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Equation of state of additive hard-disk fluid mixtures: A critical analysis of two recent proposals
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A detailed analysis of two different theoretical equations of state for a binary mixture of additive hard disks
[C. Barrio and J. R. Solana, Phys. Rev6& 011201(2001); A. Santos, S. B. Yuste, and M. pez de Haro,
Mol. Phys.96, 1 (1999], including their comparison with Monte Carlo results, is carried out. It is found that
both proposals, which require the equation of state of the single-component system as input, lead to compa-
rable accuracy when the same input is used in both, but that advocated by &aaltis simpler and complies
with the exact limit in which the small disks are point particles.
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[. INTRODUCTION In order to carry out the analysis, the paper is organized as
follows. In Sec. Il we recall the two different formulations
Despite being, in principle, a simpler system, hard-diskfor the EOS of a binary mixture of additive hard disks in a
fluid mixtures have received much less attention in the lit-unified notation, as well as provide the expli¢@pproxi-
erature than fluid mixtures of hard spheres. This may well bénate expressions for the EOS of the single-component sys-
tied to the fact that till now no ana|ytica| solution to the tem that will be used in the actual calculations. This is fol-
Percus-Yevick equation has been found for even dimensiofowed in Sec. Ill by a discussion of the results and some
ality. In any case, what this has meant is that fewer result§oncluding remarks.
are available for fluid mixtures of hard disks than for hard-
sphere mixtures. In particular, a very scarce number of pro-|;, THE EQUATION OF STATE OF A BINARY MIXTURE
posals for the equation of statEOS of these mixtures has OF ADDITIVE HARD DISKS
been madg¢1-5], although the trend seems to be reversing ) ) ) . .
recently, and even fewer simulations have been performed to Let us consider a binary mixture of additive hard disks of
assess the value of such proposals. In a recent paper, Barfi(gmeterso; and o,. The total number density ip, the
and Solang5] proposed an EOS for a binary mixture of mole fractions are; andx,=1-x,, and the packing frac-
additive hard disks. Such an equation reproduces th#on is n=(m/4)p(c?), where (c")=3xo]. Let Z
(known) exact second and third virial coefficients of the mix- =p/pkgT denote the compressibility factop being the
ture and may be expressed in terms of the EOS of a singlgpressure T the absolute temperature, akgl the Boltzmann
component system. They also performed Monte CaM&)  constant. Then, Barrio and Solana’s EOS for a binary mix-
simulations and found that their recipe was very accuratéure of hard disksZE]S( 7), may be written in terms of a
provided an also very accurate EOS for the singlegiven EOS for a single-component systeny,»), as
component syster{in their case it was the EOS proposed by
Woodcock[6]) was taken as input. The comparison with 1
other EOS for the mixture available in the literature indicated Zo(m)=1+ > (1+Bp(1+H[Z47) 1], (1)
that their proposal does the best job with respect to the
Monte Carlo data. Among these other EOS for the binary N2, 2 . .
mixture considered in Ref5], only that introduced by San- where ¢=(0)°/(0) and § is adjusted as to reproduce the
tos et al. a few years agd3] also shares with Barrio and exact third virial coefficient for the mixturB;, namely,
Solana’s EOS the fact that it may be expressed in terms of
the EOS for a single-component system. The aim of the B B3 bs
present paper is to present a detailed analysis of these two B= (w42 2)2(1+£) o @
different equations of state, since the comparison made in

Ref. [5] may be misleading in that it was not performed by Here. by=4(4/3— \3/m) is the reduced third virial coeffi-

taking the sameEQOS for the single-component system in . tfor the sindl  svst . byl
both proposals. A preliminary report of this work can be ClENtfor the singie-component system ddglis given by[1]

found in Ref.[7].

v
_ 3 4 2 4 2 4 3 4
Bs—g(anXlUlJf 3a1oX X207, 3821X1X50 1,1 AxpX507),
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FIG. 1. Plot of the differencéZ(n)=Z(7) —Z25W(5) for a o _ _
size ratio o,/0,=2/3 and for x;,=0.25 (top panel, x,=0.50 FIG. 2. Same as in Fig. 1, but for a size ratig/oy=1/2.
(middle panel, andx;=0.75 (bottom panel The filled circles are
Monte Carlo dat45], the dashed lines refer to the propo&hl and W 1l 1o 6 . B
the solid lines refer to the proposés). The EOS of the single- Zo(m=—7—"rr—+ 2, (by7y ' =4)(n/no)" 2, (6)
component fluidZ(»), used as input are Eq&) (lines without Mo n=2

symbolg, (7) (lines with squares and(8) (lines with triangles where 7 —(\/§/6)7r is the value of the crystalline close
0=

packing and thd, (n=2-6) are thgknown) reduced virial

8= m+2(olof —1)cos }(oi/20};) coefficients[8].

7(405/037 1)1/2(1+Ui2/20i21)0i2/2‘7i2j 4) (b) The Levin approximant of Erpenbeck and Luld&n,
4
andO'ij:(O'i+0'j)/2. z p 77”
The EOS for the mixture, consistent with a given EOS for " iz "
a single-component system, introduced recently by Santos, Zs ()= "5 1 )
Yuste, and Haro reads] gn 7"
n=0
SYH 1 ns6 5
Z5 (ﬂ):(l—g)ﬁJrgzs(ﬂ)- (5) where  g,=(—1)"(;)(1—n/6)°bg/bg_, and  p,

=2 h-obn+1-mAm-

We stress the fact that E¢p) is simpler than Eq(1) [which (¢) The EOS proposed by Santos, Haro, and Y5811,
must be complemented with Eg®)—(4)]. In addition, the —1
structure of Eq(5) is valid for any number of components, ZSMY ()= ( 1-29+ 2m0—1 772) . @)
while Eq. (1) requires the third virial coefficient, which is s
known exactly only fotbinary mixtures. In order to proceed
with a quantitative analysis of Eq&l) and (5), we have to The EOS(6) and(7) are more complex than the EG8)
specify Z( ). While many choices are available, we will in the sense that they require the exact knowledge of the first
restrict ourselves to the three following EOS of the single-six virial coefficients, while Eq(8) is constructed by using
component system. the first two virial coefficients only and enforcing a pole at

(a) Woodcock's EO96] n=7o. Despite its simplicity, however, Eq8) does a re-

031202-2



EQUATION OF STATE OF ADDITIVE HARD-DISK . .. PHYSICAL REVIEW E66, 031202 (2002

TABLE I. Compressibility factor for different binary mixtures of hard disks as obtained from Monte Carlo simulations, and frofh) Egs.
and(5). In the two latter, Woodcock’s equation of state for the single-component system is used.

x;=0.25 x,=0.50 x,=0.75

oyloy " MC 2 Eq.()  Eq.(5) MC 2 Eq.(1)  Eq.(5) MC 2 Eq.(1)  Eq.(5)

213 020  1.55@) 1.559 1.559 1.565) 1.558 1.558 1.568) 1.563 1.563
030  2.0368) 2.040 2.040 2.048) 2.039 2.039 2.05B) 2.048 2.048
0.40 2.791) 2.79 2.79 2.70l) 2.78 2.78 2.8(1) 2.80 2.80
0.45 3.310) 3.32 3.32 3.30) 3.32 3.32 3.38) 3.34 3.34
0.50 4.022) 4.02 4.02 4.001) 4.02 4.02 4.01) 4.05 4.05
0.55 4.982) 4.97 4.97 4.9Q) 4.96 4.96 5.0®) 5.00 5.00
0.60 6.312) 6.29 6.28 6.30L) 6.28 6.27 6.36) 6.33 6.33

1/2 020  1.53%) 1.536 1.536 1.546) 1.538 1.538 1.556) 1.552 1.552
030  1.9987) 1.995 1.995 2.008) 2.000 2.000 2.039) 2.027 2.026
0.40 2.721) 2.70 2.70 2.701) 2.71 2.71 2.77) 2.76 2.76
0.45 3.202) 3.21 3.21 3.22) 3.22 3.22 3.20) 3.29 3.29
0.50 3.881) 3.88 3.87 3.9%) 3.89 3.89 3.99) 3.98 3.98
0.55 4.792) 4.77 4.76 4.80) 4.80 4.78 4.99) 4.91 4.90
0.60 6.033) 6.02 6.00 6.0@) 6.05 6.03 6.203) 6.21 6.20

1/3 020  1.49(6) 1.490 1.490 1.51@) 1.506 1.506 1.539) 1.536 1.536
030  1.9078) 1.905 1.904 1.94@®) 1.937 1.936 2.009) 1.996 1.995
0.40 2.5%1) 2.54 2.54 2.50L) 2.60 2.60 2.700) 2.71 2.70
0.45 2.992) 3.00 2.99 3.00) 3.07 3.06 3.2() 3.21 3.21
0.50 3.602) 3.59 3.57 3.6@) 3.69 3.68 3.8Q) 3.88 3.87
0.55 4.393) 4.39 4.36 4.5@) 4.52 4.50 4.7@) 4.78 476
0.60 5.49 5.44 5.66) 5.68 5.64 6.06L) 6.03 6.00

aReferencd5].

markably good job when compared with simulation data, al(1) taking for Z(#) the EOS by Woodcock. The figures
though it is of course less accurate than the more sophistshow that, in general, the differences between the EQS

cated EOS6) and(7) [10]. and the EOS5), taking of course the sani, as input, are
smaller than or of the order of the error bars of the simulation
I1l. DISCUSSION data. As expected, a better agreement with the simulation

data is obtained when either of the more accurate E&)8r
In Table I, we show the results of Eqd) and(5) when (7) s used as input instead of the much simpler E®Slt is
Woodcock's EO$6], Eq. (6), for the single-component sys- jnteresting to remark that the best agreement at the two larg-

tem is used as input in both equations, as well as the avaikst densitiesy=0.55 andy= 0.6, corresponds to the use of
able MC datd5]. As seen in Table |, it is fair to say that both {he | evin approximant foZ.

recipes are of comparable accuracy with respect to the Monte | gt ys try to understand why both EOS for the mixture
Carlo results, their difference being generally smaller thanyive practically equivalent results when the same input is
the error bars of the simulation data, althougfff(7) per-  sed in both. First, it may be shown tt&}""( ), while not
forms slightly better thaiZ;""(7). This may be fortuitous  reproducing the exact third virial coefficiefs, yields a
since if one takes foZy(7) in Egs.(1) and (5) the Levin  yery good estimate of it[12], namely, Bs=[1+ (b;
approximan{9], Eq. (7) (which is known to give the most — 1)¢](7/4)2(52)2. If we replace that estimate into E(®),
accurate approximation to the single-component compresgye get

ibility factor [9,10]), the apparent(slight) superiority of

Z,‘?f( 7) is no longer there. For instance, the theoretical val- 1-¢ bs
ues of Table | corresponding to the packing fractigs 0.6 B= 1T§ 1- 3). 9

are increased by about 0.03 when the Levin approximant
rather than Woodcock’s EOS is used as input, so that in this ) ) . . .
case the accuracy @"(7) is generally slightly better than BY using this estimate in Barrio and Solana’s EOS, &9,
that 0fZ25( ). This is further illustrated in Figs. 1-3, where W€ have

in order to enhance the differences we have plo#Zgdz)

—7B5W)( ) versusz, ZB5W(7) indicating the use of Eq. Z2(m) =23 () =(1-§A(), (10
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FIG. 4. Plot ofA(7), Eq.(11), by assuming Woodcock’s EOS
(dashed ling the Levin approximan(solid line), and the SHY EOS
(dotted ling for the pure fluid.

tion x;=al/(1+ a) for the large disks, namel§=4a/(1
+a)2. Thus, é<1 if a<1 and, according to Eq(10),
Zo(m) = Z5™M () =A(7).

Let us consider now the limit in which the small disks
become point particlesa(—0) and occupy a negligible frac-
tion of the total area. In that case, the compressibility factor
of the mixture must reduce {&,13]

X2
Zn(m) = 7=+ XaZdm). (12)
FIG. 3. Same as in Fig. 1, but for a size ratig/o;=1/3. K

The first term represents thgleal ga$ partial pressure due

to the point particles in the available ar@z., the total area

minus the area occupied by the large d)skehile the second

7 term represents the partial pressure associated with the large
[Zdn)—1]— 11— (11)  disks. In the limita— 0 with x, finite (or, more generally,
n for a<x,), we haveé—x; and B— (1—bs/2)x,/(1+X,)

[note that in this limit the approximatio(®) becomes cor-
rect], so that

where

1 bs
A(n)zz[l—(g—l)n

According to the approximation involved in E@L0), the
difference ZB5(5) — 251(7) is small if the asymmetry of
the mixture is small §<1) and/orA( %) is small. The func-
tion A(#) is plotted in Fig. 4 for the cases wherg(7) is AN n)ﬂiﬂlzs( 7), (13)
given by Woodcock’s EOS, by the Levin approximant, and " 1-9

by the SHY EOS. In all instances it is practically zero up to
7~0.2 but then it grows rapidly. The most disparate mixture BS 1 by

considered in Barrio and Solana’s simulations corresponds to  Zm (7) =1+ 5| 14 X1 +X5| 1= = 7| [Zs(77) —1].

X1=0.25, a=0,/0,=1/3, which yields¢é=0.75. This ex- (14)
plains the fact thaZ 23(7) — 25"(#)=<0.05 in the simulated

cases. It should be noted, however, that Ef) tends to  Therefore, while Eq(5) is consistent with the exact property
overestimate the actual differenZEls( n)—quYH( 7) [for in- (12), Eg. (1) violates it. In fact, the right-hand side of Eq.
stance, in the case wherg=0.25, «=1/3, »=0.6, and (10), with é£=x,, gives the deviation of Barrio and Solana’s
Z(n) is given by Woodcock’s EOS, this difference is 0.05, EOS from the exact compressibility factor in the special case
while the prediction of Eq(10) yields 0.07], so that its main  a—0.

purpose is to illustrate the fact that both EOS vyield practi- In summary, in this paper we have performed a detailed
cally equivalent results for not very asymmetric mixtures. Oncomparison of the EOS proposed by Barrio and Sold&ja

the other hand, more important differences can be expecteshd that introduced by Santes al. [3]. We find that both

for disparate mixtures, especially in the case of large densiproposals lead to a comparable accuracy when the same EOS
ties. At a given density and a given diameter ratig¢1 the  for the single-component system is used and confirm that the
smallest value of the parame®corresponds to a mole frac- more accurate th&»), the more accurate the resulting
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