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Equation of state of additive hard-disk fluid mixtures: A critical analysis of two recent proposals
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A detailed analysis of two different theoretical equations of state for a binary mixture of additive hard disks
@C. Barrio and J. R. Solana, Phys. Rev. E63, 011201~2001!; A. Santos, S. B. Yuste, and M. Lo´pez de Haro,
Mol. Phys.96, 1 ~1999!#, including their comparison with Monte Carlo results, is carried out. It is found that
both proposals, which require the equation of state of the single-component system as input, lead to compa-
rable accuracy when the same input is used in both, but that advocated by Santoset al. is simpler and complies
with the exact limit in which the small disks are point particles.
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I. INTRODUCTION

Despite being, in principle, a simpler system, hard-d
fluid mixtures have received much less attention in the
erature than fluid mixtures of hard spheres. This may wel
tied to the fact that till now no analytical solution to th
Percus-Yevick equation has been found for even dimens
ality. In any case, what this has meant is that fewer res
are available for fluid mixtures of hard disks than for ha
sphere mixtures. In particular, a very scarce number of p
posals for the equation of state~EOS! of these mixtures has
been made@1–5#, although the trend seems to be revers
recently, and even fewer simulations have been performe
assess the value of such proposals. In a recent paper, B
and Solana@5# proposed an EOS for a binary mixture
additive hard disks. Such an equation reproduces
~known! exact second and third virial coefficients of the mi
ture and may be expressed in terms of the EOS of a sin
component system. They also performed Monte Carlo~MC!
simulations and found that their recipe was very accur
provided an also very accurate EOS for the sing
component system~in their case it was the EOS proposed
Woodcock @6#! was taken as input. The comparison wi
other EOS for the mixture available in the literature indica
that their proposal does the best job with respect to
Monte Carlo data. Among these other EOS for the bin
mixture considered in Ref.@5#, only that introduced by San
tos et al. a few years ago@3# also shares with Barrio an
Solana’s EOS the fact that it may be expressed in term
the EOS for a single-component system. The aim of
present paper is to present a detailed analysis of these
different equations of state, since the comparison mad
Ref. @5# may be misleading in that it was not performed
taking the sameEOS for the single-component system
both proposals. A preliminary report of this work can
found in Ref.@7#.
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In order to carry out the analysis, the paper is organized
follows. In Sec. II we recall the two different formulation
for the EOS of a binary mixture of additive hard disks in
unified notation, as well as provide the explicit~approxi-
mate! expressions for the EOS of the single-component s
tem that will be used in the actual calculations. This is f
lowed in Sec. III by a discussion of the results and so
concluding remarks.

II. THE EQUATION OF STATE OF A BINARY MIXTURE
OF ADDITIVE HARD DISKS

Let us consider a binary mixture of additive hard disks
diameterss1 and s2. The total number density isr, the
mole fractions arex1 andx2512x1, and the packing frac-
tion is h5(p/4)r^s2&, where ^sn&[( ixis i

n . Let Z
5p/rkBT denote the compressibility factor,p being the
pressure,T the absolute temperature, andkB the Boltzmann
constant. Then, Barrio and Solana’s EOS for a binary m
ture of hard disks,Zm

BS(h), may be written in terms of a
given EOS for a single-component system,Zs(h), as

Zm
BS~h!511

1

2
~11bh!~11j!@Zs~h!21#, ~1!

wherej[^s&2/^s2& and b is adjusted as to reproduce th
exact third virial coefficient for the mixtureB3, namely,

b5
B3

~p/4!2^s2&2~11j!
2

b3

2
. ~2!

Here, b354(4/32A3/p) is the reduced third virial coeffi-
cient for the single-component system andB3 is given by@1#

B35
p

3
~a11x1

3s1
413a12x1

2x2s12
4 13a21x1x2

2s12
4 1a22x2

3s2
4!,

~3!

where
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ai j 5p12~s i
2/s i j

2 21!cos21~s i /2s i j !

2~4s i j
2 /s i

221!1/2~11s i
2/2s i j

2 !s i
2/2s i j

2 ~4!

ands i j 5(s i1s j )/2.
The EOS for the mixture, consistent with a given EOS

a single-component system, introduced recently by San
Yuste, and Haro reads@3#

Zm
SYH~h!5~12j!

1

12h
1jZs~h!. ~5!

We stress the fact that Eq.~5! is simpler than Eq.~1! @which
must be complemented with Eqs.~2!–~4!#. In addition, the
structure of Eq.~5! is valid for any number of components
while Eq. ~1! requires the third virial coefficient, which i
known exactly only forbinary mixtures. In order to proceed
with a quantitative analysis of Eqs.~1! and ~5!, we have to
specify Zs(h). While many choices are available, we w
restrict ourselves to the three following EOS of the sing
component system.

~a! Woodcock’s EOS@6#

FIG. 1. Plot of the differencedZ(h)[Zm(h)2Zm
BS(W)(h) for a

size ratio s2 /s152/3 and for x150.25 ~top panel!, x150.50
~middle panel!, andx150.75 ~bottom panel!. The filled circles are
Monte Carlo data@5#, the dashed lines refer to the proposal~1!, and
the solid lines refer to the proposal~5!. The EOS of the single-
component fluid,Zs(h), used as input are Eqs.~6! ~lines without
symbols!, ~7! ~lines with squares!, and~8! ~lines with triangles!.
03120
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Zs
W~h!5

113h/h0

12h/h0
1 (

n52

6

~bnh0
n2124!~h/h0!n21, ~6!

where h05(A3/6)p is the value of the crystalline clos
packing and thebn (n52 –6) are the~known! reduced virial
coefficients@8#.

~b! The Levin approximant of Erpenbeck and Luban@9#,

Zs
EL~h!5

(
n50

4

pnhn

(
n50

5

qnhn

, ~7!

where qn5(21)n(n
6)(12n/6)5b6 /b62n and pn

5(m50
n bn112mqm .

~c! The EOS proposed by Santos, Haro, and Yuste@10,11#,

Zs
SHY~h!5S 122h1

2h021

h0
2

h2D 21

. ~8!

The EOS~6! and~7! are more complex than the EOS~8!
in the sense that they require the exact knowledge of the
six virial coefficients, while Eq.~8! is constructed by using
the first two virial coefficients only and enforcing a pole
h5h0. Despite its simplicity, however, Eq.~8! does a re-

FIG. 2. Same as in Fig. 1, but for a size ratios2 /s151/2.
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TABLE I. Compressibility factor for different binary mixtures of hard disks as obtained from Monte Carlo simulations, and from E~1!
and ~5!. In the two latter, Woodcock’s equation of state for the single-component system is used.

x150.25 x150.50 x150.75

s2 /s1 h MC a Eq. ~1! Eq. ~5! MC a Eq. ~1! Eq. ~5! MC a Eq. ~1! Eq. ~5!

2/3 0.20 1.559~6! 1.559 1.559 1.561~5! 1.558 1.558 1.565~4! 1.563 1.563
0.30 2.036~8! 2.040 2.040 2.043~8! 2.039 2.039 2.051~8! 2.048 2.048
0.40 2.79~1! 2.79 2.79 2.79~1! 2.78 2.78 2.80~1! 2.80 2.80
0.45 3.31~1! 3.32 3.32 3.31~2! 3.32 3.32 3.33~1! 3.34 3.34
0.50 4.02~2! 4.02 4.02 4.02~1! 4.02 4.02 4.04~2! 4.05 4.05
0.55 4.98~2! 4.97 4.97 4.98~2! 4.96 4.96 5.03~2! 5.00 5.00
0.60 6.31~2! 6.29 6.28 6.30~1! 6.28 6.27 6.36~3! 6.33 6.33

1/2 0.20 1.534~6! 1.536 1.536 1.540~6! 1.538 1.538 1.556~7! 1.552 1.552
0.30 1.998~7! 1.995 1.995 2.008~7! 2.000 2.000 2.039~8! 2.027 2.026
0.40 2.72~1! 2.70 2.70 2.71~1! 2.71 2.71 2.77~1! 2.76 2.76
0.45 3.20~2! 3.21 3.21 3.22~2! 3.22 3.22 3.29~2! 3.29 3.29
0.50 3.88~1! 3.88 3.87 3.90~2! 3.89 3.89 3.98~2! 3.98 3.98
0.55 4.79~2! 4.77 4.76 4.81~2! 4.80 4.78 4.93~2! 4.91 4.90
0.60 6.03~3! 6.02 6.00 6.04~2! 6.05 6.03 6.22~3! 6.21 6.20

1/3 0.20 1.491~6! 1.490 1.490 1.510~8! 1.506 1.506 1.538~9! 1.536 1.536
0.30 1.907~8! 1.905 1.904 1.940~8! 1.937 1.936 2.004~9! 1.996 1.995
0.40 2.55~1! 2.54 2.54 2.59~1! 2.60 2.60 2.71~1! 2.71 2.70
0.45 2.99~2! 3.00 2.99 3.07~1! 3.07 3.06 3.20~2! 3.21 3.21
0.50 3.60~2! 3.59 3.57 3.69~2! 3.69 3.68 3.89~2! 3.88 3.87
0.55 4.39~3! 4.39 4.36 4.52~2! 4.52 4.50 4.79~2! 4.78 4.76
0.60 5.49 5.44 5.66~6! 5.68 5.64 6.06~1! 6.03 6.00

aReference@5#.
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markably good job when compared with simulation data,
though it is of course less accurate than the more soph
cated EOS~6! and ~7! @10#.

III. DISCUSSION

In Table I, we show the results of Eqs.~1! and ~5! when
Woodcock’s EOS@6#, Eq. ~6!, for the single-component sys
tem is used as input in both equations, as well as the av
able MC data@5#. As seen in Table I, it is fair to say that bot
recipes are of comparable accuracy with respect to the M
Carlo results, their difference being generally smaller th
the error bars of the simulation data, althoughZm

BS(h) per-
forms slightly better thanZm

SYH(h). This may be fortuitous
since if one takes forZs(h) in Eqs. ~1! and ~5! the Levin
approximant@9#, Eq. ~7! ~which is known to give the mos
accurate approximation to the single-component compr
ibility factor @9,10#!, the apparent~slight! superiority of
Zm

BS(h) is no longer there. For instance, the theoretical v
ues of Table I corresponding to the packing fractionh50.6
are increased by about 0.03 when the Levin approxim
rather than Woodcock’s EOS is used as input, so that in
case the accuracy ofZm

SYH(h) is generally slightly better than
that ofZm

BS(h). This is further illustrated in Figs. 1–3, wher
in order to enhance the differences we have plottedZm(h)
2Zm

BS(W)(h) versush, Zm
BS(W)(h) indicating the use of Eq
03120
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~1! taking for Zs(h) the EOS by Woodcock. The figure
show that, in general, the differences between the EOS~1!
and the EOS~5!, taking of course the sameZs as input, are
smaller than or of the order of the error bars of the simulat
data. As expected, a better agreement with the simula
data is obtained when either of the more accurate EOS~6! or
~7! is used as input instead of the much simpler EOS~8!. It is
interesting to remark that the best agreement at the two l
est densities,h50.55 andh50.6, corresponds to the use o
the Levin approximant forZs.

Let us try to understand why both EOS for the mixtu
give practically equivalent results when the same input
used in both. First, it may be shown thatZm

SYH(h), while not
reproducing the exact third virial coefficientB3, yields a
very good estimate of it@12#, namely, B3.@11(b3
21)j#(p/4)2^s2&2. If we replace that estimate into Eq.~2!,
we get

b.
12j

11j S 12
b3

2 D . ~9!

By using this estimate in Barrio and Solana’s EOS, Eq.~1!,
we have

Zm
BS~h!2Zm

SYH~h!.~12j!D~h!, ~10!
2-3
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where

D~h![
1

2 F12S b3

2
21DhG@Zs~h!21#2

h

12h
. ~11!

According to the approximation involved in Eq.~10!, the
differenceZm

BS(h)2Zm
SYH(h) is small if the asymmetry of

the mixture is small (j&1) and/orD(h) is small. The func-
tion D(h) is plotted in Fig. 4 for the cases whereZs(h) is
given by Woodcock’s EOS, by the Levin approximant, a
by the SHY EOS. In all instances it is practically zero up
h'0.2 but then it grows rapidly. The most disparate mixtu
considered in Barrio and Solana’s simulations correspond
x150.25, a[s2 /s151/3, which yieldsj50.75. This ex-
plains the fact thatZm

BS(h)2Zm
SYH(h)&0.05 in the simulated

cases. It should be noted, however, that Eq.~10! tends to
overestimate the actual differenceZm

BS(h)2Zm
SYH(h) @for in-

stance, in the case wherex150.25, a51/3, h50.6, and
Zs(h) is given by Woodcock’s EOS, this difference is 0.0
while the prediction of Eq.~10! yields 0.07], so that its main
purpose is to illustrate the fact that both EOS yield pra
cally equivalent results for not very asymmetric mixtures.
the other hand, more important differences can be expe
for disparate mixtures, especially in the case of large de
ties. At a given density and a given diameter ratioa<1 the
smallest value of the parameterj corresponds to a mole frac

FIG. 3. Same as in Fig. 1, but for a size ratios2 /s151/3.
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tion x15a/(11a) for the large disks, namely,j54a/(1
1a)2. Thus, j!1 if a!1 and, according to Eq.~10!,
Zm

BS(h)2Zm
SYH(h).D(h).

Let us consider now the limit in which the small disk
become point particles (a→0) and occupy a negligible frac
tion of the total area. In that case, the compressibility fac
of the mixture must reduce to@3,13#

Zm~h!→ x2

12h
1x1Zs~h!. ~12!

The first term represents the~ideal gas! partial pressure due
to the point particles in the available area~i.e., the total area
minus the area occupied by the large disks!, while the second
term represents the partial pressure associated with the
disks. In the limita→0 with x1 finite ~or, more generally,
for a!x1), we havej→x1 and b→(12b3/2)x2 /(11x1)
@note that in this limit the approximation~9! becomes cor-
rect#, so that

Zm
SYH~h!→ x2

12h
1x1Zs~h!, ~13!

Zm
BS~h!→11

1

2 F11x11x2S 12
b3

2 DhG@Zs~h!21#.

~14!

Therefore, while Eq.~5! is consistent with the exact propert
~12!, Eq. ~1! violates it. In fact, the right-hand side of Eq
~10!, with j5x1, gives the deviation of Barrio and Solana
EOS from the exact compressibility factor in the special c
a→0.

In summary, in this paper we have performed a detai
comparison of the EOS proposed by Barrio and Solana@5#
and that introduced by Santoset al. @3#. We find that both
proposals lead to a comparable accuracy when the same
for the single-component system is used and confirm that
more accurate theZs(h), the more accurate the resultin

FIG. 4. Plot ofD(h), Eq. ~11!, by assuming Woodcock’s EOS
~dashed line!, the Levin approximant~solid line!, and the SHY EOS
~dotted line! for the pure fluid.
2-4
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compressibility factor for the binary mixture. In favor of th
proposal of Santoset al., apart from its simpler form which
also yields a very reasonable estimate of the known th
virial coefficient, is the fact that it is readily extendible to th
multicomponent case~including polydisperse mixtures! and
complies with the exact limit in which the small disks a
point particles, whileZm

BS(h) does not share these assets.
in

03120
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