
oscillating functions" (the notation of reference [ 11 ] is used here for the elliptic functions). 
Note that when m = 0 these functions reduce to circular functions. In references [5, 6] 
the idea was applied to a method of Krylov-Bogoliubov type following the work of  
Barkham and Soudack [ 12-15], Christopher [ 16], and Christopher and Brocklehurst [ 17]. 
In reference [7] it was applied to a Galerkin method and in reference [8] to a Rayleigh 
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method. Finally, in references [9, 10] an elliptic harmonic balance method (the EHB 
method) was presented in which Jacobi elliptic functions as trial solutions. The EHB 
method and the current harmonic balance method that uses circular functions (the CHB 
method) are very similar: in both the principle of  harmonic balance is used to seek 
constants An, Bn, and a function, ~( t ) ,  so that ~ = ~  An cos ( n ~ ) + ~  B, sin (n~) satisfies 
the non-linear oscillator equation (1.1), at least in its largest harmonics. The difference 
between the two methods is that ¢( t )  = tot is a linear function that depends only on the 
to parameter  in the CHB method, whereas in the EHB method ¢ ( t ) = a m  (tot, m) is a 
non-linear function (see Figure 1) that depends on two parameters,  to and m. This function 
is linear only when m = 0 and both methods agree. In what follows the set of  functions 
{cos (n¢),  sin (n¢)} in which ~ = am (tot, m) is called the set of  elliptic harmonics (see 
Appendix 1 for more details). 

Tr 

0 K 2K 

Figure 1. The am (¢, m) function for (a) m =0.9999, (b) m =0-9, (c) m =0, (d) rn = - 9  and (e) m =-999, 
with ~k in the interval [0, 2K]. The notation is K = K(m). This interval is enough to show the function am(0, m) 
since am(~+ 2K, m) = zr +am(~b, m). 

The aim of  this paper  is to do the same for the EHB method as Mickens did for the 
CHB in reference [1]. The present paper  is kept as similar as possible to Micken's paper  
so that the EHB method will be easier to understand, and to compare  and contrast. In 
section 2 the advantages and the applicability conditions of  the EHB method are given, 
and a systematic procedure for obtaining the EHB approximate solution is presented. In 
section 3 the procedure for higher order approximation in the EHB method is presented, 
and two criteria for choosing the optimal elliptic parameter  m of the approximate  solution 
are given. In section 4 the method is illustrated with some examples. Conclusions are 
summarized in section 5. 

2. THE EHB METHOD 

As the bases of  the EHB and CHB method are the same, i.e., to take ~ =  
Y, An cos (n~) + ~ B, sin (n~) as the approximate  solution and obtain A, ,  B,, and ~ by 
using the principle of  harmonic balance, their principal advantages are also the same 
(see reference [1]): (i) equation (1.1) can be strongly non-linear; (ii) the limit cycles and 
their features are easily obtained [9, 10]; (iii) the method is straightforward and, when it 
works, it gives good approximate  solutions. 

Also the EHB method works well if certain conditions are satisfied: (a) F(x, ~) is a 
finite sum of  terms of  the form xi~,  where i and j are non-negative integers and i+j is 
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odd, so that F ( - x ,  ~) = - F(x, x); (b) the oscillating solution x( t )  passes through x = 0; 
(c) the elliptic harmonics o f x ( t )  of  order higher than those that appear  in the trial solution 
~(t)  are small. The justification of  conditions (a) and (c) is the same as for the CHB 
method; the justification of condition (b) is based on the nature of  the Jacobi elliptic 
functions. 

Condition (a) is based on experience [1]: when this condition is not satisfied it is not 
possible to assure that the CHB method will work well (for more details about these 
difficulties, see section 2.3.4 of  reference [18]). It is then natural to assume that these 
restrictions must also be applicable to the EHB method, since the CHB method is only 
a particular case. 

Condition (b) prevents the use of ~ = Acos ¢* = Adn  (ml/2tot, 1/m) =- A dn with ~* = 
am(tot, m > 1) as trial solution, since in this class of  trial solution ~(t)  does not cross 
x = 0. The use of  Adn  as trial solution is not allowed because- -a t  the very l eas t - -¢*( t )  
does not take values inside the interval (:r/2, 3n'/2), because in this interval cos ¢* is 
negative and dn is always positive. Thus {cos (n¢*), sin (n¢*)} is not an orthogonal set. 
This prevents x( t )  being expanded in a Fourier series in terms of cos (he*)  and sin (n¢*). 
But the possibility of  this expansion is a fundamental  assumption in the methods of 
harmonic balance. Therefore the EHB method cannot be applied (as was done incorrectly 
in reference [10]) to oscillators that do not satisfy condition (b). 

Condition (c) comes from the harmonic balance assumption that the largest harmonics 
of  the Fourier expansion of x( t )  appear  in the trial solution 5(t).  

One can now look at the procedure for obtaining an approximate analytical solution 
of (1.1), in sequence. 

(I) One checks that conditions (a) and (b) are satisfied. 
(II)  One takes 

~ = A c o s ~  (2.1) 

with ~ = am(~0 = wt, m) as the solution tofirst approximation of equation (1.1), where the 
time origin is chosen in such a way that x ( t - - 0 ) = 0 .  Substituting expression (2.1) into 
equation (1.1), using 

(d 2 cos q~/dqJ 2) = - ( 1  - m / 2 )  cos ~ - ~  m cos 3~ (2.2) 

and expanding the resulting expression in a Fourier series, one finds 

Z h, cos (n~0) + Y~ g, sin ( nq~ ) = 0. 

( I I I )  One assumes that expression (2.1) satisfies equation (1.1) at least in its largest 
harmonics, i.e., in its first harmonics. 

( I I I-A) For conservative oscillators (in which g, = 0) one sets hi(to, A, m, a )  = 0. Hence 
one obtains to = w(A, m, a),  where ~ collectively denotes any parameter  which appears  
in the non-linear function F(x, x). 

(III-B) For non-conservative oscillators one sets h~(to, A, m, a )  = 0 and g~(to, A, m, a )  = 
0. By solving these equations one obtains the parameters that define the possible limit 
cycles: toi = toi(m, o r ) ,  Ai = Ai(m, a). 

(IV) For non-conservative oscillators one evaluates the stability of  the limit cycles. 
(V) One checks condition (c) that the higher harmonics of  the solution are negligible. 

In practice, this means that if one takes 

~(t)  = Acos q~ + B c o s  3~ (2.3) 

as the trial solution to a second approximation and again carries out steps (I), (II)  and 
( I I I )  one must find that [B/AI=-[y[<< 1. With this trial solution, in step ( I l l -A)  one sets 
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h3 = 0 as well as h~ = 0 to obtain the value o f  the new parameter  B. Similarly, in step 
( I I I - B )  one sets h3 = 0 as well as h~ = 0 and g~ = 0 to obtain B. A trial solution in the 
second approx imat ion  of  the form (2.3) has been assumed because,  under  condit ion (a) 
and with the origin o f  time chosen suitably so that 2 ( t  = 0) = 0, only odd  cosine harmonics  
can appear  in the solution x( t ) .  In the next section it will be shown how to carry out this 
step (V). 

Notice that  the approximate  solution that  one finds following the above procedure  is 
not  yet complete ly  determined,  since to, for conservative oscillators, or toi and Ai for 
non-conservat ive  oscillators, are functions o f  m and one has not yet seen how to fix its 
value. The systematic choice o f  rn = 0 leads to the C H B  method,  but,  except for m > 1 
due to condi t ion  (b), any other  value should be valid, and better in some cases. However ,  
as will be seen in the next section, it is possible to formulate  procedures  for choosing 
the value o f  m that leads to the best (according to some criterion) approximate  solution 
; ( t ) .  

3. HIGHER ORDER APPROXIMATIONS IN THE EHB METHOD 

For  the sake o f  simplicity, and without  loss o f  generality, it is shown here how to carry 
out  step (V) for conservative oscillators only:  i.e., for oscillators with the equat ion form 

i i + F ( x )  =0 .  (3.1) 

Substituting 

= A(cos  9 +Y cos 39)  (3.2) 

into equat ion  (3.1) (step II) ,  using equat ion (2.2) and the relation (see Appendix  2) 

d 2 cos ( 3 9 ) / d 2 0  = - ~ m  cos 9 - 9 ( 1  - m / 2 )  cos (39)  - 3 m  cos (59),  (3.3) 

where 0 = tot, one obtains 

~ +  F ( ; )  = ~ h n  cos (ng)  =0 ,  

with 

where 

and 

hi = - a l A t o 2 + a 2 ,  h3 = - b l A t o 2 + b 2 ,  h5 = - c l A t o 2 + c 2 ,  

a , = a l ( y , m ) = ( 1 - m / 2 ) - 3 m y / 2 ,  b ~ = b , ( y , m ) = 9 y + ½ m ( 1 - 9 y ) ,  

cl = cl(y, m)  = 3my 

(3.4a-c) 

F ( ;  = A cos 9 + A y  cos 39)  = a2 cos 9 + b2 cos 39 + c2 cos 59 + • • • . 

Not ice  that  this procedure  is the same as the procedure  in the CHB method.  Therefore  
the expressions for  32, b2, and c2 are the same as those obtained in the CHB method.  
The difference is that  the harmonics  al, bl, c~ o f  ~ are not the same since they depend  
on the parameter  m. 

Next  (step I I I )  the values o f  to = to (A, m, a )  and y = y ( A ,  m, a )  are obtained f rom the 
equat ions  h~ = 0 and h3 = 0. By eliminating Ato 2 from h~ = h3 = 0, equat ions (3.4a, b), one 
finds 

½ m (a2 + b:) + 9ya2 - 9 mya2 - bE -- 3 myb2 = O. (3.5) 
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Express ing a2, b2, and c2 in powers  of  y, 

a2 = ~ t~,(A)y', b2 = Y/3i(A)y ' ,  c2 = ~2 %(A)y ' ,  

and subst i tut ing these express ions  into equa t ion  (3.5) one obtains  

y~ @ , y n  = 0, (3.6) 

with 

= - t - / 3 n ) - - S a n _ l - - 3 / 3 n _ l ] m - t - 9 O t n _ l - - / 3 , ,  ( 3 . 7 )  

where a~ =/3~ = % = 0 if i < 0. The value of  y is ob ta ined  f rom equat ion  (3.6). So, to first 
order  in y, with powers  higher  than  unity neglected,  one has 

y(A,  m, a)=- y~ = - @ o / @ 1 .  

To second order  in y, with powers  higher than  two neglected,  one finds 

y(A,  m, a ) --- Yz = [ -  @1 "q- ( @ 1 2  - -  4@2@0)1/2]/2@2. 

The value o f  Y2 chosen is that  o f  smallest  modulus .  Substi tuting this value into hi = 0, 
one finds the to value for  the second app rox ima t ion  o f  the ECB me thod  using terms to 
second order  in y: to2 = a2/Aal. I f  one sets y = 0 in this last equat ion,  i.e., if one works  
only with the first app rox ima t ion  of  the ECB method ,  one finds 

to2 = ao/[ A(1 - m/2) ] .  (3.8) 

The  simplici ty (or  complexi ty)  o f  the C H B  and the E H B  me thod  is the same: deduct ions  
and express ions  calculated up  to now are the same in both  methods ,  the only difference 
is that  m is always zero in the C H B  method.  Of  course,  the quest ion for  the E H B  me thod  
is: what  value of  m to use? Here  two criteria to fix m are suggested and  discussed (of  
course o ther  criteria can be formula ted) .  

Cri ter ion  I. The p a r a m e t e r  m is chosen so that  ~ = A [ c o s  ( ~ ) + y c o s  (3~)]  satisfies 
equat ion (1.1) at least in its first two harmonics  (hi = h3 = 0)  w i t h  lyl as small  as possible,  
i.e., with y = 0. Not ice  that  this cri terion can equivalent ly be fo rmula ted  thus: m is such 
that  the solut ion to first approx imat ion ,  ~ = A c o s  ~p, is equal  to the solut ion to second 
app rox ima t ion ,  ~ = A cos (~p) + Ay cos (3 ~) .  I f  y = 0, f rom equat ion  (3.6) one finds @o = 0, 
and then, f rom equat ion  (3.7), 

m = 2b~/(a2 + b2), (3.9) 

and f rom equat ion  (3.8), 

to2 = (a2+ b2)/A. (3.10) 

The fact that  az = ao and  b2 =/30 when y = 0 has been  used. This cri terion was used in 
reference [10] a l though it was not recognized there in this form. 

Criterion II .  The pa rame te r  m is chosen so that  ~ = A cos (q~)+ A y cos (3q~) satisfies 
equat ion  (3.1) in the largest  n u m b e r  of  harmonics :  hz,+~ = 0 with n = 0, 1 , . . . .  In pract ice  
this means  that  one searches for  values of  m, y and  to that  make  hi = h3 = 0,  and IhsI as 
small  as poss ible  ( ideally h5 = 0), but,  o f  course,  under  the restrictions that  m < 1 and  lyl << 1. 

The first two examples ,  

4. I L L U S T R A T I V E  E X A M P L E S  

Y + x = 0  and 5/+x3 = 0 ,  (4.1,4.2) 
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are par t icular  cases of  the third example  oscil lator 

Ji + clx + c3 x3 = 0. (4.3) 

By using criteria I and I I  the E B H  method  will be shown to give the exact  analyt ical  
solut ion for  the above three oscillators. The  other  examples  are a hard  oscil lator 

5/+ x 5 = 0, (4.4) 

a so f t -ha rd  oscil lator 

and  a h a r d - s o f t  osci l lator  

5i -x3  + x 5 = 0 ,  (4.5) 

X 3 X 5 X 7 

5i + x - - - +  . . . .  0. (4.6) 
3! 5! 7! 

F rom these examples  some conclusions will be reached:  (i) that  cri terion I is s imple and 
accurate;  (ii) that  cri terion I I  is less s t ra ight forward than  criterion I but  that  it leads to 
the smallest  higher  harmonics ,  i.e., it gives more  accurate  results; and (iii) that  cri terion 
I is preferable  because ,  a l though it is a little less accurate  than  criterion II ,  it is much  
simpler.  

The results are given in Tables  1-3. In the first co lumns  appea r  the elliptic p a r a m e t e r  
m, the f requency  to, and  the coefficient y = B / A  of  the app rox ima te  solut ion (3.2) ob ta ined  
by using the p rocedures  e x p o u n d e d  in section 3. Also given is the value of  the fifth 
ha rmon ic  of  equat ion  (3.1) as ob ta ined  by using express ion (3.2) as solution, i.e., h5 is 
given (hi and  h 3 a r e  zero):  this value gives an est imate of  the precis ion of  the a p p r o x i m a t e  
solut ion (3.2) since, usually,  this app rox ima te  solut ion is bet ter  when h5 is smaller.  The  
results are ob ta ined  with y used to first order  (with powers  of  y higher than  y neglected)  
a l though y is used to second order  if the results are significantly better.  The last three 
co lumns  give the ratios be tween  the coefficients o f  the first four  harmonics ,  A3/AI ,  As/A~ 
and A7/A1, of  the solut ion x ( t )  evaluated numerical ly;  the p rocedure  for  obta ining these 
coefficients is e x p o u n d e d  in Append ix  1. The  ratio YN =- A3/AI  must  be c o m p a r e d  with 
y. The  ratios As~A1 and A 7 / A  1 serve to check the ha rmonic  ba lance  assumpt ion  (see 
condi t ion (c)) that  the higher  order  ha rmonics  are negligible with respect  to the first. 

Oscillator (4.1). One has F ( A  cos ~o + Ay  cos 3 ~o) = A cos ~o + Ay  cos3 ~, i.e., ao = 131 = A 
and the o ther  coefficients are zero. Cri ter ia  I and II  give y = 0, m = 0, to 2 = 1, i.e., they 
give the solut ion x = A c o s  t, the exact solution. The results for  the choice m = 1/2 are 
presented  in Table  1. 

TABLE 1 

Results obtained by using the E H B  method for the oscillators 5 /+x  n+l= 0 with n = 0, 2, 4; 
column C gives the criterion that was used to obtain the parameter m: I, criterion I; II, 
criterion H; blank, no criterion (m is given directly); the 2 added in this column means that 
calculations include terms to second order in y, i.e., Y=Y2; the notation 8-7(2) means 

8-7 x 10  - 2  

Equation C m toe /A  N he Y YN = Aa/AI As~At A 7 / A I  

5/+x =0,  n =0  0.5 1.3913 8.7 (2) -0.0417 -0.0430 -3.7 (3) 4.0 (4) 

5/+ x 3 = 0, n = 2 0 0.7857 3'6 (2) 0.0476 0.0451 1.9 (3) 8.4 (5) 

5/+x 5=0, n =4  1 0.667 0.9375 6.2 (2) 0 -0.0025 4.9 (3) -6 .7  (4) 
II 0"580 0.8962 5"8 (2) 0.0142 0.0122 4'3 (3) -2"6  (4) 
2 0 0"7490 1'5 (1) 0"0682 0.0684 9"5 (3) 1"3 (3) 
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Oscillator (4.2). N o w  a/~ = a'~ = Y'I = Y~ = 3/4 ,  ct~ = fl'~ = 3/2 ,  fl~ = 1/4,/3~ = y~ = 0 where  
( ) = ( ) 'A  3. C r i t e r i a  I and  II  give y = 0,  m = 1 / 2 ,  w 2 = A 2, i .e . ,  t h e y  g i v e  the  exact solution 

x = A c o s  ~ w i t h  ~0 = a m ( t o t ,  1 / 2 ) .  In Table  1 the results  are  given for  the choice  m = 0, 

i.e., for  the  C B H  m e t h o d  [1]. 
Oscillator (4.3). The  osc i l l a to r  coefficients c~ and  c3 can take any value.  Cond i t i on  (b) 

requires  tha t  c3A2/Cl < -  1 if  c~ < 0  and  c3> 0. The coefficients a , ,  fli, % are eva lua ted  
f rom the coefficients o f  the two previous  osci l la tors :  thus ao=c~A+-4c3 A- ,  ~ =  
c~A + 3 c3A 3, etc. Wi th  these  coefficients,  it is easy to show that  cr i ter ia  I and  II  give y = 0, 
m = 1c3A2/(c 1 + c3 A2) and  w 2 = c~ + c3 A2. That  is, the tr ial  so lu t ion  ~ = A cos ~ with 

= am(tot,  m) is the exact solution. Therefore ,  the EHB me thod  gives the exact  so lu t ion  
for  the cub ic  osc i l l a to r  (4.3) in the  same way that  the C H B  me thod  gives the exact  so lu t ion  
for  the l inear  osc i l l a to r  5/+ c~x = O. 

! _ t Oscillator (4.4). The coefficients a~, ]3~, y; o f  (A cos q~ + Ay cos 3~)  5 are a0 - 10, a L = 25, 

~ 2 = 1 3 ' ,  = ~ =  ' . . . .  : , ' ) ' 2 -  30, f l o -  5, Yo 1, yl  = 20, where  ( ) = ( ) 'AS/16. The results  are given 

in Table  1. 
Oscillator (4.5). C o n d i t i o n  (b) requires  that  A 2 > A~ = 3/2.  The results  for  the a m p l i t u d e  

A = 1-3 (close to Ac) and  for  A = 5 are given in Table  2. Fo r  A = 1.3 the  h igher  ha rmonics  
are larger  than  usual ,  a l t hough  cr i ter ion II gives smal le r  ha rmoncs  than  cr i ter ion I. Not ice  
that  with the C H B  m e t h o d  (m = 0), the a s sumpt ion  lyl<< 1 is ha rd  to defend.  

Oscillator (4.6). The  force  F ( x )  is a p o w e r  series o f  sin (x)  up  to o rde r  seven. The 
coefficients a~, fl;, % of  (A  cos tp + A y  cos 3 ¢ )  7 are c¢[} = 35, a'~ = 147, ~ = 441, ]3~ = 21, 

TABLE 2 

Results  obtained by using the E H B  method fo r  the oscillator 5i - x 3 -~  x 5 : O;  the key is the 

same as in Table 1 

Amplitude C m o92 h 5 y y.,~ = A3/AI As/AI  A3/A~ 

1.3 I 0.952 0.988 2.3 0 -0.0351 2-8 (2) - 1.1 (2) 
II2 0.889 0.9874 2.3 (1) 0.0154 0.0103 2.2 (2) - 4 .3  (3) 
2 0 0.9570 6.2(1) 0.1078 0.1460 4.4 (2) 1.3 (2) 

5.0 I 0.674 560.9 2.0 (4) 0 -0-0027 5.2 (3) 7-2 (4) 
II 0.588 536.6 1.8 (4) 0.0144 0.0122 4.5 (3) - 2 . 8  (4) 
2 0 449.3 4.9 (4) 0.0693 0.0697 9.9 (3) 1-4 (3) 

TABLE 3 

Results  obtained by using the E H B  method f o r  the oscillator 5i + x - x3/3  ! + x5 / 5 ! - x7 / 7 ! = 0; 
the key is the same as in Table 1 

Amplitude C m to 2 h5 y y~. = A3/An As~A1 A7/Au 

1.0 I -0 .093 0.8410 5.0 (4) 0 0-0000 2.3 (5) 1.9 (7) 
II -0 .068 0.8510 4.2 (4) -0.0014 -0.0014 2.0 (5) 1.4 (8) 

0 0.8807 1.1(3) -0.0055 -0.0055 5.4 (5) - 6 . 3  (7) 

2.0 1 -0 .578 0-4472 1.4 (2) 0 -0 '0002 5'0 (4) 2.1 (5) 
II -0 .390 0.4826 1.1 (2) -0.0071 -0.0075 4.0 (4) - 2 . 3  (6) 

0 0.5842 3-2 (2) -0.0256 -0 '0274 1'3 (3) 6-9 (5) 

3.0 I -67.69 6.250(3) 7-9(2) 0 -0.0527 1.6(2) 6-5(3) 
II -4-32  6.864(3) 4 . 6 ( 2 ) - 0 . 0 2 9 6  -0.0574 4.5(3) - 7 . 5 ( 4 )  

0 0.2552 2.2 (1) -0.0929 -0.1409 2.7 (2) - 6 ' 3  (3) 
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/3~ =30,  /3~=315, 7~=7,  7~=20,  7~=252, where ( ) = (  )'A7/64. The results are given 
in Table 3. The poorest results occur for the amplitude A = 3, close to the critical point 
where the motion is not oscillatory. As before, criterion II gives the more accurate value 
of y and leads to the smallest higher harmonics. Criterion I also gives good results. 

5. CONCLUSIONS 

A method of harmonic balance (the EHB method) that is a generalization of the usual 
method of harmonic balance (the CHB method) has been expounded in which Jacobi 
elliptic functions are used in the trial solutions instead of circular functions. The systematic 
procedure for obtaining the approximate periodic solutions of  oscillators with the general 
form 5/+ F(x, ~) = 0 has been presented, as well as the conditions under which the method 
works well. 

It is known that, in its first approximation,  the results of  the CHB method are good 
for all oscillators "as long as the motion is close to [a circular] harmonic"  [4]. The same 
assertion is true for the EHB method as long as the motion is close to an elliptic harmonic. 

The possibility of  constructing a general procedure for calculating higher order approxi- 
mate solutions in the f ramework of the method of  harmonic balance with elliptic harmonics 
was shown. 

Finally, the method presented here is "ope n"  in the sense that different criteria for 
choosing m lead to different approximations: for example, the special choice m = 0 leads 
to the well known CBH method. In this paper  two criteria were used. One of these, 
criterion I, leads to very simple and accurate approximate solutions: they have the 
simplicity of  a first order approximate solution and the accuracy of a second order 
approximation solution. 
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APPENDIX 1 

In this appendix it will be shown how to find the expansion of the periodic function 
x(tp), with period 4 K ( m ) - - 4 K ,  in terms of the periodic set (elliptic harmonics) 

coso (qJ, rn) --- 1, cos,  (~b, m) -= cos (n~), sin, (qJ, rn) -= sen (n~), (A1) 

where ~p = am (q~, rn), rn < 1 and n = 1, 2 , . . . .  In other words, one looks for the coefficients 
A, ,  B, (Fourier coefficients) of  

x(~0) = ( A o / 2 ) + ~  A, cos ( n ~ ) + ~  B, sin (n~). (A2) 

These coefficients can be obtained in two ways, as follows. 
First procedure. Using the inverse function q, =am-l(~o, m) one obtains the function 

x(~o, m) from the function x(q,): x(4J)=x(~(~o, m))=-x(~,  m). Then the Fourier 
coefficients A, ,  B, of  expression (A2) are given by a simple Fourier (trigonometric) 
expansion of  x(q~, m) in terms of cos (n~) and sin (n~): 

A . ( m ) =  x(~o, m) cos (n~o) dq~, B. (m)  1 2,, = - -  x(~p, m) sin (n~) d~p. (A3, A4) 
) 77" } 

One can use a similar procedure when one looks for the Chebyshev expansion of a 
function x(qJ) in terms of 

To(qJ) = 1, T,(O)  =cos  [n arcos (qJ)] =cos  (n~o), (A5) 

where ¢ = arcos(qJ) and n = 1, 2 , . . . .  Then, the coefficients Ai of  the Chebyshev expansion 
x(~b) = (Ao/2) + ~  A, cos (n¢)  can be evaluated simply by using equation (A3). 

Second procedure. However,  although the above procedure is valid, it is well known 
that this is not the usual way of obtaining the Chebyshev coefficients A, of  a function 
x(~) ,  where it is not necessary to change the function x(qJ) into the function x (¢ )  The 
current procedure uses a new set of orthogonal functions defined in the qJ variable. This 
set is that of  expression (A5) (the Chebyshev polynomials) for the Chebyshev expansion. 
In a similar way, the set (A1) is the new expansion orthogonal set used in the present 
paper  to construct the EHB method. One therefore has 

x(~p) = ( a 0 / 2 ) + ~  A, cos,(qJ, m)+3[  B, sin, (tO, m), 
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where, upon substituting expression (A1) and the formula (A9) that will be given in 
Appendix 2, into expressions (A3) and (A4), one has 

A. An(m) 1 f4K --- = - -  x(@) cos~(0, m) dn(0, m) d0, 
zr./0 

B. B~(m) 1 f~K ---- = -  X(0) sin,(0, m) dn(0, m) d0. 
7r j0 

In other words, one has defined in expression (A1) a new set of functions 

{f = cos,(0, m), gj = sin~(0, m), i = j -  1 = 0, 1, 2 . . . .  } (A6) 

(elliptic harmonics) that are orthogonal with respect to the weight factor w(0, m ) =  
dn(0, m) over the interval 0 <~ 0 ~< P = 4K, since 

lfo~ -~ w(O, m)fgj dO = O, Vi, j, 

lfo~ lfo' ~ w(~, m)f~fj dO = ~  w(0)gig~ dO = g0- (A7) 

The Fourier expansion with this set of functions is therefore made by means of the 
standard techniques. Notice that this new set of orthogonal functions becomes the usual 
trigonometric set when m = 0. 

Finally, it should be noted that the orthogonal set (A6) is complete, and therefore, 
closed. The demonstration is direct by using the set definition (A6) and the fact that the 
usual trigonometric set is complete. 

APPENDIX 2 

In this appendix relation (3.3) will be deduced. By using the chain rule one has 

d 2 cos (3~p)/d02 = - 3(d2~p/d02)sin (3~p) - 9(d~p/d0)2cos (3~p). 

But [11], 

and thus 

d~o/d0 = d[am(0, m) ] / d 0  = dn(0, m), 

(A8) 

(A9) 

d2q~/d02 = - m sn(0, m) cn(0, m) = - m sin(~o) cos(C). (A10) 

Substituting expressions (A9) and (A10) into equation (A8), using dn 2-- 
(1-m2)+mcos2(~o),  and using the trigonometric relations sin(tp)cos(¢)sin3(~o)= 
[cos(C) - cos(5~o)]/4 and cosE(tp)cos(3~,) = [cos(~o) +2cos(3¢) + cos(Sq~)]/4, one obtains 
equation (3.3). The second derivative of other elliptic harmonics can be obtained in a 
similar way. 


